Name: \qquad
Math 1312
Spring 2005
Final

1. Under what conditions on a, b, c does the system

$$
\begin{array}{r}
3 x_{1}+x_{2}-3 x_{3}=a \\
x_{1}+x_{2}+x_{3}=b \\
5 x_{1}+6 x_{2}+8 x_{3}=c
\end{array}
$$

have (a) a unique solution; (b) no solution; (c) infinitely many solutions.
2. Find an equation of the plane through $P(3,3,1)$ that is perpendicular to the planes $x+y=2 z$ and $2 x+z=10$.
3. Find the area of the triangle with vertices $P(1,1,0), Q(1,0,1)$, and $R(0,1,1)$.
4. Determine whether the series converges or diverges.

$$
\sum_{n=0}^{\infty}\left(\frac{\ln n}{n}\right)^{n}
$$

5. Determine whether the infinite series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}
$$

6. Find the Taylor series of the given function at the indicated point a.

$$
f(x)=\ln x, \quad a=1
$$

7. Determine whether or not the sequence $\left\{a_{n}\right\}$ converges, and find its limit if it does converge.

$$
a_{n}=\left(\frac{2-n^{2}}{3+n^{2}}\right)^{n}
$$

8. Solve the initial value problem.

$$
9 y^{\prime \prime}+42 y^{\prime}+49 y=0 ; \quad y(0)=6, \quad y^{\prime}(0)=-11
$$

9. Evaluate the integral.

$$
\int \sin ^{2} \theta \cos ^{3} \theta d \theta
$$

10. Compute the integral.

$$
\int e^{-3 x} \sin 4 x d x
$$

