Math 1312
 Spring 2005
 Pre-Final

1. Determine for what values of k each system has (a) a unique solution; (b) no solution; (c) infinitely many solutions.

$$
\begin{aligned}
& 3 x+2 y=1 \\
& 7 x+5 y=k
\end{aligned}
$$

2. Find an equation for the plane that passes through the point $P(1,3,-2)$ and contains the line of intersection of the planes $x-y+z=1$ and $x+y-z=1$.
3. Find the volume of the parallelepiped with adjacent edges $\overrightarrow{O P}, \overrightarrow{O Q}$, and $\overrightarrow{O R}$, where $P(1,1,0), Q(1,0,1)$, and $R(0,1,1)$.
4. Determine whether the series converges absolutely, converges conditionally, or diverges.

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{3 n}}{7^{n}}
$$

5. Determine whether the infinite series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{1}{3+5^{n}}
$$

6. Find the Taylor series of the given function at the indicated point a.

$$
f(x)=\cos x, \quad a=\frac{\pi}{2}
$$

7. Determine whether or not the sequence $\left\{a_{n}\right\}$ converges, and find its limit if it does converge.

$$
a_{n}=\left(1-\frac{2}{n^{2}}\right)^{n}
$$

8. Solve the initial value problem.

$$
y^{\prime \prime}-2 y^{\prime}-35 y=0 ; \quad y(0)=12, \quad y^{\prime}(0)=0
$$

9. Evaluate the integral.

$$
\int \sin ^{2} 3 \alpha \cos ^{2} 3 \alpha d \alpha
$$

10. Use integration by parts to compute the integral.

$$
\int x^{2} \cos 4 x d x
$$

