Name: \qquad
Math 1312
Spring 2005
Pretest II

1. Determine whether or not the sequence $\left\{a_{n}\right\}$ converges, and find its limit if it does converge.
(a) $a_{n}=\frac{\sin ^{2} n}{\sqrt{n}}$
(b) $a_{n}=\left(2 n^{2}+1\right)^{\frac{1}{n}}$
2. Determine whether the following infinite series converges or diverges.
(a) $\sum_{n=1}^{\infty} \frac{3^{n}}{2^{n}+4^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{3^{n}+1}$
3. Find the Taylor Series expansion of
(a) $f(x)=\frac{1}{1-x}, a=0$
(b) $f(x)=\ln x, a=1$
4. Find Taylor's formula for the given function f at $a=0$. Find both the Taylor polynomial $P_{n}(x)$ of the indicated degree n and the remainder $R_{n}(x)$.
(a) $f(x)=\ln (1+x), n=4$
(b) $f(x)=\sqrt{x}, n=3$
5. (a) Determine the value of p for which the series

$$
\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^{p}}
$$

converges.
(b) Determine whether the series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n!}{n^{n}}
$$

converges absolutely, converges conditionally, or diverges.

