1. Determine whether or not the sequence \(\{a_n\} \) converges, and find its limit if it does converge.

(a) \(a_n = \frac{\sin^2 n}{\sqrt{n}} \)

(b) \(a_n = (2n^2 + 1)^{\frac{1}{n}} \)

2. Determine whether the following infinite series converges or diverges.

(a) \(\sum_{n=1}^{\infty} \frac{3^n}{2^n + 4^n} \)
3. Find the Taylor Series expansion of
 (a) \(f(x) = \frac{1}{1 - x}, \ a = 0 \)

 (b) \(\sum_{n=1}^{\infty} \frac{(-2)^n}{3^n + 1} \)

4. Find Taylor’s formula for the given function \(f \) at \(a = 0 \). Find both the Taylor polynomial \(P_n(x) \) of the indicated degree \(n \) and the remainder \(R_n(x) \).
 (a) \(f(x) = \ln(1 + x), \ n = 4 \)
(b) \(f(x) = \sqrt{x}, \ n = 3 \)

5. (a) Determine the value of \(p \) for which the series

\[
\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^p}
\]

converges.

(b) Determine whether the series

\[
\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n!}{n^n}
\]

converges absolutely, converges conditionally, or diverges.