Name: \qquad
Math 1312
Spring 2005
Test III

1. Use the method of elimination to determine whether the given linear system is consistent or inconsistent. For a consistent system, find the solution if it is unique; otherwise, describe the infinite solution set in terms of an arbitrary parameter t.

$$
\begin{aligned}
x-3 y+2 z & =6, \\
x+4 y-z & =4, \\
5 x+6 y+z & =20
\end{aligned}
$$

2. Write both symmetric and parametric equations of the line that passes through $P_{1}(1,-1,2)$ and $P_{2}(3,2,-1)$.
3. Find A^{-1} if it exists for

$$
A=\left(\begin{array}{ccc}
1 & -3 & -3 \\
-1 & 1 & 2 \\
2 & -3 & -3
\end{array}\right)
$$

4. Determine whether the two lines L_{1} and L_{2} are parallel, skew, or intersecting. If they intersect, find the point of intersection.

$$
\begin{aligned}
& L_{1}: \frac{1}{4}(x-11)=y-6=-\frac{1}{2}(z+5) \\
& L_{2}: \frac{1}{6}(x-13)=-\frac{1}{3}(y-2)=\frac{1}{8}(z-5)
\end{aligned}
$$

5. Write an equation of the plane through two points $A(1,0,-1), B(3,3,2)$, and $C(4,5,-1)$.
6. Find an equation of the plane through $P(3,3,1)$ that is perpendicular to the planes $x+y=2 z$ and $2 x+z=10$.
