Math 3336
Sprint 2005
Test I
Answers

1. Determine the values of a so that the following system in the unknowns x, y, z has:

$$
\begin{aligned}
x+y-z & =1 \\
2 x+3 y+a z & =3 \\
x+a y+3 z & =2
\end{aligned}
$$

(a) no solution,

Answer:

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
2 & 3 & a & 3 \\
1 & a & 3 & 2
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}} \begin{array}{ccc|c}
-R_{1}+R_{3}
\end{array}\left[\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
0 & 1 & a+2 & 1 \\
0 & a-1 & 4 & 1
\end{array}\right] \xrightarrow{(1-a) R_{2}+R_{3}}} \\
{\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & a+2 \\
0 & 0-a^{2} & -a+6 \\
2-a
\end{array}\right] \xrightarrow{\frac{-a^{2}-a+6}{-1} R_{3}\left[\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
0 & 1 & a+2 & 1 \\
0 & 0 & 1 & \frac{2-a}{-a^{2}-a+6}
\end{array}\right]}}
\end{gathered}
$$

if $a \neq 2$. There is no solution if $-\left(a^{2}+a-6\right)=-(a+3)(a-2)=0$ or $a=-3$ or $a=2$ and $2-a=0(a=2)$. Thus $a=-3$ gives no solution.
(b) more than one solution,

Answer: If $a=2$, then the last row in the echelon now consists of zeros. Hence one free variable which leads to many solutions.
(c) a unique solution: Answer: If $a \neq-3$ or 2 , then we have a unique solution.
2. Consider the following matrix

$$
A=\left(\begin{array}{cccc}
1 & 3 & -1 & 2 \\
0 & 11 & -5 & 3 \\
2 & -5 & 3 & 1 \\
4 & 1 & 1 & 5
\end{array}\right)
$$

(a) Reduce A to a row-echelon form

$$
\left(\begin{array}{cccc}
1 & 3 & -1 & 2 \\
0 & 11 & -5 & 3 \\
2 & -5 & 3 & 1 \\
4 & 1 & 1 & 5
\end{array}\right) \xrightarrow{-2 R_{1}+R_{3}}\left(\begin{array}{cccc}
1 & 3 & -1 & 2 \\
0 & 11 & -5 & 3 \\
0 & -11 & 5 & -3 \\
0 & -11 & 5 & -3
\end{array}\right) \xrightarrow{-4 R_{1}+R_{4}+R_{4}} \begin{aligned}
& R_{2}+R_{3} \\
& R_{2}+
\end{aligned}\left(\begin{array}{cccc}
1 & 3 & -1 & 2 \\
0 & 11 & -5 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(b) Reduce A to a reduced row-echelon form

$$
\xrightarrow{\frac{1}{11} R_{2}}\left(\begin{array}{cccc}
1 & 3 & -1 & 2 \\
0 & 1 & -\frac{5}{11} & \frac{3}{11} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{-3 R_{2}+R_{1}}\left(\begin{array}{cccc}
1 & 0 & \frac{4}{11} & \frac{13}{11} \\
0 & 1 & -\frac{5}{11} & \frac{3}{11} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(c) If A^{-1} exists, find it.

$$
A^{-1} \text { does not exist. }
$$

3. (a) Determine whether or not the set W of all vectors in \mathbb{R}^{4} is a subspace of \mathbb{R}^{4}, where

$$
W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right): x_{1}+x_{2}=x_{3}+x_{4}\right\}
$$

(i) Let $\vec{u}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T} \in W, \vec{v}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)^{T} \in W$. Then $\vec{w}=\left(x_{1}+y_{1}, x_{2}+\right.$ $\left.y_{2}, x_{3}+y_{3}, x_{4}+y_{4}\right)^{T} \in W$. Then $\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right)=\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right)=$ $\left(x_{3}+x_{4}\right)+\left(y_{3}+y_{4}\right)=\left(x_{3}+y_{3}\right)+\left(x_{4}+y_{4}\right)$ Therefore $\vec{u}+\vec{v} \in W$.
(ii) Let $\vec{u} \in W, c \in \mathbb{R}$. Thus $c \vec{u}=\left(c u_{1}, c u_{2}, c u_{3}\right)^{T} . c u_{1}+c u_{2}=c\left(u_{1}+u_{2}\right)=$ $c\left(u_{3}+u_{4}\right)=c u_{3}+c u_{4}$. Therefore W is a subspace of \mathbb{R}^{4}.
(b) Suppose A is an $n \times n$ matrix and that k is a constant scalar. Show that the set of all vectors \vec{x} such that $A \vec{x}=k \vec{x}$ is a subspace of \mathbb{R}^{4}.
Let $W=\{\vec{x}: A \vec{x}=k \vec{x}\}$.
(i) Let $\vec{u}, \vec{v} \in W$. Then $A \vec{u}=k \vec{u}$ and $A \vec{v}=k \vec{v} . A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}=k \vec{u}+k \vec{v}=$ $k(\vec{u}+\vec{v})$.
(ii) $A c \vec{u}=c A \vec{u}=c k \vec{u} . k(c \vec{u})$. Hence W is a subspace.
4. Solve the differential equation

$$
x y^{\prime}=3 y+x^{4} \cos x, \quad y\left(\frac{\pi}{2}\right)=0
$$

$y^{\prime}-\frac{3}{x} y=x^{3} \cos x$.
Integrating factor $\mu(x)=e^{-\int \frac{3}{x} d x}=e^{-3 \ln x}=e^{\ln \frac{1}{x^{3}}}=\frac{1}{x^{3}}$

$$
\begin{aligned}
\int d\left(\frac{1}{x^{3}} y\right) & =\int \cos x d x \\
\frac{1}{x^{3}} y(x) & =\sin x+c \Rightarrow y(x)=x^{3} \sin x+c x^{3} \\
y\left(\frac{\pi}{2}\right) & =0=\frac{\pi^{3}}{8}+\frac{\pi^{3}}{8} c \Rightarrow c=-1 \\
y(x) & =x^{3}(\sin x-1)
\end{aligned}
$$

5. A tank initially contains 20 gallons of pure water. Brine containing 2 pounds of salt per gallon enters the tank at $3 \mathrm{gal} / \mathrm{min}$ and the perfectly mixed solution leaves the tank at 4 gal/min.
(a) Find the amount of salt in the tank after t time.

Let $x(t)$ be the amount of salt in the tank at time t.

$$
\begin{aligned}
\frac{d x}{d t} & =3.2-4 \frac{x(t)}{20-t} \\
\frac{d x}{d t} & +\frac{4 x(t)}{20-t}=6 \\
\mu(x) & =e^{\int \frac{4}{20-t} d t} \\
& =e^{-4 \ln (20-t)} \\
& =\frac{1}{(20-t)^{4}} \\
\frac{1}{(20-t)^{4}} x(t) & =\int \frac{6}{(20-t)^{4}} d t=-6 \frac{(20-t)^{-3}}{-3}+c \\
x(t) & =2(20-t)+c(20-t)^{4}, \quad x(0)=0=40+c(20)^{4} \Rightarrow c=\frac{-40}{(20)^{4}} \\
x(t) & =2(20-t)-\frac{1}{4000}(20-t)^{4}
\end{aligned}
$$

(b) Find the amount of salt in the tank after 15 minutes.

$$
\begin{aligned}
x(15) & =2(20-15)-\frac{1}{4000}(20-15)^{4} \\
& =10-\frac{625}{4000} \\
& =9 \frac{27}{32} \mathrm{lb}
\end{aligned}
$$

6. Consider an animal population $P(t)$ with constant death rate $\delta=0.01$ (deaths per animal per month) and with birth rate β proportional to P. Suppose that $P(0)=200$, and $P^{\prime}(0)=2$.
(a) When $P=1000$?

$$
\begin{aligned}
\frac{d p}{d t} & =P(k P-0.01), \quad P^{\prime}(0)=2=200(k(200)-0.01) \\
\frac{d p}{d t} & =P\left(\frac{P}{10000}-\frac{1}{100}\right) \\
& =\frac{1}{10000} P(P-100) \\
\int \frac{d p}{P(P-100)} & =\int \frac{1}{10000} d t \Rightarrow \int \frac{1}{100}\left(\frac{1}{P-100}-\frac{1}{P}\right) d p=\int \frac{1}{10000} d t \\
\ln (P-100)-\ln P & =\frac{1}{100} t+\ln c \\
\frac{P-100}{P} & =c e^{\frac{1}{100} t} \Rightarrow \frac{200-100}{200}=c \Rightarrow \frac{1}{2} \\
\frac{P-100}{P} & =\frac{\frac{1}{2} e^{\frac{1}{100} t}}{1-\frac{1}{2} e^{\frac{1}{100} t}} \Rightarrow P(t)=100+\frac{100}{2-e^{-\frac{1}{100} t}-1} \\
P(t) & =1000=100+\frac{100}{2 e^{-\frac{1}{100} t}-1} \Rightarrow t=100 \ln \left(\frac{18}{10}\right) \approx 58.7
\end{aligned}
$$

(b) When does doomsday occur? (Doomsday occurs when the population tends to ∞ in a finite time)
Doomsday occurs when

$$
\begin{aligned}
2 e^{-\frac{1}{100} t}-1 & =0 \\
e^{-\frac{1}{100} t} & =\frac{1}{2} \\
-\frac{1}{100} t & =\ln \frac{1}{2} \Rightarrow t=100 \ln 2 \approx 69.3
\end{aligned}
$$

7. (a) Find the critical points (equilibrium points/constant solutions) of the differential equation

$$
\frac{d x}{d t}=x^{2}-7 x+10
$$

Two critical points (equilibria) when $\frac{d x}{d t}=0$

$$
\begin{aligned}
x^{2}-7 x+10 & =0 \\
(x-5)(x-2) & =0 \\
x(t)=5, \quad x(t) & =2
\end{aligned}
$$

(b) Determine the stability of the critical points without solving the equation.

$$
\frac{d x}{d t}=(x-2)(x-5) \begin{cases}+ & \text { if } x<2 \Rightarrow x(t) \text { is increasing, } \\ - & \text { if } 2<x<5 \Rightarrow x(t) \text { is decreasing }, \\ + & \text { if } x>5 \Rightarrow x(t) \text { is increasing. }\end{cases}
$$

(c) Draw a rough graph of the solution curves.

