Name: \qquad
Math 3336
Spring 2005
Test II

1. Find the general solution of the differential equations.
(a) $9 y^{\prime \prime}-12 y^{\prime}+4 y=0$
(b) $35 y^{\prime \prime}-y^{\prime}-12 y=0$
2. Solve the initial value problems.
(a) $y^{\prime \prime \prime}-5 y^{\prime \prime}+100 y^{\prime}-500 y=0, y(0)=0, y^{\prime}(0)=10, y^{\prime \prime}(0)=250$ given that $y_{1}(x)=e^{5 x}$ is one particular solution of the differential equation.
(b) $3 y^{\prime \prime \prime}+2 y^{\prime \prime}=0, y(0)=-1, y^{\prime}(0)=0, y^{\prime \prime}(0)=1$.
3. Use the method of variation of parameters to find a particular solution of the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=(x-2) e^{x} .
$$

4. Solve the initial value problem

$$
y^{\prime \prime}+9 y=\sin 3 x, \quad y(0)=2, \quad y^{\prime}(0)=0
$$

5. (a) Suppose that $y_{1}(x)$ and $y_{2}(x)$ are solutions of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Show that $z(x)=y_{1}(x)-y_{2}(x)$ is a solution of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

(b) Find the Wronskian of the functions $e^{r_{1} x}, e^{r_{2} x}, e^{r_{3} x}$, where the numbers r_{1}, r_{2}, and r_{3} are distinct. Then determine whether or not these functions are linearly independent.

