Name: \qquad

Math 3336
 Spring 2005
 Pretest II

1. Find the general solution of the differential equations.
(a) $4 y^{\prime \prime}+4 y^{\prime}+y=0$
(b) $2 y^{\prime \prime}+3 y^{\prime}=0$
2. (a) Find the general solution of the differential equation

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}-54 y=0
$$

given that $y_{1}(x)=e^{3 x}$ is one particular solution of the differential equation.
(b) Solve the initial value problem

$$
2 y^{\prime \prime \prime}-3 y^{\prime \prime}-2 y^{\prime}=0, \quad y(0)=1, \quad y^{\prime}(0)=-1, \quad y^{\prime \prime}(0)=3 .
$$

3. Use the method of variation of parameters to find a particular solution of

$$
y^{\prime \prime}-4 y=x e^{x}
$$

4. Solve the initial value problem

$$
y^{(4)}-4 y^{\prime \prime}=x^{2}, \quad y(0)=y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=-1 .
$$

5. (a) Let $y_{1}(x)$ and $y_{2}(x)$ be two linearly independent solutions of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x)
$$

Is $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ a general solution of this equation?
(b) Let $y_{1}(x)$ be a particular solution of the equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x)
$$

and $y_{2}(x)$ be a particular solution of the equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{2}(x)
$$

Prove or disprove that $y(x)=y_{1}(x)+y_{2}(x)$ is a solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x)+f_{2}(x)
$$

