Math 3336 Spring 2005 Pretest II

1. Find the general solution of the differential equations.

(a)
$$4y'' + 4y' + y = 0$$

(b)
$$2y'' + 3y' = 0$$

2. (a) Find the general solution of the differential equation

$$y''' + 3y'' - 54y = 0,$$

given that $y_1(x) = e^{3x}$ is one particular solution of the differential equation.

(b) Solve the initial value problem

$$2y''' - 3y'' - 2y' = 0$$
, $y(0) = 1$, $y'(0) = -1$, $y''(0) = 3$.

3. Use the method of variation of parameters to find a particular solution of

$$y'' - 4y = xe^x.$$

4. Solve the initial value problem

$$y^{(4)} - 4y'' = x^2$$
, $y(0) = y'(0) = 1$, $y''(0) = y'''(0) = -1$.

5. (a) Let $y_1(x)$ and $y_2(x)$ be two linearly independent solutions of the differential equation

$$y'' + p(x)y' + q(x)y = f_1(x).$$

Is $y(x) = c_1 y_1(x) + c_2 y_2(x)$ a general solution of this equation?

(b) Let $y_1(x)$ be a particular solution of the equation

$$y'' + p(x)y' + q(x)y = f_1(x)$$

and $y_2(x)$ be a particular solution of the equation

$$y'' + p(x)y' + q(x)y = f_2(x).$$

Prove or disprove that $y(x) = y_1(x) + y_2(x)$ is a solution of

$$y'' + p(x)y' + q(x)y = f_1(x) + f_2(x).$$