Name: \qquad

Math 3359
Take Home FINAL
Spring 2004
Due Friday 5/7/2004

1. Consider the map $Q_{c}(x)=x^{2}+c,-2 \leq c \leq 0$, defined on the interval $[-2,2]$.
(a) Discuss the stability of the fixed points and the periodic points of period 2.
(b) Draw a bifurcation diagram for the map. Estimate the interval in the parameter c for which window 3 appears.
2. Given a continuous map f on the closed interval $[a, b]$ with an orbit $x_{0}, x_{1}=f\left(x_{0}\right)$, $x_{2}=f^{2}\left(x_{0}\right), \ldots$ such that $x_{2}<x_{0}<x_{1}$. Prove that f has a point of minimal period 2 .
3. Construct a continuous map that has an 8 -cycle (of period 8) but no 16 -cycle (of period 16). Give all necessary details.
4. Let f be a continuous map on R. Prove that:
(a) If $f(b)=b$ and $x<f(x)<b$ for all $x \in[a, b]$, then $a \in W^{s}(b)$ (the basin of attraction of b).
(b) If $f(b)=b$ and $b<f(x)<x$ for all $x \in[a, b]$, then $c \in W^{s}(b)$.
5. Solve the system $\vec{x}(n+1)=A \vec{x}(n), \vec{x}(0)=\binom{1}{0}$ where $A=\left(\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right)$.
