Name: \qquad

> Math 3360
> Fall 2002
> Take Home Final

1. Suppose that

$$
I_{n}=\left[a_{n}, b_{n}\right], I_{n+1} \subset I_{n} \text { for each } n=1,2,3, \ldots
$$

If $\lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0$, prove that there is only one number x_{0} which is in every I_{n}.
2. (a) Prove that if f is uniformly continuous on a bounded set S, then f is a bounded function on S.
(b) Use (a) to prove that $f(x)=\frac{1}{x^{2}}$ is not uniformly continuous on $(0,1)$.
3. Which of the following functions are uniformly continuous on the specified set? Justify your answer by using any theorem in the notes or the book.
(a) $f(x)=x^{2} \sin \frac{1}{x}$ on $(0,1]$
(b) $\quad f(x)=x^{3}$ on \mathbb{R}
(c) $\quad f(x)=\sin \left(\frac{1}{x^{2}}\right)$ on $(0,1]$
(d) $\quad f(x)=\frac{1}{x^{3}}$ on $(0,1]$
4. (a) If $p>0$ and α is real, prove that $\lim _{n \rightarrow \infty} \frac{n^{\alpha}}{(1+p)^{n}}=0$
(b) If $|x|<1$, prove that $\lim _{n \rightarrow \infty} x^{n}=0$
5. Suppose that the functions f and g are uniformly continuous on a set S. Prove that $h=f+g$ is uniformly continuous on S.
6. Let $\left(s_{n}\right)$ be a bounded sequence in \mathbb{R}. Let A be the set of $a \in \mathbb{R}$ such that $\left\{n \in \mathrm{~N}: s_{n}<a\right\}$ is finite. Let B be the set of $b \in \mathbb{R}$ such that $\left\{n \in \mathrm{~N}: s_{n}>b\right\}$ is finite. Prove that $\sup A=\liminf s_{n}$ and $\inf B=\limsup s_{n}$.
7. Let $\left(s_{n}\right)$ be any sequence of nonzero real numbers. Prove that $\liminf \left|\frac{s_{n+1}}{s_{n}}\right| \leq \liminf \left|s_{n}\right|^{\frac{1}{n}}$.
8. Determine which of the following series converge. You must justify your answer.
(a) $\sum\left[\sin \left(\frac{n \pi}{6}\right)\right]^{n}$
(b) $\quad \sum \frac{(-1)^{n} n!}{2^{n}}$
(c) $\quad \sum \sqrt{n+1}-\sqrt{n}$
(d) $\sum \frac{1}{\sqrt{n!}}$
9. Let $\left(a_{n}\right)$ be a sequence such that $\liminf \left|a_{n}\right|=0$. Prove that there is a subsequence $\left(a_{n_{k}}\right)_{k=1}^{\infty}$ such that $\sum_{k=1}^{\infty} a_{n_{k}}$ converges.
10. (a) Let $a, b \in \mathbb{R}$. Prove that there are infinitely many rationales between a and b.
(b) If r is rational $(r \neq 0)$, and x is irrational, prove that $r+x$ and $r x$ are irrational.

