Math 3360 Fall 2002 Take Home Test I

You can use your textbook or notes. You cannot discuss this test with your classmates. Good luck!

- 1. The principle of mathematical induction can be extended as follows. A list P_m, P_{m+1}, \ldots of propositions is true provided (i) P_m is true, (ii) P_{n+1} is true whenever P_n is true and $n \ge m$.
 - (a) Prove that $n^2 > n+1$ for all integers $n \ge 2$.
 - (b) Prove that $n! > n^2$ for all integers $n \ge 4$. [Recall that $n! = n(n-1) \cdots 2 \cdot 1$; for example $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$.]
- 2. Let \mathbb{I} be the set of real numbers that are not rational; elements of \mathbb{I} are called *irrational numbers*. Prove that if a < b, then there exists $x \in \mathbb{I}$ such that a < x < b. Hint: First show $\{r + \sqrt{2} : r \in \mathbb{Q}\} \subseteq \mathbb{I}$.
- 3. Let $a,b \in \mathbb{R}$. Show that if $a \le b + \frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \le b$.
- 4. Show that $\sup\{r \in \mathbb{Q}: r < a\} = a$ for each $a \in \mathbb{R}$.
- 5. Let x be any real number. Prove that there exists a unique integer r such that $r \le x < r + 1$.