Name:_____

Math 3360 Fall 2002 Take Home Test II

1. Suppose that for some constant *M* with 0 < M < 1, $|s_{n+2} - s_{n+1}| \le M |s_{n+1} - s_n|$, for n = 1, 2, 3, ... Prove that the sequence (s_n) is Cauchy.

2. Find sup s_n , inf s_n , lim sup s_n , lim inf s_n if

(a)
$$s_n = \frac{(-1)^n}{n+1}, n = 1, 2, 3, ...$$

(b)
$$s_n = \frac{2}{3} \left(1 - \frac{1}{10^n} \right), n = 1, 2, 3, \dots$$

(c)
$$s_n = (-1)^n n, n = 1, 2, 3, ...$$

3. Use only the definition of limits to prove that

(a)
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0$$

(b)
$$\lim_{n \to 3^+} \frac{1}{x-3} = +\infty$$

- 4. Consider the sequence (s_n) , when $s_n = \sum_{k=1}^n \frac{1}{k}$.
 - (a) Show that $\lim_{n\to\infty} |s_{n+k} s_n| = 0$ for any given $k \in \mathbb{N}$.
 - (b) Is (s_n) Cauchy?

5. Assume $x_1 > 0$ and $x_{n+1} = \frac{1}{3 + x_n}$. Prove that the sequence (x_n) converges and compute its limit.