Name: \qquad

Math 3360

Fall 2002
Take Home Test III
Due Wednesday, November $27^{\text {th }}$, 5:00 p.m.

1. Determine which of the following series converge. Justify your answers.
(a) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \log n}$
(b) $\sum_{n=2}^{\infty} \frac{\log n}{n}$
(c) $\sum_{n=4}^{\infty} \frac{1}{n(\log n)(\log \log n)}$
(d) $\sum_{n=2}^{\infty} \frac{\log n}{n^{2}}$
2. Let
(a) $f(x)=\left\{\begin{array}{cl}\sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ prove that f is discontinuous at $x=0$ and continuous at every other point
(i) by using the definition.
(ii) by verifying the $\in-\delta$ property of theorem 17.2
(b) Prove that $f(x)=\sqrt{x-1}$ is continuous at $x=1$
(i) by the definition.
(ii) by the $\in-\delta$ property.
3. Suppose that f is continuous on $[a, b]$ and $f(x)=0$ on every rational number $x \in[a, b]$. Prove that $f(x)=0$ for every $x \in[a, b]$.
4. Suppose that f is continuous on $[a, b]$ and one-to-one (if $x_{1} \neq x_{2}$ then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$). Prove that f is strictly increasing on $[a, b]$.
5. (a)

Find the values of x for which the series $\sum_{n=1}^{\infty} \frac{(-1)^{1}(x-1)^{n}}{2^{x} n^{2}}$ converges.
(b)

Determine whether the series converges or diverges $\sum_{n=1}^{\infty} \frac{(-1)^{1}\left(\frac{4}{3}\right)^{n}}{n^{4}}$.

