Real Analysis Fall 2004 Take Home Final

Due Tuesday, December 14, 2004 by 5:00 p.m.

- 1. Suppose that f is uniformly continuous on a set $S \subset \mathbb{R}$ and $\{x_n\}$ is a Cauchy sequence in S. Prove that $\{f(x_n)\}$ is a Cauchy sequence. (f is not <u>assumed</u> to be continuous outside S, so you cannot use Theorem 3.2, p. 60).
- 2. Let M > 0 and let $f: D \to \mathbb{R}$, $D \subset \mathbb{R}$, satisfy the condition $|f(x) f(y)| \le M|x y|$ for all $x, y \in D$. Show that f is uniformly continuous.
- 3. Suppose that for some constant M with 0 < M < 1, $|a_{n+2} a_{n+1}| \leq M |a_{n+1} a_n|$, $n = 1, 2, 3, \ldots$ Prove that the sequence $\{a_n\}$ is Cauchy.
- 4. Suppose that f and g are continuous functions on the closed interal [a, b] such that f(r) = g(r) for every rational number $r \in [a, b]$. Prove that f(x) = g(x) for all $x \in [a, b]$.
- 5. Let $u_{n+1} = \sqrt{u_n + 1}, u_1 = 1.$
 - (a) Show that $\{u_n\}$ is bounded and monotone.
 - (b) Find $\lim_{n \to \infty} u_n$.
- 6. Let S be the space of all rational numbers, with d(p,q) = |p-q|, and E is the set of all rational numbers p such that $2 < p^2 < 3$. Prove that
 - (i) E is closed and bounded.
 - (ii) E is not compact.
- 7. Let *E* be a nonempty subset of a metric space (S, d). Define the distance from $x \in S$ to the set *E* by $\rho(x) = \underset{y \in E}{glb} d(x, y)$.
 - (a) Prove that $\rho(x) = 0$ if and only if $x \in \overline{E}$.
 - (b) Prove that $\rho: S \to R$ is uniformly continuous on S.
- 8. Suppose that f is continuous on an open interval I containing x_0 , suppose that f' is defined on I except possibly at x_0 , and suppose that $\lim_{x \to x_0} f'(x) = L$. Prove that $f'(x_0) = L$.

9. Let f and g be continuous functions on [a, b], g is positive and monotonically decreasing and g'(x) exists on [a, b]. Prove that there exists a point $\xi \in [a, b]$ such that

$$\int_a^b f(x)g(x) \ d(x) = g(a) \int_a^{\xi} f(x) \ dx.$$

10. Suppose that f is continuous at x = a such that |f(a)| < 1. Prove that there exists an open interval $I = (a - \delta, a + \delta), \delta > 0$, such that for all $x \in I$, $|f(x)| \le M < 1$, for some fixed constant M.