Real Analysis
 Fall 2004
 Take Home Final

Due Tuesday, December 14, 2004 by 5:00 p.m.

1. Suppose that f is uniformly continuous on a set $S \subset \mathbb{R}$ and $\left\{x_{n}\right\}$ is a Cauchy sequence in S. Prove that $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence. (f is not assumed to be continuous outside S, so you cannot use Theorem 3.2, p. 60).
2. Let $M>0$ and let $f: D \rightarrow \mathbb{R}, D \subset \mathbb{R}$, satisfy the condition $|f(x)-f(y)| \leq M|x-y|$ for all $x, y \in D$. Show that f is uniformly continuous.
3. Suppose that for some constant M with $0<M<1,\left|a_{n+2}-a_{n+1}\right| \leq M\left|a_{n+1}-a_{n}\right|$, $n=1,2,3, \ldots$ Prove that the sequence $\left\{a_{n}\right\}$ is Cauchy.
4. Suppose that f and g are continuous functions on the closed interal $[a, b]$ such that $f(r)=$ $g(r)$ for every rational number $r \in[a, b]$. Prove that $f(x)=g(x)$ for all $x \in[a, b]$.
5. Let $u_{n+1}=\sqrt{u_{n}+1}, u_{1}=1$.
(a) Show that $\left\{u_{n}\right\}$ is bounded and monotone.
(b) Find $\lim _{n \rightarrow \infty} u_{n}$.
6. Let S be the space of all rational numbers, with $d(p, q)=|p-q|$, and E is the set of all rational numbers p such that $2<p^{2}<3$. Prove that
(i) E is closed and bounded.
(ii) E is not compact.
7. Let E be a nonempty subset of a metric space (S, d). Define the distance from $x \in S$ to the set E by $\rho(x)=\underset{y \in E}{g l b} d(x, y)$.
(a) Prove that $\rho(x)=0$ if and only if $x \in \bar{E}$.
(b) Prove that $\rho: S \rightarrow R$ is uniformly continuous on S.
8. Suppose that f is continuous on an open interval I containing x_{0}, suppose that f^{\prime} is defined on I except possibly at x_{0}, and suppose that $\lim _{x \rightarrow x_{0}} f^{\prime}(x)=L$. Prove that $f^{\prime}\left(x_{0}\right)=L$.
9. Let f and g be continuous functions on $[a, b], g$ is positive and monotonically decreasing and $g^{\prime}(x)$ exists on $[a, b]$. Prove that there exists a point $\xi \in[a, b]$ such that

$$
\int_{a}^{b} f(x) g(x) d(x)=g(a) \int_{a}^{\xi} f(x) d x
$$

10. Suppose that f is continuous at $x=a$ such that $|f(a)|<1$. Prove that there exists an open interval $I=(a-\delta, a+\delta), \delta>0$, such that for all $x \in I,|f(x)| \leq M<1$, for some fixed constant M.
