Real Analysis Fall 2004 Take Home Final Key

1. Suppose that f is uniformly continuous on a set $S \subset \mathbb{R}$ and $\{x_n\}$ is a Cauchy sequence in S. Prove that $\{f(x_n)\}$ is a Cauchy sequence. (f is not <u>assumed</u> to be continuous outside S, so you cannot use Theorem 3.2, p. 60).

Proof. Let $\varepsilon > 0$. Since f is uniformly continuous on S, there exists $\delta > 0$ such that

$$|x-y| < \delta$$
 implies $|f(x) - f(y)| < \varepsilon$ for all $x, y \in S$. (1)

For this $\delta > 0$ there exists $N \in \mathbb{Z}^+$ such that for n, m > N, $|x_n - x_m| < \delta$. By (1) it follows that for n, m > N, $|f(x_n) - f(x_m)| < \varepsilon$. Hence $\{f(x_n)\}$ is Cauchy.

2. Let M > 0 and let $f : D \to \mathbb{R}$, $D \subset \mathbb{R}$, satisfy the condition $|f(x) - f(y)| \le M|x - y|$ for all $x, y \in D$. Show that f is uniformly continuous.

Proof. Let $\varepsilon > 0$. Put $\delta = \frac{\varepsilon}{2M}$. Then if $|x - y| < \delta$, $|f(x) - f(y)| \le M|x - y|$ $\le M\delta$ $= M \frac{\varepsilon}{2M}$ $= \frac{\varepsilon}{2} < \varepsilon$.

Hence f is uniformly continuous.

3. Suppose that for some constant M with 0 < M < 1, $|a_{n+2} - a_{n+1}| \leq M |a_{n+1} - a_n|$, $n = 1, 2, 3, \ldots$ Prove that the sequence $\{a_n\}$ is Cauchy.

Proof. We will first show that

$$|a_{n+2} - a_{n+1}| \le M^n |a_2 - a_1|. \tag{2}$$

This is true for n = 1 as assumed. Suppose it is true for n = k. Then

$$|a_{k+3} - a_{k+2}| \le M |a_{k+2} - a_{k+1}| \le M^k |a_2 - a_1|.$$

Hence (2) is true for all n.

For a fixed N and n = N + r, we have

$$|a_{n} - a_{N}| \leq |a_{N+r} - a_{N+r-1}| + |a_{N+r-1} - a_{N+r-2}| + \dots + |a_{N+1} - a_{N}|$$

$$\leq M^{N+r-2}|a_{2} - a_{1}| + \dots + M^{N-1}|a_{2} - a_{1}|$$

$$= |a_{2} - a_{1}|M^{N-1}[1 + M + \dots + M^{r-1}]$$

$$\leq |a_{2} - a_{1}|\frac{M^{N-1}}{1 - M}.$$
(3)

Given $\varepsilon > 0$, let $|a_2 - a_1| \frac{M^{N-1}}{1 - M} < \varepsilon$. Then $M^{N-1} < \frac{(1 - M)\varepsilon}{|a_2 - a_1|}$. Take logarithms.

$$(N-1)\ln M < \ln \frac{(1-\varepsilon)\varepsilon}{|a_2 - a_1|}$$
$$N-1 > \frac{\ln \frac{(1-M)\varepsilon}{|a_2 - a_1|}}{\ln M} \text{ since } \ln M < 0$$
$$\text{or } N > \frac{\ln \frac{(1-M)\varepsilon}{|a_2 - a_1|}}{\ln M} + 1$$

4. Suppose that f and g are continuous functions on the closed interal [a, b] such that f(r) = g(r) for every rational number $r \in [a, b]$. Prove that f(x) = g(x) for all $x \in [a, b]$.

Proof. Suppose that $f(z) \neq g(z)$ for some irrational number z in [a, b]. Let $|f(z) - g(z)| = \alpha$. For $\varepsilon = \frac{\alpha}{2}$, there exists $\delta > 0$ such that $|f(z) - f(x)| < \frac{\varepsilon}{2}$ and $|g(z) - g(x)| < \frac{\varepsilon}{2}$ whenever $|z - x| < \delta$ ($\delta = \min(\delta_1, \delta_2)$). Let r be a rational number with $|z - r| < \delta$. Then f(r) = g(r). Moreover,

$$\alpha = |f(z) - g(z)| \le |f(z) - f(r)| + |g(z) - g(r)| \le \frac{\alpha}{4} + \frac{\alpha}{4} = \frac{\alpha}{2},$$

a contradiction. Hence f(z) = g(z) for all $z \in [a, b]$.

5. Let $u_{n+1} = \sqrt{u_n + 1}, u_1 = 1.$

(a) Show that $\{u_n\}$ is bounded and monotone.

Proof. Let $f(x) = \sqrt{x+1}$. Then $f'(x) = \frac{1}{2\sqrt{x+1}} > 0$ for x > -1. Hence f is increasing. Consider the point $x^* = \frac{1+\sqrt{5}}{2}$. Then $f(x^*) = x^*$. For $u_1 = 1 < x^*$,

 $u_2 = f(u_1) < f(x^*) = x^*$. And by induction, we have $u_n < x^*$. Hence $\{u_n\}$ is bounded above by x^* . Since $u_2 = \sqrt{1+1} = \sqrt{2} > u_1$, it follows by the same reasoning that $\{u_n\}$ is monotonically increasing. Hence by the Bolzano-Weierstran Theorem, $\{u_n\}$ must converge.

(b) Find $\lim_{n \to \infty} u_n$.

Proof. Let $\sqrt{x+1} = x$. Then $x^* = \frac{1+\sqrt{5}}{2}$ is the limit point as $\frac{1-\sqrt{5}}{2}$ is discarded since it is negative.

- 6. Let S be the space of all rational numbers, with d(p,q) = |p-q|, and E is the set of all rational numbers p such that $2 < p^2 < 3$. Prove that
 - (i) E is closed and bounded.
 - (ii) E is not compact.

Proof.

$$E = \{p : 2 < p^2 < 3\} \cap S$$

= $\left[(-\sqrt{3}, -\sqrt{2}) \cup (\sqrt{2}, \sqrt{3}) \right] \cap S$
= $(I_1 \cup I_2) \cap S$

- (a) E is clearly bounded by $-\sqrt{3}$ and $\sqrt{3}$. Let $x \in E'$, then there is a sequence $\{p_n\}$ in E with $d(p_n, x) \to 0$ as $n \to \infty$. Now $\{p_n\}$ is either in I_1 or I_2 , say I_n . Hence it either converges in I, and hence $x \in I_1$ or it converges to either $-\sqrt{3}$ or $-\sqrt{2}$ which are not in our space. Hence E is closed.
- (b) Consider the open cover $\mathcal{F} = \{V_n : i = 1, 2, 3, ...\}$ where $V_n = \{p \in S : 3 \frac{n}{n+1} < p^2 < 3\}$. This cover has not finite subcover. Hence it is not compact. Another solution: Take the sequence $\{p_n\}, p_n^2 = 3 - \frac{1}{n}$. Then $\{p_n\}$ has no convergent subsequences.

- 7. Let *E* be a nonempty subset of a metric space (S, d). Define the distance from $x \in S$ to the set *E* by $\rho(x) = \underset{y \in E}{glb} d(x, y)$.
 - (a) Prove that $\rho(x) = 0$ if and only if $x \in \overline{E}$.
 - (b) Prove that $\rho: S \to R$ is uniformly continuous on S.

Proof. (a) Let p(x) = 0. Then glb d(x, y) = 0. Hence there is a sequence $\{y_n\}$ in Ewith $d(x, y_n) \to 0$ as $n \to \infty$. Thus $x \in \overline{E}$. For the converse, let $x \in \overline{E}$. If $x \in E$, then as d(x, x) = 0, p(x) = 0. If $x \in E \setminus E$, then there exists $y_n \in E$, $y_n \to x$ as $n \to \infty$ or $d(y_n, x) \to 0$ as $n \to \infty$. Hence p(x) = 0. (b) $p: S \to \mathbb{R}$. For $x_1, x_2 \in S$

$$p(x_1) - p(x_2)| = \left| \begin{array}{l} \text{glb}_{y \in E} d(x_1, y) - \text{glb}_{y \in E} d(x_2, y) \right| \\ \leq \begin{array}{l} \text{glb}_{y \in E} |d(x_1, y) - d(x_2, y)| \end{array}$$
(4)

But $d(x_1, y) \leq d(x_1, x_2) + d(x_2, y)$ or $d(x_1, y) - d(x_2, y) \leq d(x_1, x_2)$. Similarly $d(x_2, y) - d(x_1, y) \leq d(x_1, x_2)$. Thus $|d(x_1, y) - d(x_2, y)| \leq d(x_1, x_2)$. Hence $|p(x_1) - p(x_2)| \leq d(x_1, x_2)$. Given $\varepsilon > 0$, let $\delta = \varepsilon$. If $d(x_1, x_2) < \delta$, then $|p(x_1) - p(x_2)| \leq d(x_1, x_2) < \delta = \varepsilon$.

8. Suppose that f is continuous on an open interval I containing x_0 , suppose that f' is defined on I except possibly at x_0 , and suppose that $\lim_{x \to x_0} f'(x) = L$. Prove that $f'(x_0) = L$.

Proof. $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ if the limits exists. Since f is continuous, $\lim_{x \to x_0} f(x) = f(x_0)$. Now

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \frac{0}{0}$$

$$\mathscr{L}$$
$$= \lim_{x \to x_0} \frac{f'(x)}{1} = L.$$

9. Let f and g be continuous functions on [a, b], g is positive and monotonically decreasing and g'(x) exists on [a, b]. Prove that there exists a point $\xi \in [a, b]$ such that

$$\int_a^b f(x)g(x) \ d(x) = g(a) \int_a^{\xi} f(x) \ dx.$$

Proof. Let $h(x) \int_a^x f(t) dt$. Since g is positive, either

$$0 \le \int_a^b f(x)g(x) \, dx \le g(a) \int_a^b f(t) \, dt$$

or

$$g(a) \int_{a}^{b} f(t) dt \leq \int_{a}^{b} f(x)g(x) dx \leq 0.$$

In either case, $\frac{\int_a^b f(x)g(x) dx}{g(a)}$ is between h(a) = 0 and h(b). By the Intermediate Value Theorem, there exists ξ between a and b such that

$$\frac{\int_a^b f(x)g(x) \, dx}{g(a)} = h(\xi) = \int_a^{\xi} f(t) \, dt.$$

10. Suppose that f is continuous at x = a such that |f(a)| < 1. Prove that there exists an open interval $I = (a - \delta, a + \delta), \delta > 0$, such that for all $x \in I$, $|f(x)| \le M < 1$, for some fixed constant M.

Proof. Let L = |f(a)| < 1. If such an M does not exist for any δ , there exists a sequence $\{x_n\}$ that converges to a with $|f(x_n)| > \frac{L+1}{2}$. Since f is continuous, $|f(x_n)| \to |f(a)|$ as $n \to \infty$. But this is not possible as $||f(x_n)| - |f(a)|| > \frac{1-L}{2}$ for all n.