Real Analysis

Fall 2004
Take Home Final Key

1. Suppose that f is uniformly continuous on a set $S \subset \mathbb{R}$ and $\left\{x_{n}\right\}$ is a Cauchy sequence in S. Prove that $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence. (f is not assumed to be continuous outside S, so you cannot use Theorem 3.2, p. 60).

Proof. Let $\varepsilon>0$. Since f is uniformly continuous on S, there exists $\delta>0$ such that

$$
\begin{equation*}
|x-y|<\delta \quad \text { implies } \quad|f(x)-f(y)|<\varepsilon \quad \text { for all } \quad x, y \in S \tag{1}
\end{equation*}
$$

For this $\delta>0$ there exists $N \in \mathbb{Z}^{+}$such that for $n, m>N,\left|x_{n}-x_{m}\right|<\delta$. By (1) it follows that for $n, m>N,\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right|<\varepsilon$. Hence $\left\{f\left(x_{n}\right)\right\}$ is Cauchy.
2. Let $M>0$ and let $f: D \rightarrow \mathbb{R}, D \subset \mathbb{R}$, satisfy the condition $|f(x)-f(y)| \leq M|x-y|$ for all $x, y \in D$. Show that f is uniformly continuous.

Proof. Let $\varepsilon>0$. Put $\delta=\frac{\varepsilon}{2 M}$. Then if $|x-y|<\delta$,

$$
\begin{aligned}
|f(x)-f(y)| & \leq M|x-y| \\
& \leq M \delta \\
& =M \frac{\varepsilon}{2 M} \\
& =\frac{\varepsilon}{2}<\varepsilon .
\end{aligned}
$$

Hence f is uniformly continuous.
3. Suppose that for some constant M with $0<M<1,\left|a_{n+2}-a_{n+1}\right| \leq M\left|a_{n+1}-a_{n}\right|$, $n=1,2,3, \ldots$ Prove that the sequence $\left\{a_{n}\right\}$ is Cauchy.

Proof. We will first show that

$$
\begin{equation*}
\left|a_{n+2}-a_{n+1}\right| \leq M^{n}\left|a_{2}-a_{1}\right| \tag{2}
\end{equation*}
$$

This is true for $n=1$ as assumed. Suppose it is true for $n=k$. Then

$$
\left|a_{k+3}-a_{k+2}\right| \leq M\left|a_{k+2}-a_{k+1}\right| \leq M^{k}\left|a_{2}-a_{1}\right| .
$$

Hence (2) is true for all n.

For a fixed N and $n=N+r$, we have

$$
\begin{align*}
\left|a_{n}-a_{N}\right| & \leq\left|a_{N+r}-a_{N+r-1}\right|+\left|a_{N+r-1}-a_{N+r-2}\right|+\cdots+\left|a_{N+1}-a_{N}\right| \\
& \leq M^{N+r-2}\left|a_{2}-a_{1}\right|+\cdots+M^{N-1}\left|a_{2}-a_{1}\right| \\
& =\left|a_{2}-a_{1}\right| M^{N-1}\left[1+M+\cdots+M^{r-1}\right] \\
& \leq\left|a_{2}-a_{1}\right| \frac{M^{N-1}}{1-M} . \tag{3}
\end{align*}
$$

Given $\varepsilon>0$, let $\left|a_{2}-a_{1}\right| \frac{M^{N-1}}{1-M}<\varepsilon$. Then $M^{N-1}<\frac{(1-M) \varepsilon}{\left|a_{2}-a_{1}\right|}$. Take logarithms.

$$
\begin{aligned}
(N-1) \ln M & <\ln \frac{(1-\varepsilon) \varepsilon}{\left|a_{2}-a_{1}\right|} \\
N-1 & >\frac{\ln \frac{(1-M) \varepsilon}{\left|a_{2}-a_{1}\right|}}{\ln M} \text { since } \quad \ln M<0 \\
\text { or } N & >\frac{\ln \frac{(1-M) \varepsilon}{\left|a_{2}-a_{1}\right|}}{\ln M}+1
\end{aligned}
$$

4. Suppose that f and g are continuous functions on the closed interal $[a, b]$ such that $f(r)=$ $g(r)$ for every rational number $r \in[a, b]$. Prove that $f(x)=g(x)$ for all $x \in[a, b]$.

Proof. Suppose that $f(z) \neq g(z)$ for some irrational number z in $[a, b]$. Let $|f(z)-g(z)|=$ α. For $\varepsilon=\frac{\alpha}{2}$, there exists $\delta>0$ such that $|f(z)-f(x)|<\frac{\varepsilon}{2}$ and $|g(z)-g(x)|<\frac{\varepsilon}{2}$ whenever $|z-x|<\delta\left(\delta=\min \left(\delta_{1}, \delta_{2}\right)\right)$. Let r be a rational number with $|z-r|<\delta$. Then $f(r)=g(r)$. Moreover,

$$
\begin{aligned}
\alpha=|f(z)-g(z)| & \leq|f(z)-f(r)|+|g(z)-g(r)| \\
& \leq \frac{\alpha}{4}+\frac{\alpha}{4}=\frac{\alpha}{2}
\end{aligned}
$$

a contradiction. Hence $f(z)=g(z)$ for all $z \in[a, b]$.
5. Let $u_{n+1}=\sqrt{u_{n}+1}, u_{1}=1$.
(a) Show that $\left\{u_{n}\right\}$ is bounded and monotone.

Proof. Let $f(x)=\sqrt{x+1}$. Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x+1}}>0$ for $x>-1$. Hence f is increasing. Consider the point $x^{*}=\frac{1+\sqrt{5}}{2}$. Then $f\left(x^{*}\right)=x^{*}$. For $u_{1}=1<x^{*}$,
$u_{2}=f\left(u_{1}\right)<f\left(x^{*}\right)=x^{*}$. And by induction, we have $u_{n}<x^{*}$. Hence $\left\{u_{n}\right\}$ is bounded above by x^{*}. Since $u_{2}=\sqrt{1+1}=\sqrt{2}>u_{1}$, it follows by the same reasoning that $\left\{u_{n}\right\}$ is monotonically increasing. Hence by the Bolzano-Weierstran Theorem, $\left\{u_{n}\right\}$ must converge.
(b) Find $\lim _{n \rightarrow \infty} u_{n}$.

Proof. Let $\sqrt{x+1}=x$. Then $x^{*}=\frac{1+\sqrt{5}}{2}$ is the limit point as $\frac{1-\sqrt{5}}{2}$ is discarded since it is negative.
6. Let S be the space of all rational numbers, with $d(p, q)=|p-q|$, and E is the set of all rational numbers p such that $2<p^{2}<3$. Prove that
(i) E is closed and bounded.
(ii) E is not compact.

Proof.

$$
\begin{aligned}
E & =\left\{p: 2<p^{2}<3\right\} \cap S \\
& =[(-\sqrt{3},-\sqrt{2}) \cup(\sqrt{2}, \sqrt{3})] \cap S \\
& =\left(I_{1} \cup I_{2}\right) \cap S
\end{aligned}
$$

(a) E is clearly bounded by $-\sqrt{3}$ and $\sqrt{3}$. Let $x \in E^{\prime}$, then there is a sequence $\left\{p_{n}\right\}$ in E with $d\left(p_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. Now $\left\{p_{n}\right\}$ is either in I_{1} or I_{2}, say I_{n}. Hence it either converges in I, and hence $x \in I_{1}$ or it converges to either $-\sqrt{3}$ or $-\sqrt{2}$ which are not in our space. Hence E is closed.
(b) Consider the open cover $\mathcal{F}=\left\{V_{n}: i=1,2,3, \ldots\right\}$ where $V_{n}=\left\{p \in S: 3-\frac{n}{n+1}<\right.$ $\left.p^{2}<3\right\}$. This cover has not finite subcover. Hence it is not compact.
Another solution:
Take the sequence $\left\{p_{n}\right\}, p_{n}^{2}=3-\frac{1}{n}$. Then $\left\{p_{n}\right\}$ has no convergent subsequences.
7. Let E be a nonempty subset of a metric space (S, d). Define the distance from $x \in S$ to the set E by $\rho(x)=\underset{y \in E}{g l b} d(x, y)$.
(a) Prove that $\rho(x)=0$ if and only if $x \in \bar{E}$.
(b) Prove that $\rho: S \rightarrow R$ is uniformly continuous on S.

Proof. (a) Let $p(x)=0$. Then $\underset{y \in E}{\operatorname{glb}} d(x, y)=0$. Hence there is a sequence $\left\{y_{n}\right\}$ in E with $d\left(x, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus $x \in \bar{E}$. For the converse, let $x \in \bar{E}$. If $x \in E$, then as $d(x, x)=0, p(x)=0$. If $x \in E \backslash E$, then there exists $y_{n} \in E, y_{n} \rightarrow x$ as $n \rightarrow \infty$ or $d\left(y_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence $p(x)=0$.
(b) $p: S \rightarrow \mathbb{R}$. For $x_{1}, x_{2} \in S$

$$
\begin{align*}
\left|p\left(x_{1}\right)-p\left(x_{2}\right)\right| & =\left|\underset{y \in E}{\operatorname{glb}} d\left(x_{1}, y\right)-\underset{y \in E}{\operatorname{glb}} d\left(x_{2}, y\right)\right| \\
& \leq \operatorname{glb}_{y \in E}\left|d\left(x_{1}, y\right)-d\left(x_{2}, y\right)\right| \tag{4}
\end{align*}
$$

But $d\left(x_{1}, y\right) \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, y\right)$ or $d\left(x_{1}, y\right)-d\left(x_{2}, y\right) \leq d\left(x_{1}, x_{2}\right)$. Similarly $d\left(x_{2}, y\right)-d\left(x_{1}, y\right) \leq d\left(x_{1}, x_{2}\right)$. Thus $\left|d\left(x_{1}, y\right)-d\left(x_{2}, y\right)\right| \leq d\left(x_{1}, x_{2}\right)$. Hence $\left|p\left(x_{1}\right)-p\left(x_{2}\right)\right| \leq d\left(x_{1}, x_{2}\right)$. Given $\varepsilon>0$, let $\delta=\varepsilon$. If $d\left(x_{1}, x_{2}\right)<\delta$, then $\left|p\left(x_{1}\right)-p\left(x_{2}\right)\right| \leq d\left(x_{1}, x_{2}\right)<\delta=\varepsilon$.
8. Suppose that f is continuous on an open interval I containing x_{0}, suppose that f^{\prime} is defined on I except possibly at x_{0}, and suppose that $\lim _{x \rightarrow x_{0}} f^{\prime}(x)=L$. Prove that $f^{\prime}\left(x_{0}\right)=L$.

Proof. $f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ if the limits exists. Since f is continuous, $\lim _{x \rightarrow x_{0}} f(x)=$ $f\left(x_{0}\right)$. Now

$$
\begin{aligned}
& \lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\frac{0}{0} \\
& \quad=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{1}=L
\end{aligned}
$$

9. Let f and g be continuous functions on $[a, b], g$ is positive and monotonically decreasing and $g^{\prime}(x)$ exists on $[a, b]$. Prove that there exists a point $\xi \in[a, b]$ such that

$$
\int_{a}^{b} f(x) g(x) d(x)=g(a) \int_{a}^{\xi} f(x) d x
$$

Proof. Let $h(x) \int_{a}^{x} f(t) d t$. Since g is positive, either

$$
0 \leq \int_{a}^{b} f(x) g(x) d x \leq g(a) \int_{a}^{b} f(t) d t
$$

or

$$
g(a) \int_{a}^{b} f(t) d t \leq \int_{a}^{b} f(x) g(x) d x \leq 0 .
$$

In either case, $\frac{\int_{a}^{b} f(x) g(x) d x}{g(a)}$ is between $h(a)=0$ and $h(b)$. By the Intermediate Value Theorem, there exists ξ between a and b such that

$$
\frac{\int_{a}^{b} f(x) g(x) d x}{g(a)}=h(\xi)=\int_{a}^{\xi} f(t) d t .
$$

10. Suppose that f is continuous at $x=a$ such that $|f(a)|<1$. Prove that there exists an open interval $I=(a-\delta, a+\delta), \delta>0$, such that for all $x \in I,|f(x)| \leq M<1$, for some fixed constant M.

Proof. Let $L=|f(a)|<1$. If such an M does not exist for any δ, there exists a sequence $\left\{x_{n}\right\}$ that converges to a with $\left|f\left(x_{n}\right)\right|>\frac{L+1}{2}$. Since f is continuous, $\left|f\left(x_{n}\right)\right| \rightarrow|f(a)|$ as $n \rightarrow \infty$. But this is not possible as $\left\|f\left(x_{n}\right)|-| f(a)\right\|>\frac{1-L}{2}$ for all n.

