Real Analysis
Fall 2004
Take Home Final Key

1. Suppose that f is uniformly continuous on a set S C R and {z, } is a Cauchy sequence in
S. Prove that {f(z,)} is a Cauchy sequence. (f is not assumed to be continuous outside
S, so you cannot use Theorem 3.2, p. 60).

Proof. Let € > 0. Since f is uniformly continuous on S, there exists 6 > 0 such that
|lr —y| <o implies |f(z)— f(y)]<e forall z,yeS. (1)

For this 6 > 0 there exists N € Z* such that for n,m > N, |z, — z,| < §. By (1) it
follows that for n,m > N, |f(z,) — f(zm)| < e. Hence {f(z,)} is Cauchy. O

2. Let M >0andlet f: D — R, D CR, satisfy the condition |f(z) — f(y)| < M|z — y| for
all z,y € D. Show that f is uniformly continuous.

Proof. Let ¢ > 0. Put § = ﬁ Then if |z — y| < 0,

[f(x) = f(y)| < Mz —y]
< Mo
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Hence f is uniformly continuous. O

3. Suppose that for some constant M with 0 < M < 1, |apso — any1| < Mlapi1 — ayl,
n=1,2,3,.... Prove that the sequence {a,} is Cauchy.

Proof. We will first show that
|@nt2 = ania| < M"[az — asl. (2)
This is true for n = 1 as assumed. Suppose it is true for n = k. Then
|agss — apyal < Mlagra — apyr| < MFlay — ayl.

Hence (2) is true for all n.



For a fixed N and n = N + r, we have

lan — an| < |ansr — angr—1| + |aN4r—1 — ANgr—2| + -+ |any1 — an
S MN+’”_2|a2 - al\ + -+ MN_l‘CLQ — CI,1|
= lag —ay [MN 14+ M4+ M

N—1
< lag —ar|l—7 (3)
N-—1 1— M
Given € > 0, let |ay — a4 < e. Then MN-1! < Q. Take logarithms.
1-M ‘CLQ — CL1|
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4. Suppose that f and g are continuous functions on the closed interal [a, b] such that f(r) =
g(r) for every rational number r € [a,b]. Prove that f(x) = g(z) for all z € [a, b].

Proof. Suppose that f(z) # g(z) for some irrational number z in [a, b]. Let |f(2) —g(2)| =
a. For e = %, there exists 6 > 0 such that |f(z) — f(z)| < % and |g(z) — g(x)| < g

whenever |z —z| < § (§ = min(dy,02)). Let r be a rational number with |z —r| < §. Then
f(r) = g(r). Moreover,

a=|f(z) =g(2)| < [f(z) = ()| +g(2) — g(r)]

<
a contradiction. Hence f(z) = g(z) for all z € [a, b]. O

5. Let upi1 = Vup, + 1, up = 1.

(a) Show that {u,} is bounded and monotone.

> 0 for > —1. Hence f is

Proof. Let f(x) = v +1. Then f'(x) = %/%H
1++5 .

increasing. Consider the point z* = . Then f(2*) = 2*. For vy =1 < z*,




us = f(ur) < f(2*) = *. And by induction, we have u,, < z*. Hence {u,} is bounded
above by z*. Since uy = v/I+ 1 = /2 > uy, it follows by the same reasoning that
{u,} is monotonically increasing. Hence by the Bolzano-Weierstran Theorem, {u,,}
must converge. 0

(b) Find lim w,,.

n—oo

1 )
Proof. Let v/x +1 =x. Then z* = V5
since it is negative. 0

is the limit point as is discarded

6. Let S be the space of all rational numbers, with d(p,q) = |p — ¢|, and E is the set of all
rational numbers p such that 2 < p? < 3. Prove that

(i) E is closed and bounded.

i1) FE is not compact.
(i) p
Proof.

E={p:2<p*<3}nS
= [(-V3,-V2)u(V2,v3)| NS
=(LUL)NS

(a) E is clearly bounded by —v/3 and v/3. Let x € E’, then there is a sequence {p,}
in £ with d(p,,z) — 0 as n — oco. Now {p,} is either in I; or I, say I,,. Hence it
either converges in I, and hence x € I; or it converges to either —v/3 or —v/2 which
are not in our space. Hence E is closed.

(b) Consider the open cover F = {V,, :i=1,2,3,...} where V,, = {p€ §:3 - 15 <
p? < 3}. This cover has not finite subcover. Hence it is not compact.

Another solution:

Take the sequence {p,}, p2 = 3 — % Then {p,} has no convergent subsequences.

O

7. Let E be a nonempty subset of a metric space (S,d). Define the distance from = € S to
the set E by p(z) = glb d(z,y).
yekE

(a) Prove that p(z) = 0 if and only if z € E.

(b) Prove that p: S — R is uniformly continuous on S.



Proof. (a) Let p(x) = 0. Then glb d(x,y) = 0. Hence there is a sequence {y,} in £

yelr
with d(z,y,) — 0 as n — co. Thus # € E. For the converse, let x € E. If z € E,
then as d(xz,x) =0, p(z) = 0. If z € F\E, then there exists y, € E, y, — « as
n — oo or d(y,,x) — 0 as n — oco. Hence p(x) = 0.

(b) p: S — R. For 1,20 € S

Ip(z1) — p(r2)| = |glb d(z1,y) — glb d(z2,y)

yek yelE
< glb |d(z1,y) — d(22, )| (4)
yeE

But d(z1,y) < d(z1,x2) + d(z2,y) or d(z1,y) — d(xe,y) < d(xy,22). Similarly
d(xe,y) — d(x1,y) < d(xy,z3). Thus |d(z1,y) — d(z2,y)|] < d(z1,72). Hence
Ip(z1) — p(x2)| < d(z1,22). Given ¢ > 0, let § = e. If d(z1,22) < J, then

p(21) = p(a)| < d(w1,22) < =e.
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8. Suppose that f is continuous on an open interval I containing x(, suppose that f’ is defined
on [ except possibly at xg, and suppose that lim f/(x) = L. Prove that f'(xq) = L.
T—x0

Proof. f'(zo) = lim Jl@) = Jzo) if the limits exists. Since f is continuous, lim f(z) =
T—T0 r—x T—T0
f (). Now ’
f(@) = flzo) 0

lim ———— =
T—x0 T — Xg 0
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9. Let f and g be continuous functions on [a, b], ¢ is positive and monotonically decreasing
and ¢'(x) exists on [a,b]. Prove that there exists a point £ € [a, b] such that

[ e ) = o [ 160 aa

Proof. Let h(z) [ f(t) dt. Since g is positive, either

0</f x)dr < g(a /f



10.

or

g@/f@ﬁé/f@%wMSO

b
d
In either case, o f(as)(ggx) ® is between h(a) = 0 and h(b). By the Intermediate Value
g(a
Theorem, there exists ¢ between a and b such that
Sy f(@)g(x) dx
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Suppose that f is continuous at z = a such that |f(a)| < 1. Prove that there exists an
open interval I = (a — d,a +0), 6 > 0, such that for all x € I, |f(z)] < M < 1, for some
fixed constant M.

Proof. Let L = |f(a)| < 1. If such an M does not exist for any J, there exists a sequence

L+1
{z,,} that converges to a with |f(z,)| > % Since f is continuous, |f(x,)| — |f(a)| as

1_Lforalln. O

n — oo. But this is not possible as || f(z,)| — | f(a)|| >



