
Real Analysis

Fall 2004

Take Home Final Key

1. Suppose that f is uniformly continuous on a set S ⊂ R and {xn} is a Cauchy sequence in
S. Prove that {f(xn)} is a Cauchy sequence. (f is not assumed to be continuous outside
S, so you cannot use Theorem 3.2, p. 60).

Proof. Let ε > 0. Since f is uniformly continuous on S, there exists δ > 0 such that

|x − y| < δ implies |f(x) − f(y)| < ε for all x, y ∈ S. (1)

For this δ > 0 there exists N ∈ Z
+ such that for n, m > N , |xn − xm| < δ. By (1) it

follows that for n, m > N , |f(xn) − f(xm)| < ε. Hence {f(xn)} is Cauchy.

2. Let M > 0 and let f : D → R, D ⊂ R, satisfy the condition |f(x) − f(y)| ≤ M |x − y| for
all x, y ∈ D. Show that f is uniformly continuous.

Proof. Let ε > 0. Put δ =
ε

2M
. Then if |x − y| < δ,

|f(x) − f(y)| ≤ M |x − y|
≤ Mδ

= M
ε

2M

=
ε

2
< ε.

Hence f is uniformly continuous.

3. Suppose that for some constant M with 0 < M < 1, |an+2 − an+1| ≤ M |an+1 − an|,
n = 1, 2, 3, . . . . Prove that the sequence {an} is Cauchy.

Proof. We will first show that

|an+2 − an+1| ≤ Mn|a2 − a1|. (2)

This is true for n = 1 as assumed. Suppose it is true for n = k. Then

|ak+3 − ak+2| ≤ M |ak+2 − ak+1| ≤ Mk|a2 − a1|.

Hence (2) is true for all n.



For a fixed N and n = N + r, we have

|an − aN | ≤ |aN+r − aN+r−1| + |aN+r−1 − aN+r−2| + · · ·+ |aN+1 − aN |
≤ MN+r−2|a2 − a1| + · · ·+ MN−1|a2 − a1|
= |a2 − a1|MN−1[1 + M + · · ·+ M r−1]

≤ |a2 − a1|
MN−1

1 − M
. (3)

Given ε > 0, let |a2 − a1|
MN−1

1 − M
< ε. Then MN−1 <

(1 − M)ε

|a2 − a1|
. Take logarithms.

(N − 1) lnM < ln
(1 − ε)ε

|a2 − a1|

N − 1 >
ln (1−M)ε

|a2−a1|

ln M
since lnM < 0

or N >
ln (1−M)ε

|a2−a1|

ln M
+ 1

4. Suppose that f and g are continuous functions on the closed interal [a, b] such that f(r) =
g(r) for every rational number r ∈ [a, b]. Prove that f(x) = g(x) for all x ∈ [a, b].

Proof. Suppose that f(z) 6= g(z) for some irrational number z in [a, b]. Let |f(z)−g(z)| =

α. For ε =
α

2
, there exists δ > 0 such that |f(z) − f(x)| <

ε

2
and |g(z) − g(x)| <

ε

2
whenever |z − x| < δ (δ = min(δ1, δ2)). Let r be a rational number with |z − r| < δ. Then
f(r) = g(r). Moreover,

α = |f(z) − g(z)| ≤ |f(z) − f(r)| + |g(z) − g(r)|
≤ α

4
+

α

4
=

α

2
,

a contradiction. Hence f(z) = g(z) for all z ∈ [a, b].

5. Let un+1 =
√

un + 1, u1 = 1.

(a) Show that {un} is bounded and monotone.

Proof. Let f(x) =
√

x + 1. Then f ′(x) =
1

2
√

x + 1
> 0 for x > −1. Hence f is

increasing. Consider the point x∗ =
1 +

√
5

2
. Then f(x∗) = x∗. For u1 = 1 < x∗,



u2 = f(u1) < f(x∗) = x∗. And by induction, we have un < x∗. Hence {un} is bounded
above by x∗. Since u2 =

√
1 + 1 =

√
2 > u1, it follows by the same reasoning that

{un} is monotonically increasing. Hence by the Bolzano-Weierstran Theorem, {un}
must converge.

(b) Find lim
n→∞

un.

Proof. Let
√

x + 1 = x. Then x∗ =
1 +

√
5

2
is the limit point as

1 −
√

5

2
is discarded

since it is negative.

6. Let S be the space of all rational numbers, with d(p, q) = |p − q|, and E is the set of all
rational numbers p such that 2 < p2 < 3. Prove that

(i) E is closed and bounded.

(ii) E is not compact.

Proof.

E = {p : 2 < p2 < 3} ∩ S

=
[

(−
√

3,−
√

2) ∪ (
√

2,
√

3)
]

∩ S

= (I1 ∪ I2) ∩ S

(a) E is clearly bounded by −
√

3 and
√

3. Let x ∈ E ′, then there is a sequence {pn}
in E with d(pn, x) → 0 as n → ∞. Now {pn} is either in I1 or I2, say In. Hence it
either converges in I, and hence x ∈ I1 or it converges to either −

√
3 or −

√
2 which

are not in our space. Hence E is closed.

(b) Consider the open cover F = {Vn : i = 1, 2, 3, . . .} where Vn = {p ∈ S : 3 − n
n+1

<

p2 < 3}. This cover has not finite subcover. Hence it is not compact.
Another solution:
Take the sequence {pn}, p2

n = 3 − 1
n
. Then {pn} has no convergent subsequences.

7. Let E be a nonempty subset of a metric space (S, d). Define the distance from x ∈ S to
the set E by ρ(x) = glb

y∈E

d(x, y).

(a) Prove that ρ(x) = 0 if and only if x ∈ E.

(b) Prove that ρ : S → R is uniformly continuous on S.



Proof. (a) Let p(x) = 0. Then glb
y∈E

d(x, y) = 0. Hence there is a sequence {yn} in E

with d(x, yn) → 0 as n → ∞. Thus x ∈ E. For the converse, let x ∈ E. If x ∈ E,
then as d(x, x) = 0, p(x) = 0. If x ∈ E\E, then there exists yn ∈ E, yn → x as
n → ∞ or d(yn, x) → 0 as n → ∞. Hence p(x) = 0.

(b) p : S → R. For x1, x2 ∈ S

|p(x1) − p(x2)| =

∣

∣

∣

∣

glb
y∈E

d(x1, y) − glb
y∈E

d(x2, y)

∣

∣

∣

∣

≤ glb
y∈E

|d(x1, y) − d(x2, y)| (4)

But d(x1, y) ≤ d(x1, x2) + d(x2, y) or d(x1, y) − d(x2, y) ≤ d(x1, x2). Similarly
d(x2, y) − d(x1, y) ≤ d(x1, x2). Thus |d(x1, y) − d(x2, y)| ≤ d(x1, x2). Hence
|p(x1) − p(x2)| ≤ d(x1, x2). Given ε > 0, let δ = ε. If d(x1, x2) < δ, then
|p(x1) − p(x2)| ≤ d(x1, x2) < δ = ε.

8. Suppose that f is continuous on an open interval I containing x0, suppose that f ′ is defined
on I except possibly at x0, and suppose that lim

x→x0

f ′(x) = L. Prove that f ′(x0) = L.

Proof. f ′(x0) = lim
x→x0

f(x) − f(x0)

x − x0

if the limits exists. Since f is continuous, lim
x→x0

f(x) =

f(x0). Now

lim
x→x0

f(x) − f(x0)

x − x0

=
0

0

L

= lim
x→x0

f ′(x)

1
= L.

9. Let f and g be continuous functions on [a, b], g is positive and monotonically decreasing
and g′(x) exists on [a, b]. Prove that there exists a point ξ ∈ [a, b] such that

∫ b

a

f(x)g(x) d(x) = g(a)

∫ ξ

a

f(x) dx.

Proof. Let h(x)
∫ x

a
f(t) dt. Since g is positive, either

0 ≤
∫ b

a

f(x)g(x) dx ≤ g(a)

∫ b

a

f(t) dt



or

g(a)

∫ b

a

f(t) dt ≤
∫ b

a

f(x)g(x) dx ≤ 0.

In either case,

∫ b

a
f(x)g(x) dx

g(a)
is between h(a) = 0 and h(b). By the Intermediate Value

Theorem, there exists ξ between a and b such that

∫ b

a
f(x)g(x) dx

g(a)
= h(ξ) =

∫ ξ

a

f(t) dt.

10. Suppose that f is continuous at x = a such that |f(a)| < 1. Prove that there exists an
open interval I = (a − δ, a + δ), δ > 0, such that for all x ∈ I, |f(x)| ≤ M < 1, for some
fixed constant M .

Proof. Let L = |f(a)| < 1. If such an M does not exist for any δ, there exists a sequence

{xn} that converges to a with |f(xn)| >
L + 1

2
. Since f is continuous, |f(xn)| → |f(a)| as

n → ∞. But this is not possible as ||f(xn)| − |f(a)|| >
1 − L

2
for all n.


