Real Analysis Fall 2004 Take Home Test 1

Due Monday 10/4 in my mailbox before 5:00 p.m.

1. Use the definition of a limit to show that

(a)
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0$$

(b)
$$\lim_{n \to 3^+} \frac{1}{x - 3} = \infty$$

- 2. (a) Let $\{x_n\}$ be a bounded sequence of real numbers and $\{x_{k_n}\}$ be a monotone subsequence. Prove that $\{x_{k_n}\}$ converges to a limit.
 - (b) If $\lim_{n \to \infty} x_n = L = \emptyset$, prove that $\lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{L}$
- 3. Let $x_{n+1} = \frac{1}{3+x_n}$, $x_1 > 0$. Prove that the sequence $\{x_n\}$ converges and then compute the limit of the sequence.
- 4. Prove that the function $f(x) = \frac{1}{x^2}$ is continuous for all real numbers $x \neq 0$.
- 5. Suppose that f is continuous on [a, b], one-to-one (if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$), and f(a) < f(b). Prove that f is monotonically increasing (strictly) on [a, b].
- 6. Suppose that S_1, S_2, \ldots, S_n are sets in \mathbb{R}^1 and that $S = S_1 \cap S_2 \cap \cdots \cap S_n$, $S \neq \emptyset$. Let $B_i = \sup S_i, b_i = \inf S_i, 1 \le i \le n$. Find a formula relating $\sup S$ and $\inf S$ in terms of the $\{b_i\}$ and $\{B_i\}$.
- 7. Suppose that $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to -\infty} g(x) = a$. Suppose that for some positive number M, we have $g(x) \neq a$ for x < -M. Prove that $\lim_{x \to -\infty} f(g(x)) = \infty$.
- 8. If f(x) is continuous on [a, b], if a < c < d < b, and M = f(c) + f(d), prove there exists a number ξ between a and b such that $M = 2f(\xi)$.
- 9. Suppose that f(x) and g(x) are functions defined for x > 0, $\lim_{x \to 0^+} g(x)$ exists and is finite, and $|f(b) f(a)| \le |g(b) g(a)|$ for all positive real number a and b. Prove that $\lim_{x \to 0^+} f(x)$ exists and is finite.

10. Evaluate $\lim_{n \to \infty} \frac{2 + 2^{\frac{1}{2}} + 2^{\frac{1}{3}} + \dots + 2^{\frac{1}{n}}}{n}$. (You need not give a proof but you should show some work or justification. Quote a theorem or what have you. Calculator results or graphical analysis are not acceptable.)