Real Analysis
Fall 2004
Take Home Test 1
SOLUTIONS

1. Use the definition of a limit to show that

(a)

(b)
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Proof. Let € > 0 be given. Define N > —, where N is a positive integer. Then for
£

: 1 . :

n>N, Slnn—0‘§—<—<€.Hence limsmnzo. O
n N n—oo N

li !
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n—3+ T — 3 o0
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Proof. Let A > 0be given. Define § = T Then for z—3 < 4, f(z) = 3 > - =A.

x _
Hence lim = 00. O

z—3+ T — 3

Let {z,} be a bounded sequence of real numbers and {xj,} be a monotone subse-
quence. Prove that {z, } converges to a limit.

Proof. By Bolzano-Weierstrass Theorem, the bounded subsequence {y,} = {z,}
has a convergent subsequence {y; } which converges to xo. Now either {xy, } is
nondecreasing or nonincreasing. Without loss of generality, assume that {y,} is
monotonically nondecreasing. Given £ > 0, there exists N such that n > N implies
ro — € < Yy, < xo + €. In particular, rg — e <y, <o +e. For n > Iy we have

2o — € < Yy <Yn < To+e. Thus lim y, = lim x;, = x. OJ
. . 1 1
If lim z,, = L =, prove that lim — = —
n—oo n—oo xn L
L L
Proof. Let &1 = % Then there exists N7 > 0 such that for n > Ny, |z, — L] < ‘—2‘

Consequently, for n > Ny,

L L
|xn|:\xn—L—|—L|2|L|—]$n—L|>\L\—%:%.



For any given € > 0 there exists Ny > 0 such that for n > Ny, |z, — L| < —

L?

Let N = max{Ny, No}. Then for n > N,

L 1| fwa— Ll _ | L] _ 2/L2

—_— pr— - 8

x, L|  |w||L] T L2/, L?/
Thus lim ﬁ = L. O

3. Let 2,41 = T x1 > 0. Prove that the sequence {z,} converges and then compute
T

the limit of the sequence.
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First Proof (My Preference). Since x1 > 0, x,11 = 3T < 3 for all n > 1. Moreover,
Ty
1 1 3 3 1
Tpil = 3T < 3+% zl—oforalanI. Hence E<xn<§ for all n > 1.
(b) If 1 L exists, then L = li li L L L
im x, = L exists, then L = lim z,,, = lim = — =
1
—— = 1L. 1
3+ L (1)
Thus
L?+3L—-1=0. (2)
-3+V13
L=———#9/¥—.
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1 1
(a) If 21 > L, then i’zjg =3 T < ST L L from (1). More generally, if x9, 1 > L,
then xy, = = L. On the other hand, if 1 < L, then x5, < L

<
3 + Ton_1 3 + L
and g, > L. Without loss of generality, assume x; > L. Define the sequence {s,}

Sn
as s, = |r, — L|. Then claim that s,.; < s, for all n > 1. If not, then >

Sn
Assume n = 2k. Then

_1
S2k+1 Lok+1 — L 3tz

—L
Sok L — w9 L — zy
1 — 3L — Lo, > 3L — 3xo + Loy — 23,
(23, — 2Lxop + L?) — L* — 6L + 3x9, +1 >0
(zor — L)* =1 —3L + 3w, +1>0 (using (2))

(.Qfgk — L)[x% — L + 3] 2 0.




Since xo, — L < 0, 29, — L +3 <0 or a9, < L —3 <0, a contradiction.
A similar conclusion is obtained for n = 2k — 1.
Since s,, is bounded and monotonically decreasing, lim s, = a. Thus lim s, = a =

n—oo n—~o0

lim sg,4+1. For the case 1 > L, 9,41 > L and x4, < L and consequently

n—oo
(i) son =L — 29, —» @ = X9, —» L — aas n — o0,
(i) Sop+1 = Tops1 — L — a = T9p41 — L+ @ asn — oo.

Now

li li = L+ _
n— o0 n+1 TL—>003+ZL’2n 3—|—L—Oé

L?+3L—1+3a+al—ao*—al =0
a3—a)=0=a=0ora=23.

1
Ifa=3 L—-—a<0and L+ a > 3 a contradiction. Hence @ = 0 and thus

lim z,, = L.

]
Second Proof. Let f(z) = ~——. Then f/(z) = ———— Since > 0, |f/(x)
econd Proof. Le xr) = ——. en f'(z) = . Since zx x)| =
3+ (3 + x)? ’
1 1
EFAE < 3 for all x > 0. Now!
lzo — L] |f(z1) — L] ) 1
= = < —

1
by the Mean Value Theorem, where &; is between x; and L. |xo—L| < 3 |z — L|. Similarly,

lws — L] _ [fla) — L]
|$2—L|_ ‘l’g—L‘ _|f(£2)‘§

Y
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1 1\°
& between x5 and L. |z3 — L] < §|x2 — L] < (g) |zy — L|. By induction, |z,, — L| <

1 n—1
(—) |zy — L] — 0 as n — oo. Thus lim z, = L. ]

3 n— o0

1
4. Prove that the function f(r) = — is continuous for all real numbers x # 0.
x

1 34 VT3
L is defined as the fixed point of . e f(L) = L= g=r = [*+3L—1=0= L= %



Method 1. Let € > 0 be given. Let o € R\{0}. Put § = @. Then if |z — x| < § = ‘3;—0‘,

3
then |x2_0\ <z< \go\' Let 6, = 1%|x0|x(2). For § = min(dy, dz), if |z — x| < 4, then
1 1| o — 27
2 23| ada?

_ Jr = wollr + o
xrga?

O

Method 2. Consider the function g(z) = z*. Given & > 0, let §; = |x2_0|‘ Then |x2_0\ <z <

2
3‘50‘ for all |z —x¢| < §;. Let 6 = 5—6. Then for 6 = min(dy,ds), and x € (z9—9, x9+9),

|ol
we have
|2? — 22| = |z — mo| |7 + 20
5 Zo
< |z — x| |2 |
<e.
Then use a theorem about the reciprocal of a continuous function is continuous. O

5. Suppose that f is continuous on [a, b], one-to-one (if zy # 9, then f(x1) # f(z2)), and
f(a) < f(b). Prove that f is monotonically increasing (strictly) on [a, b].

Proof. Suppose that f is not monotonically increasing on [a, b].

bl
'




Then there exists z1,z9 € [a,b] with 1 < 23 but f(z1) > f(z2). We have two cases to
consider:

Case (i): If f(a) < f(x1), then f(a) lies between f(z1) and f(z2). Hence by the In-
termediate Value Theorem, there exists ¢ between z; and zo with f(c) = f(a), a
contradiction to the assumption that f is one-to-one.

Case (ii): If f(a) > f(z1), then since f(a) < f(b), the value f(a) lies between f(x;) and
f(b). Again, by the Intermediate Value Theorem, there exists d between x; and b
with f(d) = f(a), a contradiction. Hence f is increasing.

O

6. Suppose that S;, S, ..., S, are sets in R! and that S = S, NS, N---NS,, S # 0. Let
B; =supS;, b =infS;, 1 < i < n. Find a formula relating sup .S and inf S in terms of
the {b;} and {B;}.

Proof. S =N}_,5;. Claim that sup S = min{B;,1 <i <n}. Let B, = min{B; : 1 <i <
n}. If v € S, then z € S, and hence z < B,. Thus supS < B,. On the other hand,
sup S > x € S, and by the definition of B,, sup S > B,. Hence sup S = B,.

One may show in a similar fashion that inf S = max{b;|]1 < i < n}. O

7. Suppose that lim f(z) = oo and lim g(z) = a. Suppose that for some positive number
r—a T——00

M, we have g(x) # a for x < —M. Prove that lim f(g(z)) = oc.

Proof. Since lim f(z) = oo, for any A > 0, there exists § > 0 such that |z —a| < § =

|f(x)| > A. For this 6 there exists M > 0 such that < —M = |g(z) — a| < 6. Let
K = max{M,M}. Then for v < —K, |g(z) —a| < § and thus |f(g(x))] > A. Hence
lim_f(g(z)) = oo. 0

8. If f(z) is continuous on [a,b], if a < ¢ <d < b, and M = f(c) + f(d), prove there exists a
number £ between a and b such that M = 2f(§).

Proof. Let M = f(c)+£(d). Tf f(¢) < f(d), then 2L = [+ /(D) _ J(d)+ J(d)

ARG T _ ),
M _ /() ;L J(d) > /() ;_ /() = f(c). By the Intermediate Value Theorem (since

< f(d)), there exists & between ¢ and d (hence between a and b) such that

and 5
fle) <
f(§) =

=

. Thus M = 2f(¢). O

| o



9.

10.

Suppose that f(z) and g(z) are functions defined for = > 0, lim g(z) exists and is finite,

z—0t

and |f(b) — f(a)| < |g(b) —g(a)| for all positive real number a and b. Prove that liI?((]1+ f(x)

exists and is finite.

Proof. Suppose that lirgl+g(x) = L and |f(b) — f(a)] < |g(b) — g(a)|]. If lirgl+ f(z) does

not exist, there exists ¢ > 0 and two sequences z,, > 0, z, > 0 such that lim z,, = 0,

n—oo

lim z, = 0 and for all n |f(x,) — f(2,)| > €. For this € > 0 there exists § > 0 such that

n—oo

0<x<5:>|g(x)—L|<§. Now for 0 < 77, 73 < 0,

l9(71) — 9(2)]

(1) = L — g(&2) + L]
(%

g
< lg(z1) — L| + |9(22) — L
€ €
< 5 + 5
=e.
For this § there exists N such that n > N, 0 < z,, 2, < . Hence for n > N |f(x,) —
f(z)| < lg(zn) — g(2,)] < €, a contradiction. Thus }L%Lf( x) exists. O

2195 495 4 ...L9F
Evaluate lim tora + .

n—oo

(You need not give a proof but you should show some work or justification. Quote a
theorem or what have you. Calculator results or graphical analysis are not acceptable.)

2427 -4 2 n2n n-2 )
Proof. Let s, = .Then 1< — < s, < ——2 Notice lim 2» = 1.

n—oo

n n
Thus s, is bounded. Moreover, we claim that s,,; < s,. Suppose the contrary, that is
Spi1 = Sp. Then

(2425 +---+20 +277) (2428 4.+ 27)
n+1 - n ‘

Hence
M(2428 4 20) 4 n2m > n(2+22 4o+ 20) 42422 4o 4 20

or

which is a contradiction.

Hence {s,} is a monotone bounded sequence and thus is converges by the Bolzano-
Weierstrass Theorem. Moveover, lim s, = 1. O

n—oo



