
Real Analysis

Fall 2004

Take Home Test 1

SOLUTIONS

1. Use the definition of a limit to show that

(a) lim
n→∞

sin n

n
= 0

Proof. Let ε > 0 be given. Define N >
1

ε
, where N is a positive integer. Then for

n > N ,

∣∣∣∣
sin n

n
− 0

∣∣∣∣ ≤
1

n
<

1

N
< ε. Hence lim

n→∞

sin n

n
= 0 .

(b) lim
n→3+

1

x − 3
= ∞

Proof. Let A > 0 be given. Define δ =
1

A
. Then for x−3 < δ, f(x) =

1

x − 3
>

1

δ
= A.

Hence lim
x→3+

1

x − 3
= ∞.

2. (a) Let {xn} be a bounded sequence of real numbers and {xkn
} be a monotone subse-

quence. Prove that {xkn
} converges to a limit.

Proof. By Bolzano-Weierstrass Theorem, the bounded subsequence {yn} = {xkn
}

has a convergent subsequence {yln} which converges to x0. Now either {xkn
} is

nondecreasing or nonincreasing. Without loss of generality, assume that {yn} is
monotonically nondecreasing. Given ε > 0, there exists N such that n > N implies
x0 − ε < yln < x0 + ε. In particular, x0 − ε < ylN+1

< x0 + ε. For n > lN+1 we have
x0 − ε < ylN+1

< yn < x0 + ε. Thus lim
n→∞

yn = lim
n→∞

xkn
= x0.

(b) If lim
n→∞

xn = L = ∅, prove that lim
n→∞

1

xn

=
1

L

Proof. Let ε1 =
|L|
2

. Then there exists N1 > 0 such that for n > N1, |xn − L| <
|L|
2

.

Consequently, for n > N1,

|xn| = |xn − L + L| ≥ |L| − |xn − L| > |L| − |L|
2

=
|L|
2

.



For any given ε > 0 there exists N2 > 0 such that for n > N2, |xn − L| <
2ε

L2
.

Let N = max{N1, N2}. Then for n > N ,
∣∣∣∣

1

xn

− 1

L

∣∣∣∣ =
|xn − L|
|xn||L|

≤ |xn − L|
L2/2

<
2ε/L2

L2/2

= ε.

Thus lim
n→∞

1

xn
= L.

3. Let xn+1 =
1

3 + xn

, x1 > 0. Prove that the sequence {xn} converges and then compute

the limit of the sequence.

First Proof (My Preference). Since x1 > 0, xn+1 =
1

3 + xn

<
1

3
for all n ≥ 1. Moreover,

xn+1 =
1

3 + xn

<
1

3 + 1

3

=
3

10
for all n ≥ 1. Hence

3

10
< xn <

1

3
for all n > 1.

(b) If lim
n→∞

xn = L exists, then L = lim
n→∞

xn+1 = lim
n→∞

1

3 + xn

=
1

lim
n→∞

(3 + xn)
=

1

3 + L

1

3 + L
= L. (1)

Thus
L2 + 3L − 1 = 0. (2)

L =
−3 +

√
13

2
.

(a) If x1 > L, then x2 =
1

3 + x1

<
1

3 + L
= L from (1). More generally, if x2n−1 > L,

then x2n =
1

3 + x2n−1

<
1

3 + L
= L. On the other hand, if x1 < L, then x2n−1 < L

and x2n > L. Without loss of generality, assume x1 > L. Define the sequence {sn}
as sn = |xn − L|. Then claim that sn+1 < sn for all n ≥ 1. If not, then

sn+1

sn

≥ 1.

Assume n = 2k. Then

s2k+1

s2k

=
x2k+1 − L

L − x2k

=
1

3+x2k

− L

L − x2k

≥ 1

1 − 3L − Lx2k ≥ 3L − 3x2k + Lx2k − x2

2k

(x2

2k
− 2Lx2k + L2) − L2 − 6L + 3x2k + 1 ≥ 0

(x2k − L)2 − 1 − 3L + 3x2k + 1 ≥ 0 (using (2))

(x2k − L)[x2k − L + 3] ≥ 0.



Since x2k − L < 0, x2k − L + 3 ≤ 0 or x2k ≤ L − 3 < 0, a contradiction.

A similar conclusion is obtained for n = 2k − 1.

Since sn is bounded and monotonically decreasing, lim
n→∞

sn = α. Thus lim
n→∞

s2n = α =

lim
n→∞

s2n+1. For the case x1 > L, x2n+1 > L and x2n < L and consequently

(i) s2n = L − x2n → α ⇒ x2n → L − α as n → ∞,

(ii) s2n+1 = x2n+1 − L → α ⇒ x2n+1 → L + α as n → ∞.

Now

lim
n→∞

x2n+1 = lim
n→∞

1

3 + x2n

⇒ L + α =
1

3 + L − α

L2 + 3L − 1 + 3α + αL − α2 − αL = 0

α(3 − α) = 0 ⇒ α = 0 or α = 3.

If α = 3, L − α < 0 and L + α >
1

3
, a contradiction. Hence α = 0 and thus

lim
n→∞

xn = L.

Second Proof. Let f(x) =
1

3 + x
. Then f ′(x) =

−1

(3 + x)2
. Since x > 0, |f ′(x)| =

1

(3 + x)2
≤ 1

3
for all x > 0. Now1

|x2 − L|
|x1 − L| =

|f(x1) − L|
|x1 − L| = |f ′(ξ1)| ≤

1

3

by the Mean Value Theorem, where ξ1 is between x1 and L. |x2−L| ≤ 1

3
|x1−L|. Similarly,

|x3 − L|
|x2 − L| =

|f(x2) − L|
|x2 − L| = |f ′(ξ2)| ≤

1

3
,

ξ2 between x2 and L. |x3 − L| ≤ 1

3
|x2 − L| ≤

(
1

3

)2

|x1 − L|. By induction, |xn − L| ≤
(

1

3

)n−1

|x1 − L| → 0 as n → ∞. Thus lim
n→∞

xn = L.

4. Prove that the function f(x) =
1

x2
is continuous for all real numbers x 6= 0.

1L is defined as the fixed point of f , i.e., f(L) = L =
1

3 + L
⇒ L2 + 3L − 1 = 0 ⇒ L =

−3 +
√

13

2



Method 1. Let ε > 0 be given. Let x0 ∈ R\{0}. Put δ =
|x0|
2

. Then if |x−x0| < δ =
|x0|
2

,

then
|x0|
2

< x <
3|x0|

2
. Let δ2 =

ε

10
|x0|x2

0. For δ = min(δ1, δ2), if |x − x0| < δ, then

∣∣∣∣
1

x2
− 1

x2
0

∣∣∣∣ =
|x2

0 − x2|
x2

0x
2

=
|x − x0||x + x0|

x2
0x

2

<
|x − x0|52 |x0|

x2
0

x2
0

4

≤ |x − x0| · 10

|x0|x2
0

= ε

Method 2. Consider the function g(x) = x2. Given ε > 0, let δ1 =
|x0|
2

. Then
|x0|
2

< x <

3|x0|
2

for all |x−x0| < δ1. Let δ2 =
2ε

5|x0|
. Then for δ = min(δ1, δ2), and x ∈ (x0−δ, x0 +δ),

we have

|x2 − x2

0| = |x − x0||x + x0|

< |x − x0|
5|x0|

2
≤ ε.

Then use a theorem about the reciprocal of a continuous function is continuous.

5. Suppose that f is continuous on [a, b], one-to-one (if x1 6= x2, then f(x1) 6= f(x2)), and
f(a) < f(b). Prove that f is monotonically increasing (strictly) on [a, b].

Proof. Suppose that f is not monotonically increasing on [a, b].

b

a

ba



Then there exists x1, x2 ∈ [a, b] with x1 < x2 but f(x1) > f(x2). We have two cases to
consider:

Case (i): If f(a) < f(x1), then f(a) lies between f(x1) and f(x2). Hence by the In-
termediate Value Theorem, there exists c between x1 and x2 with f(c) = f(a), a
contradiction to the assumption that f is one-to-one.

Case (ii): If f(a) > f(x1), then since f(a) < f(b), the value f(a) lies between f(x1) and
f(b). Again, by the Intermediate Value Theorem, there exists d between x1 and b
with f(d) = f(a), a contradiction. Hence f is increasing.

6. Suppose that S1, S2, . . . , Sn are sets in R
1 and that S = S1 ∩ S2 ∩ · · · ∩ Sn, S 6= ∅. Let

Bi = sup Si, bi = inf Si, 1 ≤ i ≤ n. Find a formula relating sup S and inf S in terms of
the {bi} and {Bi}.

Proof. S = ∩n

i=1Si. Claim that sup S = min{Bi, 1 ≤ i ≤ n}. Let Br = min{Bi : 1 ≤ i ≤
n}. If x ∈ S, then x ∈ Sr, and hence x ≤ Br. Thus sup S ≤ Br. On the other hand,
sup S ≥ x ∈ Sr and by the definition of Br, sup S ≥ Br. Hence sup S = Br.

One may show in a similar fashion that inf S = max{bi|1 ≤ i ≤ n}.

7. Suppose that lim
x→a

f(x) = ∞ and lim
x→−∞

g(x) = a. Suppose that for some positive number

M , we have g(x) 6= a for x < −M . Prove that lim
x→−∞

f(g(x)) = ∞.

Proof. Since lim
x→a

f(x) = ∞, for any A > 0, there exists δ > 0 such that |x − a| < δ ⇒
|f(x)| > A. For this δ there exists M̃ > 0 such that x < −M̃ ⇒ |g(x) − a| < δ. Let

K = max{M̃, M}. Then for x < −K, |g(x) − a| < δ and thus |f(g(x))| > A. Hence
lim

x→−∞

f(g(x)) = ∞.

8. If f(x) is continuous on [a, b], if a < c < d < b, and M = f(c) + f(d), prove there exists a
number ξ between a and b such that M = 2f(ξ).

Proof. Let M = f(c)+f(d). If f(c) ≤ f(d), then
M

2
=

f(c) + f(d)

2
≤ f(d) + f(d)

2
= f(d),

and
M

2
=

f(c) + f(d)

2
≥ f(c) + f(c)

2
= f(c). By the Intermediate Value Theorem (since

f(c) ≤ M

2
≤ f(d)), there exists ξ between c and d (hence between a and b) such that

f(ξ) =
M

2
. Thus M = 2f(ξ).



9. Suppose that f(x) and g(x) are functions defined for x > 0, lim
x→0+

g(x) exists and is finite,

and |f(b)−f(a)| ≤ |g(b)−g(a)| for all positive real number a and b. Prove that lim
x→0+

f(x)

exists and is finite.

Proof. Suppose that lim
x→0+

g(x) = L and |f(b) − f(a)| ≤ |g(b) − g(a)|. If lim
x→0+

f(x) does

not exist, there exists ε > 0 and two sequences xn > 0, zn > 0 such that lim
n→∞

xn = 0,

lim
n→∞

zn = 0 and for all n |f(xn) − f(zn)| ≥ ε. For this ε > 0 there exists δ > 0 such that

0 < x < δ ⇒ |g(x) − L| <
ε

2
. Now for 0 < x̂1, x̂2 < δ,

|g(x̂1) − g(x̂2)| = |g(x̂1) − L − g(x̂2) + L|
≤ |g(x̂1) − L| + |g(x̂2) − L|
<

ε

2
+

ε

2
= ε.

For this δ there exists N such that n > N , 0 < xn, zn < δ. Hence for n > N |f(xn) −
f(zn)| ≤ |g(xn) − g(zn)| < ε, a contradiction. Thus lim

x→0+
f(x) exists.

10. Evaluate lim
n→∞

2 + 2
1

2 + 2
1

3 + · · · + 2
1

n

n
.

(You need not give a proof but you should show some work or justification. Quote a
theorem or what have you. Calculator results or graphical analysis are not acceptable.)

Proof. Let sn =
2 + 2

1

2 + · · · + 2
1

n

n
. Then 1 <

n2
1

n

n
< sn <

n · 2
n

= 2. Notice lim
n→∞

2
1

n = 1.

Thus sn is bounded. Moreover, we claim that sn+1 < sn. Suppose the contrary, that is
sn+1 ≥ sn. Then

(2 + 2
1

2 + · · · + 2
1

n + 2
1

n+1 )

n + 1
≥ (2 + 2

1

2 + · · · + 2
1

n )

n
.

Hence

n(2 + 2
1

2 + · · ·+ 2
1

n ) + n2
1

n+1 ≥ n(2 + 2
1

2 + · · · + 2
1

n ) + 2 + 2
1

2 + · · · + 2
1

n

or
n2

1

n+1 ≥ 2 + 2
1

2 + · · ·+ 2
1

n ≥ n2
1

n , n > 1

which is a contradiction.

Hence {sn} is a monotone bounded sequence and thus is converges by the Bolzano-
Weierstrass Theorem. Moveover, lim

n→∞

sn = 1.


