Real Analysis
 Fall 2004
 Take Home Test 1
 SOLUTIONS

1. Use the definition of a limit to show that
(a) $\lim _{n \rightarrow \infty} \frac{\sin n}{n}=0$

Proof. Let $\varepsilon>0$ be given. Define $N>\frac{1}{\varepsilon}$, where N is a positive integer. Then for $n>N,\left|\frac{\sin n}{n}-0\right| \leq \frac{1}{n}<\frac{1}{N}<\varepsilon$. Hence $\lim _{n \rightarrow \infty} \frac{\sin n}{n}=0$.
(b) $\lim _{n \rightarrow 3^{+}} \frac{1}{x-3}=\infty$

Proof. Let $A>0$ be given. Define $\delta=\frac{1}{A}$. Then for $x-3<\delta, f(x)=\frac{1}{x-3}>\frac{1}{\delta}=A$.
Hence $\lim _{x \rightarrow 3^{+}} \frac{1}{x-3}=\infty$.
2. (a) Let $\left\{x_{n}\right\}$ be a bounded sequence of real numbers and $\left\{x_{k_{n}}\right\}$ be a monotone subsequence. Prove that $\left\{x_{k_{n}}\right\}$ converges to a limit.

Proof. By Bolzano-Weierstrass Theorem, the bounded subsequence $\left\{y_{n}\right\}=\left\{x_{k_{n}}\right\}$ has a convergent subsequence $\left\{y_{l_{n}}\right\}$ which converges to x_{0}. Now either $\left\{x_{k_{n}}\right\}$ is nondecreasing or nonincreasing. Without loss of generality, assume that $\left\{y_{n}\right\}$ is monotonically nondecreasing. Given $\varepsilon>0$, there exists N such that $n>N$ implies $x_{0}-\varepsilon<y_{l_{n}}<x_{0}+\varepsilon$. In particular, $x_{0}-\varepsilon<y_{l_{N+1}}<x_{0}+\varepsilon$. For $n>l_{N+1}$ we have $x_{0}-\varepsilon<y_{l_{N+1}}<y_{n}<x_{0}+\varepsilon$. Thus $\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} x_{k_{n}}=x_{0}$.
(b) If $\lim _{n \rightarrow \infty} x_{n}=L=\emptyset$, prove that $\lim _{n \rightarrow \infty} \frac{1}{x_{n}}=\frac{1}{L}$

Proof. Let $\varepsilon_{1}=\frac{|L|}{2}$. Then there exists $N_{1}>0$ such that for $n>N_{1},\left|x_{n}-L\right|<\frac{|L|}{2}$. Consequently, for $n>N_{1}$,

$$
\left|x_{n}\right|=\left|x_{n}-L+L\right| \geq|L|-\left|x_{n}-L\right|>|L|-\frac{|L|}{2}=\frac{|L|}{2} .
$$

For any given $\varepsilon>0$ there exists $N_{2}>0$ such that for $n>N_{2},\left|x_{n}-L\right|<\frac{2 \varepsilon}{L^{2}}$.
Let $N=\max \left\{N_{1}, N_{2}\right\}$. Then for $n>N$,

$$
\left|\frac{1}{x_{n}}-\frac{1}{L}\right|=\frac{\left|x_{n}-L\right|}{\left|x_{n}\right||L|} \leq \frac{\left|x_{n}-L\right|}{L^{2} / 2}<\frac{2 \varepsilon / L^{2}}{L^{2} / 2}=\varepsilon .
$$

Thus $\lim _{n \rightarrow \infty} \frac{1}{x_{n}}=L$.
3. Let $x_{n+1}=\frac{1}{3+x_{n}}, x_{1}>0$. Prove that the sequence $\left\{x_{n}\right\}$ converges and then compute the limit of the sequence.

First Proof (My Preference). Since $x_{1}>0, x_{n+1}=\frac{1}{3+x_{n}}<\frac{1}{3}$ for all $n \geq 1$. Moreover, $x_{n+1}=\frac{1}{3+x_{n}}<\frac{1}{3+\frac{1}{3}}=\frac{3}{10}$ for all $n \geq 1$. Hence $\frac{3}{10}<x_{n}<\frac{1}{3}$ for all $n>1$.
(b) If $\lim _{n \rightarrow \infty} x_{n}=L$ exists, then $L=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} \frac{1}{3+x_{n}}=\frac{1}{\lim _{n \rightarrow \infty}\left(3+x_{n}\right)}=\frac{1}{3+L}$

$$
\begin{equation*}
\frac{1}{3+L}=L \tag{1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
L^{2}+3 L-1=0 \tag{2}
\end{equation*}
$$

$L=\frac{-3+\sqrt{13}}{2}$.
(a) If $x_{1}>L$, then $x_{2}=\frac{1}{3+x_{1}}<\frac{1}{3+L}=L$ from (1). More generally, if $x_{2 n-1}>L$, then $x_{2 n}=\frac{1}{3+x_{2 n-1}}<\frac{1}{3+L}=L$. On the other hand, if $x_{1}<L$, then $x_{2 n-1}<L$ and $x_{2 n}>L$. Without loss of generality, assume $x_{1}>L$. Define the sequence $\left\{s_{n}\right\}$ as $s_{n}=\left|x_{n}-L\right|$. Then claim that $s_{n+1}<s_{n}$ for all $n \geq 1$. If not, then $\frac{s_{n+1}}{s_{n}} \geq 1$. Assume $n=2 k$. Then

$$
\begin{gathered}
\frac{s_{2 k+1}}{s_{2 k}}=\frac{x_{2 k+1}-L}{L-x_{2 k}}=\frac{\frac{1}{3+x_{2 k}}-L}{L-x_{2 k}} \geq 1 \\
1-3 L-L x_{2 k} \geq 3 L-3 x_{2 k}+L x_{2 k}-x_{2 k}^{2} \\
\left(x_{2 k}^{2}-2 L x_{2 k}+L^{2}\right)-L^{2}-6 L+3 x_{2 k}+1 \geq 0 \\
\left(x_{2 k}-L\right)^{2}-1-3 L+3 x_{2 k}+1 \geq 0 \quad(\text { using }(2)) \\
\left(x_{2 k}-L\right)\left[x_{2 k}-L+3\right] \geq 0 .
\end{gathered}
$$

Since $x_{2 k}-L<0, x_{2 k}-L+3 \leq 0$ or $x_{2 k} \leq L-3<0$, a contradiction.
A similar conclusion is obtained for $n=2 k-1$.
Since s_{n} is bounded and monotonically decreasing, $\lim _{n \rightarrow \infty} s_{n}=\alpha$. Thus $\lim _{n \rightarrow \infty} s_{2 n}=\alpha=$ $\lim _{n \rightarrow \infty} s_{2 n+1}$. For the case $x_{1}>L, x_{2 n+1}>L$ and $x_{2 n}<L$ and consequently
(i) $s_{2 n}=L-x_{2 n} \rightarrow \alpha \Rightarrow x_{2 n} \rightarrow L-\alpha$ as $n \rightarrow \infty$,
(ii) $s_{2 n+1}=x_{2 n+1}-L \rightarrow \alpha \Rightarrow x_{2 n+1} \rightarrow L+\alpha$ as $n \rightarrow \infty$.

Now

$$
\begin{gathered}
\lim _{n \rightarrow \infty} x_{2 n+1}=\lim _{n \rightarrow \infty} \frac{1}{3+x_{2 n}} \Rightarrow L+\alpha=\frac{1}{3+L-\alpha} \\
L^{2}+3 L-1+3 \alpha+\alpha L-\alpha^{2}-\alpha L=0 \\
\alpha(3-\alpha)=0 \Rightarrow \alpha=0 \text { or } \alpha=3 .
\end{gathered}
$$

If $\alpha=3, L-\alpha<0$ and $L+\alpha>\frac{1}{3}$, a contradiction. Hence $\alpha=0$ and thus $\lim _{n \rightarrow \infty} x_{n}=L$.

Second Proof. Let $f(x)=\frac{1}{3+x}$. Then $f^{\prime}(x)=\frac{-1}{(3+x)^{2}}$. Since $x>0,\left|f^{\prime}(x)\right|=$ $\frac{1}{(3+x)^{2}} \leq \frac{1}{3}$ for all $x>0$. Now 1

$$
\frac{\left|x_{2}-L\right|}{\left|x_{1}-L\right|}=\frac{\left|f\left(x_{1}\right)-L\right|}{\left|x_{1}-L\right|}=\left|f^{\prime}\left(\xi_{1}\right)\right| \leq \frac{1}{3}
$$

by the Mean Value Theorem, where ξ_{1} is between x_{1} and $L .\left|x_{2}-L\right| \leq \frac{1}{3}\left|x_{1}-L\right|$. Similarly,

$$
\frac{\left|x_{3}-L\right|}{\left|x_{2}-L\right|}=\frac{\left|f\left(x_{2}\right)-L\right|}{\left|x_{2}-L\right|}=\left|f^{\prime}\left(\xi_{2}\right)\right| \leq \frac{1}{3},
$$

ξ_{2} between x_{2} and $L .\left|x_{3}-L\right| \leq \frac{1}{3}\left|x_{2}-L\right| \leq\left(\frac{1}{3}\right)^{2}\left|x_{1}-L\right|$. By induction, $\left|x_{n}-L\right| \leq$ $\left(\frac{1}{3}\right)^{n-1}\left|x_{1}-L\right| \rightarrow 0$ as $n \rightarrow \infty$. Thus $\lim _{n \rightarrow \infty} x_{n}=L$.
4. Prove that the function $f(x)=\frac{1}{x^{2}}$ is continuous for all real numbers $x \neq 0$.

[^0]Method 1. Let $\varepsilon>0$ be given. Let $x_{0} \in \mathbb{R} \backslash\{0\}$. Put $\delta=\frac{\left|x_{0}\right|}{2}$. Then if $\left|x-x_{0}\right|<\delta=\frac{\left|x_{0}\right|}{2}$, then $\frac{\left|x_{0}\right|}{2}<x<\frac{3\left|x_{0}\right|}{2}$. Let $\delta_{2}=\frac{\varepsilon}{10}\left|x_{0}\right| x_{0}^{2}$. For $\delta=\min \left(\delta_{1}, \delta_{2}\right)$, if $\left|x-x_{0}\right|<\delta$, then

$$
\begin{aligned}
\left|\frac{1}{x^{2}}-\frac{1}{x_{0}^{2}}\right| & =\frac{\left|x_{0}^{2}-x^{2}\right|}{x_{0}^{2} x^{2}} \\
& =\frac{\left|x-x_{0}\right|\left|x+x_{0}\right|}{x_{0}^{2} x^{2}} \\
& <\frac{\left|x-x_{0}\right| \frac{5}{2}\left|x_{0}\right|}{x_{0}^{2} \frac{x_{0}^{2}}{4}} \\
& \leq \frac{\left|x-x_{0}\right| \cdot 10}{\left|x_{0}\right| x_{0}^{2}} \\
& =\varepsilon
\end{aligned}
$$

Method 2. Consider the function $g(x)=x^{2}$. Given $\varepsilon>0$, let $\delta_{1}=\frac{\left|x_{0}\right|}{2}$. Then $\frac{\left|x_{0}\right|}{2}<x<$ $\frac{3\left|x_{0}\right|}{2}$ for all $\left|x-x_{0}\right|<\delta_{1}$. Let $\delta_{2}=\frac{2 \varepsilon}{5\left|x_{0}\right|}$. Then for $\delta=\min \left(\delta_{1}, \delta_{2}\right)$, and $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$, we have

$$
\begin{aligned}
\left|x^{2}-x_{0}^{2}\right| & =\left|x-x_{0}\right|\left|x+x_{0}\right| \\
& <\left|x-x_{0}\right| \frac{5\left|x_{0}\right|}{2} \\
& \leq \varepsilon .
\end{aligned}
$$

Then use a theorem about the reciprocal of a continuous function is continuous.
5. Suppose that f is continuous on $[a, b]$, one-to-one (if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$), and $f(a)<f(b)$. Prove that f is monotonically increasing (strictly) on $[a, b]$.

Proof. Suppose that f is not monotonically increasing on $[a, b]$.

Then there exists $x_{1}, x_{2} \in[a, b]$ with $x_{1}<x_{2}$ but $f\left(x_{1}\right)>f\left(x_{2}\right)$. We have two cases to consider:

Case (i): If $f(a)<f\left(x_{1}\right)$, then $f(a)$ lies between $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$. Hence by the Intermediate Value Theorem, there exists c between x_{1} and x_{2} with $f(c)=f(a)$, a contradiction to the assumption that f is one-to-one.

Case (ii): If $f(a)>f\left(x_{1}\right)$, then since $f(a)<f(b)$, the value $f(a)$ lies between $f\left(x_{1}\right)$ and $f(b)$. Again, by the Intermediate Value Theorem, there exists d between x_{1} and b with $f(d)=f(a)$, a contradiction. Hence f is increasing.
6. Suppose that $S_{1}, S_{2}, \ldots, S_{n}$ are sets in \mathbb{R}^{1} and that $S=S_{1} \cap S_{2} \cap \cdots \cap S_{n}, S \neq \emptyset$. Let $B_{i}=\sup S_{i}, b_{i}=\inf S_{i}, 1 \leq i \leq n$. Find a formula relating $\sup S$ and $\inf S$ in terms of the $\left\{b_{i}\right\}$ and $\left\{B_{i}\right\}$.

Proof. $S=\cap_{i=1}^{n} S_{i}$. Claim that $\sup S=\min \left\{B_{i}, 1 \leq i \leq n\right\}$. Let $B_{r}=\min \left\{B_{i}: 1 \leq i \leq\right.$ $n\}$. If $x \in S$, then $x \in S_{r}$, and hence $x \leq B_{r}$. Thus $\sup S \leq B_{r}$. On the other hand, $\sup S \geq x \in S_{r}$ and by the definition of $B_{r}, \sup S \geq B_{r}$. Hence $\sup S=B_{r}$.
One may show in a similar fashion that $\inf S=\max \left\{b_{i} \mid 1 \leq i \leq n\right\}$.
7. Suppose that $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow-\infty} g(x)=a$. Suppose that for some positive number M, we have $g(x) \neq a$ for $x<-M$. Prove that $\lim _{x \rightarrow-\infty} f(g(x))=\infty$.

Proof. Since $\lim _{x \rightarrow a} f(x)=\infty$, for any $A>0$, there exists $\delta>0$ such that $|x-a|<\delta \Rightarrow$ $|f(x)|>A$. For this δ there exists $\widetilde{M}>0$ such that $x<-\widetilde{M} \Rightarrow|g(x)-a|<\delta$. Let $K=\max \{\widetilde{M}, M\}$. Then for $x<-K,|g(x)-a|<\delta$ and thus $|f(g(x))|>A$. Hence $\lim _{x \rightarrow-\infty} f(g(x))=\infty$.
8. If $f(x)$ is continuous on $[a, b]$, if $a<c<d<b$, and $M=f(c)+f(d)$, prove there exists a number ξ between a and b such that $M=2 f(\xi)$.

Proof. Let $M=f(c)+f(d)$. If $f(c) \leq f(d)$, then $\frac{M}{2}=\frac{f(c)+f(d)}{2} \leq \frac{f(d)+f(d)}{2}=f(d)$, and $\frac{M}{2}=\frac{f(c)+f(d)}{2} \geq \frac{f(c)+f(c)}{2}=f(c)$. By the Intermediate Value Theorem (since $f(c) \leq \frac{M}{2} \leq f(d)$), there exists ξ between c and d (hence between a and b) such that $f(\xi)=\frac{M}{2}$. Thus $M=2 f(\xi)$.
9. Suppose that $f(x)$ and $g(x)$ are functions defined for $x>0, \lim _{x \rightarrow 0^{+}} g(x)$ exists and is finite, and $|f(b)-f(a)| \leq|g(b)-g(a)|$ for all positive real number a and b. Prove that $\lim _{x \rightarrow 0^{+}} f(x)$ exists and is finite.

Proof. Suppose that $\lim _{x \rightarrow 0^{+}} g(x)=L$ and $|f(b)-f(a)| \leq|g(b)-g(a)|$. If $\lim _{x \rightarrow 0^{+}} f(x)$ does not exist, there exists $\varepsilon>0$ and two sequences $x_{n}>0, z_{n}>0$ such that $\lim _{n \rightarrow \infty} x_{n}=0$, $\lim _{n \rightarrow \infty} z_{n}=0$ and for all $n\left|f\left(x_{n}\right)-f\left(z_{n}\right)\right| \geq \varepsilon$. For this $\varepsilon>0$ there exists $\delta>0$ such that $0<x<\delta \Rightarrow|g(x)-L|<\frac{\varepsilon}{2}$. Now for $0<\widehat{x_{1}}, \widehat{x_{2}}<\delta$,

$$
\begin{aligned}
\left|g\left(\widehat{x_{1}}\right)-g\left(\widehat{x_{2}}\right)\right| & =\left|g\left(\widehat{x_{1}}\right)-L-g\left(\widehat{x_{2}}\right)+L\right| \\
& \leq\left|g\left(\widehat{x_{1}}\right)-L\right|+\left|g\left(\widehat{x_{2}}\right)-L\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =\varepsilon .
\end{aligned}
$$

For this δ there exists N such that $n>N, 0<x_{n}, z_{n}<\delta$. Hence for $n>N \mid f\left(x_{n}\right)-$ $f\left(z_{n}\right)\left|\leq\left|g\left(x_{n}\right)-g\left(z_{n}\right)\right|<\varepsilon\right.$, a contradiction. Thus $\lim _{x \rightarrow 0+} f(x)$ exists.
10. Evaluate $\lim _{n \rightarrow \infty} \frac{2+2^{\frac{1}{2}}+2^{\frac{1}{3}}+\cdots+2^{\frac{1}{n}}}{n}$.
(You need not give a proof but you should show some work or justification. Quote a theorem or what have you. Calculator results or graphical analysis are not acceptable.)

Proof. Let $s_{n}=\frac{2+2^{\frac{1}{2}}+\cdots+2^{\frac{1}{n}}}{n}$. Then $1<\frac{n 2^{\frac{1}{n}}}{n}<s_{n}<\frac{n \cdot 2}{n}=2$. Notice $\lim _{n \rightarrow \infty} 2^{\frac{1}{n}}=1$. Thus s_{n} is bounded. Moreover, we claim that $s_{n+1}<s_{n}$. Suppose the contrary, that is $s_{n+1} \geq s_{n}$. Then

$$
\frac{\left(2+2^{\frac{1}{2}}+\cdots+2^{\frac{1}{n}}+2^{\frac{1}{n+1}}\right)}{n+1} \geq \frac{\left(2+2^{\frac{1}{2}}+\cdots+2^{\frac{1}{n}}\right)}{n} .
$$

Hence

$$
n\left(2+2^{\frac{1}{2}}+\cdots+2^{\frac{1}{n}}\right)+n 2^{\frac{1}{n+1}} \geq n\left(2+2^{\frac{1}{2}}+\cdots+2^{\frac{1}{n}}\right)+2+2^{\frac{1}{2}}+\cdots+2^{\frac{1}{n}}
$$

or

$$
n 2^{\frac{1}{n+1}} \geq 2+2^{\frac{1}{2}}+\cdots+2^{\frac{1}{n}} \geq n 2^{\frac{1}{n}}, \quad n>1
$$

which is a contradiction.
Hence $\left\{s_{n}\right\}$ is a monotone bounded sequence and thus is converges by the BolzanoWeierstrass Theorem. Moveover, $\lim _{n \rightarrow \infty} s_{n}=1$.

[^0]: ${ }^{1} L$ is defined as the fixed point of f, i.e., $f(L)=L=\frac{1}{3+L} \Rightarrow L^{2}+3 L-1=0 \Rightarrow L=\frac{-3+\sqrt{13}}{2}$

