Real Analysis
 Test 2
 Fall 2004

1. Suppose that f and g are increasing on an interval I and that $f(x)>g(x)$ for all $x \in I$. Denote the inverses of f and g by F and G and their domains by J_{1} and J_{2}, respectively. Prove that $F(x)<G(x)$ for each $x \in J_{1} \cap J_{2}$.
2. (a) $\lim _{x \rightarrow \frac{\pi}{2}} \sec x-\tan x$
(b) $\lim _{x \rightarrow 0^{+}} x^{x}$
3. Suppose that f and g are uniformly continuous on a subset S of \mathbb{R} (not a closed interval). Prove that the function $h=f-g$ is uniformly continuous.
4. Give examples of
(i) A bounded sequence that is not Cauchy.
(ii) A nested sequence $\left\{I_{n}\right\}$ of intervals such that $\bigcap_{n=1}^{\infty} I_{n}=\emptyset$
(iii) A continuous but not uniformly continuous function.
(iv) A Cauchy sequence $\left\{x_{n}\right\}$ and a function f such that $\left\{f\left(x_{n}\right)\right\}$ is not Cauchy.
5. Prove directly from the definition that the function $f(x)=x^{4}$ is uniformly continuous on the closed interval $[0,1]$. Is f uniformly continuous on \mathbb{R} ?
