Real Analysis Test 2 Fall 2004

- 1. Suppose that f and g are increasing on an interval I and that f(x) > g(x) for all $x \in I$. Denote the inverses of f and g by F and G and their domains by J_1 and J_2 , respectively. Prove that F(x) < G(x) for each $x \in J_1 \cap J_2$.
- 2. (a) $\lim_{x \to \frac{\pi}{2}} \sec x \tan x$
 - (b) $\lim_{x \to 0^+} x^x$
- 3. Suppose that f and g are uniformly continuous on a subset S of \mathbb{R} (not a closed interval). Prove that the function h = f g is uniformly continuous.
- 4. Give examples of
 - (i) A bounded sequence that is not Cauchy.
 - (ii) A nested sequence $\{I_n\}$ of intervals such that $\bigcap_{n=1}^{\infty} I_n = \emptyset$
 - (iii) A continuous but not uniformly continuous function.
 - (iv) A Cauchy sequence $\{x_n\}$ and a function f such that $\{f(x_n)\}$ is not Cauchy.
- 5. Prove directly from the definition that the function $f(x) = x^4$ is uniformly continuous on the closed interval [0,1]. Is f uniformly continuous on \mathbb{R} ?