Real Analysis
 Test 2
 Fall 2004
 SOLUTIONS

1. (20 points) Suppose that f and g are increasing on an interval I and that $f(x)>g(x)$ for all $x \in I$. Denote the inverses of f and g by F and G and their domains by J_{1} and J_{2}, respectively. Prove that $F(x)<G(x)$ for each $x \in J_{1} \cap J_{2}$.

Proof. Let $x_{0} \in J_{1} \cap J_{2}$. Then there exist $a_{1}, a_{2} \in I$ such that $f\left(a_{1}\right)=x_{0}=g\left(a_{2}\right)$. Equivalently, $F\left(x_{0}\right)=a_{1}, G\left(x_{0}\right)=a_{2}$. Claim that $a_{1}=F\left(x_{0}\right)<G\left(x_{0}\right)=a_{2}$. If not, then $a_{1} \geq a_{2}$. Now if $a_{1}=a_{2}$, then $x_{0}=f\left(a_{1}\right)>g\left(a_{1}\right)=g\left(a_{2}\right)=x_{0}$, which is absurd. On the other hand, if $a_{1}>a_{2}$, then $x_{0}=f\left(a_{1}\right)>f\left(a_{2}\right)>g\left(a_{2}\right)=x_{0}$, yet another contradiction. This proves our claim that for $x_{0} \in J_{1} \cap J_{2}, F\left(x_{0}\right)<G\left(x_{0}\right)$.
2. (a) (10 points) $\lim _{x \rightarrow \frac{\pi}{2}} \sec x-\tan x$

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{-\cos x}{-\sin x}=0
$$

(b) (10 points) $\lim _{x \rightarrow 0^{+}} x^{x}$

Let

$$
\begin{aligned}
y & =x^{x} \\
\ln y & =x \ln x \\
\lim _{x \rightarrow 0^{+}} \ln y & =\ln \lim _{x \rightarrow 0^{+}} y \\
& =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}} \quad \text { (since } \ln \text { is continuous). }
\end{aligned}
$$

Hence

$$
\begin{aligned}
\ln \lim _{x \rightarrow 0^{+}} y & =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{1}{x} \cdot \frac{-x^{2}}{1}=0 \\
\lim _{x \rightarrow 0} y & =e^{0}=1
\end{aligned}
$$

3. (20 points) Suppose that f and g are uniformly continuous on a subset S of \mathbb{R} (not a closed interval). Prove that the function $h=f-g$ is uniformly continuous.

Proof. Since f, g are uniformly continuous on $S \subset \mathbb{R}$, given $\varepsilon>0$, there exists $\delta_{1}, \delta_{2}>0$ such that for $x_{1}, x_{2} \in S$ with

$$
\begin{align*}
& \left|x_{1}-x_{2}\right|<\delta_{1} \Rightarrow\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\frac{\varepsilon}{2} \tag{1}\\
& \left|x_{1}-x_{2}\right|<\delta_{2} \Rightarrow\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right|<\frac{\varepsilon}{2} . \tag{2}
\end{align*}
$$

Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. Then (1) and (2) hold if δ_{1}, δ_{2} are replaced by S. Now for $\left|x_{1}-x_{2}\right|<\delta$, we have

$$
\begin{aligned}
\left|h\left(x_{1}\right)-h\left(x_{2}\right)\right| & =\left|f\left(x_{1}\right)-g\left(x_{1}\right)-f\left(x_{2}\right)+g\left(x_{2}\right)\right| \\
& =\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|+\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Thus h is uniformly continuous on S.
4. Give examples of
(i) (5 points) A bounded sequence that is not Cauchy.

Consider the sequence $\left\{(-1)^{n}\right\}, n=1,2,3, \ldots$. It is bounded but not Cauchy.
(ii) (5 points) A nested sequence $\left\{I_{n}\right\}$ of intervals such that $\bigcap_{n=1}^{\infty}=I_{n}=\emptyset$

Let $I_{n}=\left(0, \frac{1}{n}\right), n=1,2,3, \ldots$ Then $I_{n} \supset I_{n+1}$. But $\bigcap_{n=1}^{\infty} I_{n}=\emptyset$.
(iii) (5 points) A continuous but not uniformly continuous function.
$f(x)=\frac{1}{x}$ on $(0, \infty)$ is continuous but not uniformly continuous.
(iv) (5 points) A Cauchy sequence $\left\{x_{n}\right\}$ and a function f such that $\left\{f\left(x_{n}\right)\right\}$ is not Cauchy.

Define $f(x)=\left\{\begin{array}{ll}\frac{1}{x}, & x>0 \\ 2, & x=0\end{array}\right.$ on $[0, \infty)$. Let $x_{n}=\frac{1}{n}$. Then $x_{n} \rightarrow 0$ as $n \rightarrow \infty$, but $f\left(x_{n}\right)=n \rightarrow \infty \neq f(0)=2$.
5. Prove directly from the definition that the function $f(x)=x^{4}$ is uniformly continuous on the closed interval $[0,1]$. Is f uniformly continuous on \mathbb{R} ?

Proof. (a) We will show that f is continuous at each point $x \in[0,1]$. Let $x_{0} \in[0,1]$ and $\varepsilon>0$ be given. Put $\delta=\frac{\varepsilon}{4}$. Then for $\left|x-x_{0}\right|<\delta$, we have

$$
\begin{aligned}
\left|f(x)-f\left(x_{0}\right)\right| & =\left|x^{4}-x_{0}^{4}\right| \\
& =\left|x-x_{0}\right|\left|x+x_{0}\right|\left|x^{2}+x_{0}^{2}\right| \\
& <\delta \cdot 2 \cdot 2=\varepsilon
\end{aligned}
$$

Hence f is continuous on x_{0}. By Theorem 3.13, f is uniformly continuous on $[0,1]$.
(b) Let $x_{n}=n, y_{n}=n+\frac{1}{n}$. Then $\left|x_{n}-y_{n}\right|=\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$. However,

$$
\begin{aligned}
\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| & =\left|n^{4}+4 \frac{n^{3}}{n}+6 \frac{n^{2}}{n^{2}}+4 \frac{n}{n^{3}}+\frac{1}{n^{4}}-n^{4}\right| \\
& =\left|4 n^{2}+6+\frac{4}{n^{2}}+\frac{1}{n^{4}}\right| \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

Hence f is not uniformly continuous on \mathbb{R}.

