Real Analysis Test 2 Fall 2004 SOLUTIONS

1. (20 points) Suppose that f and g are increasing on an interval I and that f(x) > g(x) for all $x \in I$. Denote the inverses of f and g by F and G and their domains by J_1 and J_2 , respectively. Prove that F(x) < G(x) for each $x \in J_1 \cap J_2$.

Proof. Let $x_0 \in J_1 \cap J_2$. Then there exist $a_1, a_2 \in I$ such that $f(a_1) = x_0 = g(a_2)$. Equivalently, $F(x_0) = a_1$, $G(x_0) = a_2$. Claim that $a_1 = F(x_0) < G(x_0) = a_2$. If not, then $a_1 \ge a_2$. Now if $a_1 = a_2$, then $x_0 = f(a_1) > g(a_1) = g(a_2) = x_0$, which is absurd. On the other hand, if $a_1 > a_2$, then $x_0 = f(a_1) > f(a_2) > g(a_2) = x_0$, yet another contradiction. This proves our claim that for $x_0 \in J_1 \cap J_2$, $F(x_0) < G(x_0)$.

2. (a) (10 points) $\lim_{x \to \frac{\pi}{2}} \sec x - \tan x$

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x} = \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-\sin x} = 0$$

(b) (10 points) $\lim_{x \to 0^+} x^x$

Let

$$y = x^{x}$$

$$\ln y = x \ln x$$

$$\lim_{x \to 0^{+}} \ln y = \ln \lim_{x \to 0^{+}} y$$

$$= \lim_{x \to 0^{+}} \frac{\ln x}{\frac{1}{x}} \quad \text{(since ln is continuous)}.$$

Hence

$$\ln \lim_{x \to 0^+} y = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}}$$
$$= \lim_{x \to 0^+} \frac{1}{x} \cdot \frac{-x^2}{1} = 0$$
$$\lim_{x \to 0} y = e^0 = 1.$$

3. (20 points) Suppose that f and g are uniformly continuous on a subset S of \mathbb{R} (not a closed interval). Prove that the function h = f - g is uniformly continuous.

Proof. Since f, g are uniformly continuous on $S \subset \mathbb{R}$, given $\varepsilon > 0$, there exists $\delta_1, \delta_2 > 0$ such that for $x_1, x_2 \in S$ with

$$|x_1 - x_2| < \delta_1 \Rightarrow |f(x_1) - f(x_2)| < \frac{\varepsilon}{2} \tag{1}$$

$$|x_1 - x_2| < \delta_2 \Rightarrow |g(x_1) - g(x_2)| < \frac{\varepsilon}{2}.$$
(2)

Let $\delta = \min(\delta_1, \delta_2)$. Then (1) and (2) hold if δ_1, δ_2 are replaced by S. Now for $|x_1 - x_2| < \delta$, we have

$$|h(x_1) - h(x_2)| = |f(x_1) - g(x_1) - f(x_2) + g(x_2)|$$

= $|f(x_1) - f(x_2)| + |g(x_1) - g(x_2)|$
 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Thus h is uniformly continuous on S.

4. Give examples of

(i) (5 points) A bounded sequence that is not Cauchy.

Consider the sequence $\{(-1)^n\}$, $n = 1, 2, 3, \ldots$ It is bounded but not Cauchy.

(ii) (5 points) A nested sequence
$$\{I_n\}$$
 of intervals such that $\bigcap_{n=1}^{\infty} = I_n = \emptyset$
Let $I_n = \left(0, \frac{1}{n}\right), n = 1, 2, 3, \dots$ Then $I_n \supset I_{n+1}$. But $\bigcap_{n=1}^{\infty} I_n = \emptyset$.

(iii) (5 points) A continuous but not uniformly continuous function.

 $f(x) = \frac{1}{x}$ on $(0, \infty)$ is continuous but not uniformly continuous.

(iv) (5 points) A Cauchy sequence $\{x_n\}$ and a function f such that $\{f(x_n)\}$ is not Cauchy.

Define $f(x) = \begin{cases} \frac{1}{x}, & x > 0\\ 2, & x = 0 \end{cases}$ on $[0, \infty)$. Let $x_n = \frac{1}{n}$. Then $x_n \to 0$ as $n \to \infty$, but $f(x_n) = n \to \infty \neq f(0) = 2$.

5. Prove directly from the definition that the function $f(x) = x^4$ is uniformly continuous on the closed interval [0, 1]. Is f uniformly continuous on \mathbb{R} ?

Proof. (a) We will show that f is continuous at each point $x \in [0, 1]$. Let $x_0 \in [0, 1]$ and $\varepsilon > 0$ be given. Put $\delta = \frac{\varepsilon}{4}$. Then for $|x - x_0| < \delta$, we have

$$|f(x) - f(x_0)| = |x^4 - x_0^4|$$

= $|x - x_0||x + x_0||x^2 + x_0^2|$
< $\delta \cdot 2 \cdot 2 = \varepsilon$.

Hence f is continuous on x_0 . By Theorem 3.13, f is uniformly continuous on [0, 1]. (b) Let $x_n = n$, $y_n = n + \frac{1}{n}$. Then $|x_n - y_n| = \frac{1}{n} \to 0$ as $n \to \infty$. However,

$$|f(x_n) - f(y_n)| = \left| n^4 + 4\frac{n^3}{n} + 6\frac{n^2}{n^2} + 4\frac{n}{n^3} + \frac{1}{n^4} - n^4 \right|$$
$$= \left| 4n^2 + 6 + \frac{4}{n^2} + \frac{1}{n^4} \right| \to \infty \quad \text{as} \quad n \to \infty.$$

Hence f is <u>not</u> uniformly continuous on \mathbb{R} .