1. Suppose that f and g are positive and continuous on $I = \{x : a \leq x \leq b\}$. Prove that there is a number $\xi \in I$ such that
\[
\int_a^b f(x)g(x) \, dx = f(\xi) \int_a^b g(x) \, dx.
\]

2. A function f defined on an interval I is called a step-function if and only if I can be subdivided into a finite number of subintervals I_1, I_2, \ldots, I_n such that $f(x) = c_i$ for all x interior to I_i where the $c_i, i = 1, 2, \ldots, n$, are constants. Prove that every step-function is integrable (whatever values $f(x)$ has at the endpoints of the I_i) and find a formula for the value of the integral.

3. (a) Give an example of a function f such that $|f|$ is integrable but f is not integrable.
(b) Give an example of a function f such that f^2 is integrable but f is not integrable.
(c) Give an example of a metric space in which there exists $r > 0$ such that the closure of the open ball $B(p_0, r)$ is not equal to the closed ball $B(p_0, r) = \{p : d(p, p_0) \leq r\}$.
(d) Give an example of two metrics on a set S that are not equivalent.

4. Show that
\[
\int_a^c f(x) \, dx = \int_a^a f(x) \, dx + \int_a^c f(x) \, dx
\]
whether or not b is between a and c so long as all three integrals exist.

5. (a) Given the function $f : x \to x^3$ defined on $I = \{x : 0 \leq x \leq 1\}$. Suppose Δ is a subdivision and Δ' is a refinement of Δ which adds one more point. Show that
\[
S^+(f, \Delta') < S^+(f, \Delta) \quad \text{and} \quad S_-(f, \Delta') > S_-(f, \Delta).
\]
(b) Give an example of the function f defined on I such that
\[
S^+(f, \Delta') = S^+(f, \Delta) \quad \text{and} \quad S_-(f, \Delta') = S_-(f, \Delta)
\]
for the two subdivisions in Part (a).
(c) If f is a strictly increasing continuous function on I show that $S^+(f, \Delta') < S^+(f, \Delta)$ where Δ' is any refinement of Δ.
6. Prove that
\[\lim_{n \to \infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n} \right] = \ln 2. \]

(Hint: Use the Fundamental Theorem of Calculus)

7. Suppose that \(f \) is continuous on an interval \(I = \{ x : a \leq x \leq b \} \) with \(f(x) > 0 \) on \(I \). Let \(S = \{ (x, y) \in \mathbb{R}^2 : a \leq x \leq b, 0 \leq y \leq f(x) \} \) (Euclidean metric).

(a) Show that \(S \) is closed.
(b) Find \(S' \) and \(\bar{S} \).
(c) Find \(S^{(0)} \) and prove the result.
(d) Find \(\partial S \).

8. Let \(A_1, A_2, \ldots, A_n, \ldots \) be sets in a metric space. Define \(B = \bigcup A_i \). Show that \(B = \bigcup \bar{A}_i \) and give an example to show that \(B \) may not equal \(\bigcup \bar{A}_i \).

9. Let \(d \) be a metric on a nonempty set \(S \). Let \(\tilde{d}(x, y) = \min(1, d(x, y)) \), where \(x, y \in S \).

(a) Show that \(\tilde{d} \) is a metric on \(S \).
(b) Show that \(d \) and \(\tilde{d} \) are equivalent.

10. Let \(S \) be a set and \(d \) a function from \(S \times S \) into \(\mathbb{R}^1 \) with the properties:

(i) \(d(x, y) = 0 \) if and only if \(x = y \).
(ii) \(d(x, z) \leq d(x, y) + d(z, y) \) for all \(x, y, z \in S \).

Show that \(d \) is a metric and hence that \((S, d) \) is a metric space.