Real Analysis

Test 3
Fall 2004

1. Suppose that f and g are positive and continuous on $I=\{x: a \leq x \leq b\}$. Prove that there is a number $\xi \in I$ such that

$$
\int_{a}^{b} f(x) g(x) d x=f(\xi) \int_{a}^{b} g(x) d x
$$

2. A function f defined on an interval I is called a step-function if and only if I can be subdivided into a finite number of subintervals $I_{1}, I_{2}, \ldots, I_{n}$ such that $f(x)=c_{i}$ for all x interior to I_{i} where the $c_{i}, i=1,2, \ldots, n$, are constants. Prove that every step-function is integrable (whatever values $f(x)$ has at the endpoints of the I_{i}) and find a formula for the value of the integral.
3. (a) Give an example of a function f such that $|f|$ is integrable but f is not integrable.
(b) Give an example of a function f such that f^{2} is integrable but f is not integrable.
(c) Give an example of a metric space in which there exists $r>0$ such that the closure of the open ball $B\left(p_{0}, r\right)$ is not equal to the closed ball $\overline{B\left(p_{0}, r\right)}=\left\{p: d\left(p, p_{0}\right) \leq r\right\}$.
(d) Give an example of two metrics on a set S that are not equivalent.
4. Show that

$$
\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x
$$

whether or not b is between a and c so long as all three integrals exist.
5. (a) Given the function $f: x \rightarrow x^{3}$ defined on $I=\{x: 0 \leq x \leq 1\}$. Suppost Δ is a subdivision and Δ^{\prime} is a refinement of Δ which adds one more point. Show that

$$
S^{+}\left(f, \Delta^{\prime}\right)<S^{+}(f, \Delta) \quad \text { and } \quad S_{-}\left(f, \Delta^{\prime}\right)>S_{-}(f, \Delta)
$$

(b) Give an example of the function f defined on I such that

$$
S^{+}\left(f, \Delta^{\prime}\right)=S^{+}(f, \Delta) \quad \text { and } \quad S_{-}\left(f, \Delta^{\prime}\right)=S_{-}(f, \Delta)
$$

for the two subdivisions in Part (a).
(c) If f is a strictly increasing continuous function on I show that $S^{+}\left(f, \Delta^{\prime}\right)<S^{+}(f, \Delta)$ where Δ^{\prime} is any refinement of Δ.
6. Prove that

$$
\lim \left[\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}\right]=\ln 2
$$

(Hint: Use the Fundamental Theorem of Calculus)
7. Suppose that f is continuous on an interval $I=\{x: a \leq x \leq b\}$ with $f(x)>0$ on I. Let $S=\left\{(x, y) \in \mathbb{R}^{2}: a \leq x \leq b, 0 \leq y \leq f(x)\right\}$ (Euclidean metric).
(a) Show that S is closed.
(b) Find S^{\prime} and \bar{S}.
(c) Find $S^{(0)}$ and prove the result.
(d) Find ∂S.
8. Let $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ be sets in a metric space. Define $B=\bigcup A_{i}$. Show that $\bar{B} \supset \bigcup \bar{A}_{i}$ and give an example to show that \bar{B} may not equal $\bigcup \bar{A}_{i}$.
9. Let d be a metric on a nonempty set S. Let $\tilde{d}(x, y)=\min (1, d(x, y))$, where $x, y \in S$.
(a) Show that \tilde{d} is a metric on S.
(b) Show that d and \tilde{d} are equivalent.
10. Let S be a set and d a function from $S \times S$ into \mathbb{R}^{1} with the properties:
(i) $d(x, y)=0$ if and only if $x=y$.
(ii) $d(x, z) \leq d(x, y)+d(z, y)$ for all $x, y, z \in S$.

Show that d is a metric and hence that (S, d) is a metric space.

