Real Analysis Test 3 Fall 2004

1. Suppose that f and g are positive and continuous on $I = \{x : a \le x \le b\}$. Prove that there is a number $\xi \in I$ such that

$$\int_{a}^{b} f(x)g(x) \, dx = f(\xi) \int_{a}^{b} g(x) \, dx$$

- 2. A function f defined on an interval I is called a **step-function** if and only if I can be subdivided into a finite number of subintervals I_1, I_2, \ldots, I_n such that $f(x) = c_i$ for all x interior to I_i where the $c_i, i = 1, 2, \ldots, n$, are constants. Prove that every step-function is integrable (whatever values f(x) has at the endpoints of the I_i) and find a formula for the value of the integral.
- 3. (a) Give an example of a function f such that |f| is integrable but f is not integrable.
 - (b) Give an example of a function f such that f^2 is integrable but f is not integrable.
 - (c) Give an example of a metric space in which there exists r > 0 such that the closure of the open ball $B(p_0, r)$ is not equal to the closed ball $\overline{B(p_0, r)} = \{p : d(p, p_0) \le r\}$.
 - (d) Give an example of two metrics on a set S that are not equivalent.
- 4. Show that

$$\int_{a}^{c} f(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{b}^{c} f(x) \, dx$$

whether or not b is between a and c so long as all three integrals exist.

5. (a) Given the function $f : x \to x^3$ defined on $I = \{x : 0 \le x \le 1\}$. Suppose Δ is a subdivision and Δ' is a refinement of Δ which adds one more point. Show that

$$S^+(f,\Delta') < S^+(f,\Delta)$$
 and $S_-(f,\Delta') > S_-(f,\Delta)$.

(b) Give an example of the function f defined on I such that

$$S^+(f,\Delta') = S^+(f,\Delta)$$
 and $S_-(f,\Delta') = S_-(f,\Delta)$

for the two subdivisions in Part (a).

(c) If f is a strictly increasing continuous function on I show that $S^+(f, \Delta') < S^+(f, \Delta)$ where Δ' is any refinement of Δ . 6. Prove that

$$\lim \left[\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}\right] = \ln 2.$$

(*Hint:* Use the Fundamental Theorem of Calculus)

- 7. Suppose that f is continuous on an interval $I = \{x : a \le x \le b\}$ with f(x) > 0 on I. Let $S = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, 0 \le y \le f(x)\}$ (Euclidean metric).
 - (a) Show that S is closed.
 - (b) Find S' and \bar{S} .
 - (c) Find $S^{(0)}$ and prove the result.
 - (d) Find ∂S .
- 8. Let $A_1, A_2, \ldots, A_n, \ldots$ be sets in a metric space. Define $B = \bigcup A_i$. Show that $\overline{B} \supset \bigcup \overline{A}_i$ and give an example to show that \overline{B} may not equal $\bigcup \overline{A}_i$.
- 9. Let d be a metric on a nonempty set S. Let $\tilde{d}(x,y) = \min(1, d(x,y))$, where $x, y \in S$.
 - (a) Show that \tilde{d} is a metric on S.
 - (b) Show that d and \tilde{d} are equivalent.
- 10. Let S be a set and d a function from $S \times S$ into \mathbb{R}^1 with the properties:
 - (i) d(x, y) = 0 if and only if x = y.
 - (ii) $d(x,z) \le d(x,y) + d(z,y)$ for all $x, y, z \in S$.

Show that d is a metric and hence that (S, d) is a metric space.