Real Analysis Test 3 Fall 2004

1. Suppose that f and g are positive and continuous on $I = \{x : a \le x \le b\}$. Prove that there is a number $\xi \in I$ such that

$$\int_a^b f(x)g(x) \ dx = f(\xi) \int_a^b g(x) \ dx.$$

Proof. Suppose that f and g are positive and continuous on [a, b]. By Theorem 5.3(c),

$$m \int_a^b g(x) \ dx \le \int_a^b f(x)g(x) \ dx \le M \int_a^b g(x) \ dx$$

where $m = \min\{f(x) : a \le x \le b\}$, $M = \max\{f(x) : a \le x \le b\}$. Since f is continous, there exists $x_m, x_M \in [a, b] \ni m = f(x_m), M = f(x_M)$. Hence

$$f(x_m) \le \frac{\int_a^b f(x)g(x) \ dx}{\int_a^b g(x) \ dx} \le f(x_M).$$

By the Intermediate Value Theorem, there exists $\xi \in [a,b] \ni \int_a^b f(x)g(x) \ dx / \int_a^b g(x) \ dx \le f(\xi)$.

2. A function f defined on an interval I is called a **step-function** if and only if I can be subdivided into a finite number of subintervals I_1, I_2, \ldots, I_n such that $f(x) = c_i$ for all x interior to I_i where the c_i , $i = 1, 2, \ldots, n$, are constants. Prove that every step-function is integrable (whatever values f(x) has at the endpoints of the I_i) and find a formula for the value of the integral.

Proof. Let $f(x) = f_1(x) + f_2(x) + \cdots + f_n(x)$, where $f_i(x) = c_i$ defined on I_i . By Theorem 5.3(b)

$$\int_{a}^{b} f(x) dx \ge \int_{a}^{x_{1}} f_{1}(x) dx + \int_{x_{1}}^{x_{2}} f_{2}(x) dx + \dots + \int_{x_{n-1}}^{b} f_{n}(x) dx \tag{1}$$

$$\int_{a}^{\overline{b}} f(x) dx \le \int_{a}^{\overline{x}_{1}} f_{1}(x) dx + \int_{x_{1}}^{\overline{x}_{2}} f_{2}(x) dx + \dots + \int_{x_{n}}^{\overline{b}} f_{n}(x) dx$$
 (2)

Now on each I_i , $f_i(x)$ is continuous and thus is integrable by Corollary 1, p. 106. Hence the terms in the right hand side of (1) and (2) are equal. Thus $\int_a^b f(x) dx = \int_a^b f(x) dx$ and consequently f is integrable. Moreover, by the Mean Value Theorem (Theorem 5.6), $\int_{x_{i-1}}^{x_i} f_i(x) dx = f(\xi)(x_i - x_{i-1}) = c_i l(I_i)$. Therefore, $\int_a^b f(x) dx = \sum_{i=1}^n c_i l(I_i)$.

3. (a) Give an example of a function f such that |f| is integrable but f is not integrable.

Let
$$f(x) = \begin{cases} 1 & \text{if } x \in Q \\ -1 & \text{if } x \notin Q \end{cases}$$

Then f(x) is not integrable while |f(x)| is.

- (b) Give an example of a function f such that f^2 is integrable but f is not integrable. Let $f(x) = \frac{1}{x}$ on $[1, \infty)$. Then f is not integrable, however $f^2(x) = \frac{1}{x^2}$ is.
- (c) Give an example of a metric space in which there exists r>0 such that the closure of the open ball $B(p_0,r)$ is not equal to the closed ball $\overline{B(p_0,r)}=\{p:d(p,p_0)\leq r\}$. Let $S=(-\infty,0]\cup[1,\infty)$. Then $\overline{B(0,1)}=[-1,0]\cup\{1\}$. However, the closure of B(0,1)=[-1,0].
- (d) Give an example of two metrics on a set S that are not equivalent.

On
$$\mathbb{R}^1$$
, let $d_1(x,y) = |x - y|$, $d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$.

4. Show that

$$\int_a^c f(x) \ dx = \int_a^b f(x) \ dx + \int_b^c f(x) \ dx$$

whether or not b is between a and c so long as all three integrals exist.

Proof. On page 103 in the book, the author proved that

$$\int_{a}^{c} f(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{b}^{c} f(x) \, dx. \tag{3}$$

We now show that

$$\int_a^c f(x) \ dx = \int_a^b f(x) \ dx + \int_b^c f(x) \ dx.$$

There exists a subdivision Δ_1 of [a, b] such that

$$\bar{S}(f, \Delta_1) > \int_a^b f(x) \ dx - \frac{1}{2}\varepsilon.$$

Similarly, there exists a subdivision Δ_2 of [b,c] such that

$$\bar{S}(f, \Delta_2) > \int_b^c f(x) dx - \frac{1}{2}\varepsilon.$$

Let Δ be the union of Δ_1 and Δ_2 on [a, c]. Then

$$\int_{a}^{c} f(x) dx \ge \bar{S}(f, \Delta)$$

$$= \bar{S}(f, \Delta_{1}) + \bar{S}(f, \Delta_{2})$$

$$> \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx - \varepsilon.$$

Since $\varepsilon > 0$ can be made arbitrarily small,

$$\int_{a}^{c} f(x) \ dx = \int_{a}^{b} f(x) \ dx + \int_{b}^{c} f(x) \ dx. \tag{4}$$

If f is integrable, we combine (3) and (4) to get the desired result.

5. (a) Given the function $f: x \to x^3$ defined on $I = \{x: 0 \le x \le 1\}$. Suppost Δ is a subdivision and Δ' is a refinement of Δ which adds one more point. Show that

$$S^+(f, \Delta') < S^+(f, \Delta)$$
 and $S_-(f, \Delta') > S_-(f, \Delta)$.

Proof. Let $\Delta = \{x_0, x_1, \dots, x_i, \dots, x_n\}$, $\Delta' = \{x_0, x_1, \dots, x_{i-1}, x_i', x_i, \dots, x_n\}$ where x_i' is the new point. Then

$$S^{+}(f, \Delta') = \sum_{j=1}^{i-1} M_j l(J_j) + \sum_{j=i+1}^{n} M_j l(I_i) + M'_i(x'_i - x_i) + M''_i(x_1 - x'_i)$$

where $M_i' = \max_{x_{i-1} \le x \le x_i'} f(x)$, $M_i'' = \max_{x_i' \le x \le x_i} f(x)$. Notice that $M_i' \le M_i$, $M_i'' \le M_i$. Thus

$$S^{+}(f, \Delta') \leq \sum_{j=1}^{n} M_{j}l(J_{j}) = S^{+}(f, \Delta').$$

Similarly, $S(f, \Delta') > S(f, \Delta)$.

(b) Give an example of the function f defined on I such that

$$S^+(f, \Delta') = S^+(f, \Delta)$$
 and $S_-(f, \Delta') = S_-(f, \Delta)$

for the two subdivisions in Part (a).

Let f(x) = c.

(c) If f is a strictly increasing continuous function on I show that $S^+(f, \Delta') < S^+(f, \Delta)$ where Δ' is any refinement of Δ .

Proof. This is similar to (a).
$$\Box$$

6. Prove that

$$\lim \left[\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right] = \ln 2.$$

(Hint: Use the Fundamental Theorem of Calculus)

Proof. Let $f(x) = \frac{1}{x+1}$ defined on [0,1]. Then

$$\int_0^1 f(x) \ dx = \int_0^1 \frac{1}{x+1} \ dx = \ln(x+1) \Big]_0^1 = \ln 2.$$

(By the Fundamental Theorem of Calculus.)

Now

$$\int_0^1 f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x, \quad x_i = \frac{2}{n}, \quad \Delta x = \frac{1}{n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^n \frac{1}{\frac{i}{n} + 1} \cdot \frac{1}{n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^n \frac{1}{i + n}.$$

Therefore

$$\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{i+n}=\ln 2.$$

- 7. Suppose that f is continuous on an interval $I = \{x : a \le x \le b\}$ with f(x) > 0 on I. Let $S = \{(x,y) \in \mathbb{R}^2 : a \le x \le b, 0 \le y \le f(x)\}$ (Euclidean metric).
 - (a) Show that S is closed.

We will show that $\mathbb{R}^2 - S$ is open. Let $(x_0, y_0) \notin S$. Define $l = \inf\{d((x_0, y_0), (x, y)) : (x, y) \in S\}$. If $y_0 < 0$, then $l = |y_0|$; and if $y_0 > 0$ and $x_0 < a$ or $x_0 > b$, then either $l \ge a - x_0$ or $\ge x_b - b$, respectively. The last case, $a \le x \le b$, $y_0 > 0$, l > 0 for otherwise $y_0 = f(x_0)$, a contradiction. In each case $B((x_0, y_0), r) \subset \mathbb{R}^2 - S$ for $r = \frac{l}{2}$.

(b) Find S' and \bar{S} .

$$S' = S$$
, $\bar{S} = S$

(c) Find $S^{(0)}$ and prove the result.

$$S^0 = \{(x, y) : a < x < b, \quad 0 < y < f(x)\}$$

(d) Find ∂S .

$$\partial S = \{(x,0) : a \le x \le b\} \cup \{(a,y) : 0 \le y \le f(x), \quad a \le x \le b\}$$
$$\cup \{(b,y) : 0 \le y \le f(x), \quad a \le x \le b\} \cup \{(x,y) : a \le x \le b, \quad y = f(x)\}$$

8. Let $A_1, A_2, \ldots, A_n, \ldots$ be sets in a metric space. Define $B = \bigcup A_i$. Show that $\bar{B} \supset \bigcup \bar{A}_i$ and give an example to show that \bar{B} may not equal $\bigcup \bar{A}_i$.

Proof. Let $x \in \bigcup_{i=1}^n \bar{A}_i$. Then $x \in \bar{A}_j$ for some j. Then either $x \in A_j$ or $x \in A'_j$. If $x \in A_j$, then $x \in \bigcup_{j=1}^n A_j = B \subset \bar{B}$. On the other hand if $x \in A'_j$, then there exists a sequence $\{a_n\}$ in A_j , $a_n \neq x$, such that $\lim_{n\to\infty} a_n = x$. Since $a_n \in A_j$, $a_n \in B$. Hence $x \in B' \subset \bar{B}$. Thus $x \in \bar{B}$. Hence $\bar{B} \supset \bigcup_{i=1}^n \bar{A}_i$.

- 9. Let d be a metric on a nonempty set S. Let $\tilde{d}(x,y) = \min(1,d(x,y))$, where $x,y \in S$.
 - (a) Show that \tilde{d} is a metric on S.

Proof.
$$\bar{d}(x,y) = \min(1,d(x,y))$$

- i. $\bar{d}(x,y)$ is either equal 1 or d(x,y) and in both cases $\bar{d}(x,y) \geq 0$. Now $\bar{d}(x,y) = 0$ if and only if d(x,y) = 0 if and only if x = y.
- ii. $\bar{d}(x,y) = \min(1, d(x,y)) = \min(1, d(y,x)) = \bar{d}(y,x)$
- iii. $\bar{d}(x,y) = \min(1, d(x,y)) \le \min(1, d(x,z) + d(z,y))$. We must show that $\min(1, d(x,z) + d(z,y)) \le \min(1, d(x,z)) + \min(1, d(z,y))$ Case (a) d(x,z) + d(z,y) < 1. Then d(x,z) < 1 and (z,y) < 1. Furthermore,

$$\min(1, d(x, z) + d(z, y)) = d(x, z) + d(z, y)$$
$$\min(1, d(x, z)) = d(x, z)$$
$$\min(1, d(z, y)) = d(z, y).$$

Therefore

$$\min(1, d(x, z) + d(z, y)) = \min(1, d(x, z)) + \min(1, d(z, y)).$$

Case (b)
$$d(x, z) + d(z, y) \ge 1$$
. Then

$$\begin{aligned} \min(1,d(x,z)+d(z,y)) &= 1,\\ \min(1,d(x,z)) &= \begin{cases} 1 & \text{if } d(x,z) > 1\\ d(x,z) & \text{otherwise} \end{cases}\\ \min(1,d(z,y)) &= \begin{cases} 1 & \text{if } d(y,z) > 1\\ d(z,y) & \text{otherwise} \end{cases}. \end{aligned}$$

In either case, $\min(1, d(x, z) + d(z, y)) \le \min(1, d(x, z)) + \min(1, d(z, y))$.

(b) Show that d and \tilde{d} are equivalent.

Proof. d is not equivalent to \tilde{d} . For if it is true, then there are positive constant c_1 and c_2 such that $c_1d(x,y) \leq \tilde{d}(x,y) \leq c_2d(x,y)$ for all $x,y \in S$.

i. If d(x,y) < 1, then $\tilde{d}(x,y) = d(x,y)$ and thus

$$c_1 d(x, y) \le d(x, y) \le c_2 d(x, y)$$

$$c_1 \le 1 \le c_2.$$

ii. If d(x,y) > 1, then $\tilde{d}(x,y) = 1$ and thus

$$c_1 d(x, y) \le 1 \le c_2 d(x, y)$$

$$c_1 \le \frac{1}{d(x,y)}.$$

As d(x,y) gets larger, c_1 has no positive lower bound but zero. If the set S is bounded, then $d(x,y) \leq M$. Then $c_2 = 1$, $c_1 = \frac{1}{M}$ work and d is equivalent to \tilde{d} .

- 10. Let S be a set and d a function from $S \times S$ into \mathbb{R}^1 with the properties:
 - (i) d(x, y) = 0 if and only if x = y.
 - (ii) $d(x,z) \le d(x,y) + d(z,y)$ for all $x, y, z \in S$.

Show that d is a metric and hence that (S, d) is a metric space.

Proof. From (ii)

$$0 = d(x, x) \le d(x, y) + d(x, y)$$
$$2d(x, y) \ge 0.$$

Hence $d(x,y) \ge 0$ for all $x,y \in S$.

From (ii)

$$d(x, z) \le d(x, x) + d(z, x) = d(z, x)$$

 $d(z, x) \le d(z, z) + d(x, z) = d(x, z)$

Hence d(x, z) = d(z, x) for all $x, z \in S$.

Now $d(x, z) \le d(x, y) + d(z, y) = d(x, y) + d(y, z)$ from above.

Hence d is a metric on S.