Real Analysis
Test 3
Fall 2004

1. Suppose that f and g are positive and continuous on I = {z : a < z < b}. Prove that
there is a number ¢ € I such that

[ ) e =1 [ otw) ar

Proof. Suppose that f and g are positive and continuous on [a, b]. By Theorem 5.3(c),
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where m = min{f(z) : a« <z < b}, M = max{f(z) : a < x < b}. Since f is continous,
there exists @, zpr € [a,b] > m = f(xy,), M = f(xM). Hence
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By the Intermediate Value Theorem, there exists £ € [a, b] > fab f(z)g(z) dx/ f:g(z) dr <
f(€).

2. A function f defined on an interval [ is called a step-function if and only if I can be
subdivided into a finite number of subintervals I, I, ..., I,, such that f(z) = ¢; for all =
interior to I; where the ¢;, t = 1,2,...,n, are constants. Prove that every step-function is
integrable (whatever values f(x ) has at the endpoints of the I;) and find a formula for the
value of the integral.
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Proof. Let f(z) = fi(x)+ fa(x) 4+ - -+ fu(x), where f;(x) = ¢; defined on I;. By Theorem

5.3(b) b b
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/a_bf(x) dr < /;”“fl(x) dx + /;Qﬁ(x) dr + -+ /;if"(x) de (2)

Now on each [;, fi(x) is continuous and thus is integrable by Corollary 1, p. 106. Hence
the terms in the right hand side of (1) and (2) are equal. Thus fabf(x) dr = f:f(x) dx

and consequently f is integrable. Moreover, by the Mean Value rl:heorem (Theorem 5.6),
[0 filx) de = f(€)(x; — xi1) = cil(L;). Therefore, f; f(z) de =370 al(Lh). O



3. (a) Give an example of a function f such that |f| is integrable but f is not integrable.
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Then f(x) is not integrable while |f(x)] is.

(b) Give an example of a function f such that f? is integrable but f is not integrable.

1 1
Let f(z) = = on [1,00). Then f is not integrable, however f*(z) = — is.
x x
(c¢) Give an example of a metric space in which there exists > 0 such that the closure

of the open ball B(pg, ) is not equal to the closed ball B(po,r) = {p: d(p,po) < r}.

Let S = (—00,0] U [1,00). Then B(0,1) = [-1,0] U {1}. However, the closure of
B(0,1) = [~1,0].

(d) Give an example of two metrics on a set S that are not equivalent.

1 if
On R, let dy(z,y) = |z — |, dz.g) = { - 247V,
0 ifzx=y
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whether or not b is between a and ¢ so long as all three integrals exist.

4. Show that

Proof. On page 103 in the book, the author proved that
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There exists a subdivision A of [a, b] such that

We now show that

b
S(f,Ar) > / f(z) dx — %5.

Similarly, there exists a subdivision As of [b, ¢| such that

S(f,Ay) > /bcf(x) dx — %5.



Let A be the union of A; and A, on [a, ¢]. Then
/ (&) da > 5(7,2)

= 5(f, M) + 5(f, Ay)

/f dx—l—/f )dr —e.

Since € > 0 can be made arbitrarily small,

/acf(x) do = /abf(x) dx+/bcf(x) da. (4)

If f is integrable, we combine (3) and (4) to get the desired result. O

5. (a) Given the function f : z — 23 defined on I = {x : 0 < z < 1}. Suppost A is a
subdivision and A’ is a refinement of A which adds one more point. Show that

SH(f,AY < ST(f,A) and S_(f,A)) > S_(f,A).

!/ /
Proof. Let A = {xg,z1,..., 2 ..., 2.}, A = {xo, 21, ..., 21,2}, 2;,...,2,} where
x; is the new point. Then
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where M] = max f(z), M’ = max f(x). Notice that M; < M;, M;" < M;. Thus

x;_1<e<a] xl<e<z;
A) <Y MI(T;) = ST(f,A).
=1

Similarly, S(f, A") > S(f, A). O
(b) Give an example of the function f defined on I such that
ST(f,A) =S57(f,A) and  S_(f,A") = S_(f.4)

for the two subdivisions in Part (a).

Let f(z) =



(c) If f is a strictly increasing continuous function on I show that S*(f, A") < S*(f, A)
where A’ is any refinement of A.

Proof. This is similar to (a). O

6. Prove that
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(Hint: Use the Fundamental Theorem of Calculus)

1
Proof. Let f(x) = o] defined on [0, 1]. Then

) 1
/f dx—/ x_i_ldx:ln(x—i-l)}ozlnz

(By the Fundamental Theorem of Calculus.)

Now
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7. Suppose that f is continuous on an interval I = {z : a < x < b} with f(z) >0 on I. Let
S={(r,y) eR?*:a<x<b,0<y< f(r)} (Euclidean metric).

(a) Show that S is closed.
We will show that R? — S is open. Let (zg,y0) € S. Define [ = inf{d((xo, y0), (z,v)) :
(x,y) € S}. If yo < 0, then | = |yo|; and if yo > 0 and zy < a or xp > b, then either
l > a— x9 or > x, — b, respectively. The last case, a < x < b, yg > 0, [ > 0 for
otherwise yo = f(z0), a contradiction. In each case B((zo,yo),r) C R* =S for r = L.



(b) Find S” and S.

(¢) Find S© and prove the result.
SO ={(z,y):a<x<b 0<y<f(x)}
(d) Find 0S.

b}
<b, y=f(z)}

8. Let Ay, As,..., A,,... besetsin a metric space. Define B = U A;. Show that B D |JA4;
and give an example to show that B may not equal | J A;.

0S ={(z,0):a <z <b}U{(a,y):0<y < f(z), a<

<
U{(b,y):0<y < fz), a<az<blU{(z,y):a<z

x
<

Proof. Let x € U, A;. Then z € A; for some j. Then either z € A; or x € Al Itz € Ay,
then v € Uj_jA; = B C B. On the other hand if z € A}, then there ex1sts a sequence
{a,} in AJ, an 7& x, such that lim,,_,., a, = x. Since a,, € A], a, € B. Hence x € B’ C B.
Thus x € B. Hence B D U, A;. O

9. Let d be a metric on a nonempty set S. Let d(z,y) = min(1,d(z,y)), where z,y € S.

(a) Show that d is a metric on S.

Proof. J(x,y) = min(1, d(z,y))

i. d(z,y) is either equal 1 or d(z,%) and in both cases d(z,y) > 0. Now d(z,y) = 0
if and only if d(x,y) = 0 if and only if z = y.

) = min(1, d(z,y)) = min(1, d(y, z)) = d(y, z)

iii. d(z,y) = min(1,d(z,y)) < min(1, d(z, 2)+d(z,y)). We must show that min(1, d(x, z)+
d(z,y)) <min(1,d(z, 2)) + min(1, d(z,y))
Case (a) d(z,z) +d(z,y) < 1. Then d(z,2) < 1 and (z,y) < 1. Furthermore,

ii. d(z,y

min(1,d(z, z) + d(z,y))
min(1, d(z, 2))
min(1,d(z,y))

d(z,z) +d(z,v)

(,2)

d
d(2,y).

Therefore

min(1,d(z, z) + d(z,y)) = min(1,d(z, z)) + min(1, d(z,y)).



Case (b) d(x,2) +d(z,y) > 1. Then

min(1,d(x, z) +d(z,y)) =1,
min(1, d(z, 2)) :{ if d(z,z) > 1
d(x,z) otherwise
min(1,d(z,y)) :{ 1fdy,)>1.
otherwise
In either case, min(1,d(x, 2) + d(z,y)) < min(1,d(z, 2)) + min(1, d(z,y)).

(b) Show that d and d are equivalent.

Proof. d is not equivalent to gZ For if it is true, then there are positive constant c;
and ¢y such that c1d(z,y) < d(z,y) < cod(z,y) for all x,y € S.

i. If d(x,y) < 1, then d(z,y) = d(z,y) and thus
Cld(xa y) < d(l‘7 y) < C2d(x7y>
C1 S 1 S Co.

ii. If d(x,y) > 1, then d(x,y) = 1 and thus

cd(z,y) <1 < cod(z,y)

1
c1 < .
' d(x,y)
As d(x,y) gets larger, ¢; has no positive lower bound but zero. If the set S is
bounded, then d(x,y) < M. Then ¢; =1, ¢; = ﬁ work and d is equivalent to d.
[

10. Let S be a set and d a function from S x S into R with the properties:

(i) d(z,y) =0 if and only if z = y.
(i) d(z,2) < d(x,y)+d(zy) for all z,y,z € S.

Show that d is a metric and hence that (S, d) is a metric space.



Proof. From (ii)

0=d(z,x) <d(z,y) + d(z,y)
2d(zx,y) > 0.

Hence d(z,y) > 0 for all x,y € S.

From (ii)

Hence d(x,z) = d(z,z) for all x,z € S.
Now d(z, 2) < d(z,y) +d(2,y) = d(z,y) + d(y, 2) from above,

Hence d is a metric on S.



