Real Analysis

Test 3
Fall 2004

1. Suppose that f and g are positive and continuous on $I=\{x: a \leq x \leq b\}$. Prove that there is a number $\xi \in I$ such that

$$
\int_{a}^{b} f(x) g(x) d x=f(\xi) \int_{a}^{b} g(x) d x
$$

Proof. Suppose that f and g are positive and continuous on $[a, b]$. By Theorem 5.3(c),

$$
m \int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq M \int_{a}^{b} g(x) d x
$$

where $m=\min \{f(x): a \leq x \leq b\}, M=\max \{f(x): a \leq x \leq b\}$. Since f is continous, there exists $x_{m}, x_{M} \in[a, b] \ni m=f\left(x_{m}\right), M=f\left(x_{M}\right)$. Hence

$$
f\left(x_{m}\right) \leq \frac{\int_{a}^{b} f(x) g(x) d x}{\int_{a}^{b} g(x) d x} \leq f\left(x_{M}\right)
$$

By the Intermediate Value Theorem, there exists $\xi \in[a, b] \ni \int_{a}^{b} f(x) g(x) d x / \int_{a}^{b} g(x) d x \leq$ $f(\xi)$.
2. A function f defined on an interval I is called a step-function if and only if I can be subdivided into a finite number of subintervals $I_{1}, I_{2}, \ldots, I_{n}$ such that $f(x)=c_{i}$ for all x interior to I_{i} where the $c_{i}, i=1,2, \ldots, n$, are constants. Prove that every step-function is integrable (whatever values $f(x)$ has at the endpoints of the I_{i}) and find a formula for the value of the integral.

Proof. Let $f(x)=f_{1}(x)+f_{2}(x)+\cdots+f_{n}(x)$, where $f_{i}(x)=c_{i}$ defined on I_{i}. By Theorem 5.3(b)

$$
\begin{gather*}
\int_{a}^{b} f(x) d x \geq \int_{-}^{x_{1}} f_{1}(x) d x+\int_{-}^{x_{1}} f_{2}(x) d x+\cdots+\int_{-}^{b} f_{n-1}(x) d x \tag{1}\\
\int_{a}^{b} f(x) d x \leq \int_{a}^{x_{1}} f_{1}(x) d x+\bar{\int}_{x_{1}}^{x_{2}} f_{2}(x) d x+\cdots+\int_{x_{n}}^{b} f_{n}(x) d x \tag{2}
\end{gather*}
$$

Now on each $I_{i}, f_{i}(x)$ is continuous and thus is integrable by Corollary 1, p. 106. Hence the terms in the right hand side of (1) and (2) are equal. Thus $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(x) d x$ and consequently f is integrable. Moreover, by the Mean Value Theorem (Theorem 5.6), $\int_{x_{i-1}}^{x_{i}} f_{i}(x) d x=f(\xi)\left(x_{i}-x_{i-1}\right)=c_{i} l\left(I_{i}\right)$. Therefore, $\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} c_{i} l\left(I_{i}\right)$.
3. (a) Give an example of a function f such that $|f|$ is integrable but f is not integrable.

$$
\text { Let } \quad f(x)= \begin{cases}1 & \text { if } x \in Q \\ -1 & \text { if } x \notin Q\end{cases}
$$

Then $f(x)$ is not integrable while $|f(x)|$ is.
(b) Give an example of a function f such that f^{2} is integrable but f is not integrable. Let $f(x)=\frac{1}{x}$ on $[1, \infty)$. Then f is not integrable, however $f^{2}(x)=\frac{1}{x^{2}}$ is.
(c) Give an example of a metric space in which there exists $r>0$ such that the closure of the open ball $B\left(p_{0}, r\right)$ is not equal to the closed ball $\overline{B\left(p_{0}, r\right)}=\left\{p: d\left(p, p_{0}\right) \leq r\right\}$. Let $S=(-\infty, 0] \cup[1, \infty)$. Then $\overline{B(0,1)}=[-1,0] \cup\{1\}$. However, the closure of $B(0,1)=[-1,0]$.
(d) Give an example of two metrics on a set S that are not equivalent.

On \mathbb{R}^{1}, let $d_{1}(x, y)=|x-y|, d(x, y)=\left\{\begin{array}{ll}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{array}\right.$.
4. Show that

$$
\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x
$$

whether or not b is between a and c so long as all three integrals exist.
Proof. On page 103 in the book, the author proved that

$$
\begin{equation*}
\int_{a}^{c} f(x) d x=\bar{\int}_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x \tag{3}
\end{equation*}
$$

We now show that

$$
\int_{-}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{-}^{c} f(x) d x
$$

There exists a subdivision Δ_{1} of $[a, b]$ such that

$$
\bar{S}\left(f, \Delta_{1}\right)>\int_{a}^{b} f(x) d x-\frac{1}{2} \varepsilon
$$

Similarly, there exists a subdivision Δ_{2} of $[b, c]$ such that

$$
\bar{S}\left(f, \Delta_{2}\right)>\int_{-}^{c} f(x) d x-\frac{1}{2} \varepsilon
$$

Let Δ be the union of Δ_{1} and Δ_{2} on $[a, c]$. Then

$$
\begin{aligned}
\int_{a}^{c} f(x) d x & \geq \bar{S}(f, \Delta) \\
& =\bar{S}\left(f, \Delta_{1}\right)+\bar{S}\left(f, \Delta_{2}\right) \\
& >\int_{-}^{b} f(x) d x+\int_{-}^{c} f(x) d x-\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ can be made arbitrarily small,

$$
\begin{equation*}
\int_{-}^{c} f(x) d x=\int_{-}^{b} f(x) d x+\int_{-}^{b} f(x) d x \tag{4}
\end{equation*}
$$

If f is integrable, we combine (3) and (4) to get the desired result.
5. (a) Given the function $f: x \rightarrow x^{3}$ defined on $I=\{x: 0 \leq x \leq 1\}$. Suppost Δ is a subdivision and Δ^{\prime} is a refinement of Δ which adds one more point. Show that

$$
S^{+}\left(f, \Delta^{\prime}\right)<S^{+}(f, \Delta) \quad \text { and } \quad S_{-}\left(f, \Delta^{\prime}\right)>S_{-}(f, \Delta)
$$

Proof. Let $\Delta=\left\{x_{0}, x_{1}, \ldots, x_{i}, \ldots, x_{n}\right\}, \Delta^{\prime}=\left\{x_{0}, x_{1}, \ldots, x_{i-1}, x_{i}^{\prime}, x_{i}, \ldots, x_{n}\right\}$ where x_{i}^{\prime} is the new point. Then

$$
\begin{aligned}
S^{+}\left(f, \Delta^{\prime}\right)= & \sum_{j=1}^{i-1} M_{j} l\left(J_{j}\right)+\sum_{j=i+1}^{n} M_{j} l\left(I_{i}\right) \\
& +M_{i}^{\prime}\left(x_{i}^{\prime}-x_{i}\right)+M_{i}^{\prime \prime}\left(x_{1}-x_{i}^{\prime}\right)
\end{aligned}
$$

where $M_{i}^{\prime}=\max _{x_{i-1} \leq x \leq x_{i}^{\prime}} f(x), M_{i}^{\prime \prime}=\max _{x_{i}^{\prime} \leq x \leq x_{i}} f(x)$. Notice that $M_{i}^{\prime} \leq M_{i}, M_{i}^{\prime \prime} \leq M_{i}$. Thus

$$
S^{+}\left(f, \Delta^{\prime}\right) \leq \sum_{j=1}^{n} M_{j} l\left(J_{j}\right)=S^{+}\left(f, \Delta^{\prime}\right)
$$

Similarly, $\underset{-}{S}\left(f, \Delta^{\prime}\right)>\underset{-}{S}(f, \Delta)$.
(b) Give an example of the function f defined on I such that

$$
S^{+}\left(f, \Delta^{\prime}\right)=S^{+}(f, \Delta) \quad \text { and } \quad S_{-}\left(f, \Delta^{\prime}\right)=S_{-}(f, \Delta)
$$

for the two subdivisions in Part (a).
Let $f(x)=c$.
(c) If f is a strictly increasing continuous function on I show that $S^{+}\left(f, \Delta^{\prime}\right)<S^{+}(f, \Delta)$ where Δ^{\prime} is any refinement of Δ.

Proof. This is similar to (a).
6. Prove that

$$
\lim \left[\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}\right]=\ln 2
$$

(Hint: Use the Fundamental Theorem of Calculus)
Proof. Let $f(x)=\frac{1}{x+1}$ defined on $[0,1]$. Then

$$
\left.\int_{0}^{1} f(x) d x=\int_{0}^{1} \frac{1}{x+1} d x=\ln (x+1)\right]_{0}^{1}=\ln 2
$$

(By the Fundamental Theorem of Calculus.)
Now

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x, \quad x_{i}=\frac{2}{n}, \quad \Delta x=\frac{1}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{\frac{i}{n}+1} \cdot \frac{1}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{i+n} .
\end{aligned}
$$

Therefore

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{i+n}=\ln 2
$$

7. Suppose that f is continuous on an interval $I=\{x: a \leq x \leq b\}$ with $f(x)>0$ on I. Let $S=\left\{(x, y) \in \mathbb{R}^{2}: a \leq x \leq b, 0 \leq y \leq f(x)\right\}$ (Euclidean metric).
(a) Show that S is closed.

We will show that $\mathbb{R}^{2}-S$ is open. Let $\left(x_{0}, y_{0}\right) \notin S$. Define $l=\inf \left\{d\left(\left(x_{0}, y_{0}\right),(x, y)\right)\right.$: $(x, y) \in S\}$. If $y_{0}<0$, then $l=\left|y_{0}\right|$; and if $y_{0}>0$ and $x_{0}<a$ or $x_{0}>b$, then either $l \geq a-x_{0}$ or $\geq x_{b}-b$, respectively. The last case, $a \leq x \leq b, y_{0}>0, l>0$ for otherwise $y_{0}=f\left(x_{0}\right)$, a contradiction. In each case $B\left(\left(x_{0}, y_{0}\right), r\right) \subset \mathbb{R}^{2}-S$ for $r=\frac{l}{2}$.
(b) Find S^{\prime} and \bar{S}.

$$
S^{\prime}=S, \quad \bar{S}=S
$$

(c) Find $S^{(0)}$ and prove the result.

$$
S^{0}=\{(x, y): a<x<b, \quad 0<y<f(x)\}
$$

(d) Find ∂S.

$$
\begin{aligned}
\partial S= & \{(x, 0): a \leq x \leq b\} \cup\{(a, y): 0 \leq y \leq f(x), \quad a \leq x \leq b\} \\
& \cup\{(b, y): 0 \leq y \leq f(x), \quad a \leq x \leq b\} \cup\{(x, y): a \leq x \leq b, \quad y=f(x)\}
\end{aligned}
$$

8. Let $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ be sets in a metric space. Define $B=\bigcup A_{i}$. Show that $\bar{B} \supset \bigcup \bar{A}_{i}$ and give an example to show that \bar{B} may not equal $\bigcup \bar{A}_{i}$.

Proof. Let $x \in \cup_{i=1}^{n} \bar{A}_{i}$. Then $x \in \bar{A}_{j}$ for some j. Then either $x \in A_{j}$ or $x \in A_{j}^{\prime}$. If $x \in A_{j}$, then $x \in \cup_{j=1}^{n} A_{j}=B \subset \bar{B}$. On the other hand if $x \in A_{j}^{\prime}$, then there exists a sequence $\left\{a_{n}\right\}$ in $A_{j}, a_{n} \neq x$, such that $\lim _{n \rightarrow \infty} a_{n}=x$. Since $a_{n} \in A_{j}, a_{n} \in B$. Hence $x \in B^{\prime} \subset \bar{B}$. Thus $x \in \bar{B}$. Hence $\bar{B} \supset \cup_{i=1}^{n} \bar{A}_{i}$.
9. Let d be a metric on a nonempty set S. Let $\tilde{d}(x, y)=\min (1, d(x, y))$, where $x, y \in S$.
(a) Show that \tilde{d} is a metric on S.

Proof. $\bar{d}(x, y)=\min (1, d(x, y))$
i. $\bar{d}(x, y)$ is either equal 1 or $d(x, y)$ and in both cases $\bar{d}(x, y) \geq 0$. Now $\bar{d}(x, y)=0$ if and only if $d(x, y)=0$ if and only if $x=y$.
ii. $\bar{d}(x, y)=\min (1, d(x, y))=\min (1, d(y, x))=\bar{d}(y, x)$
iii. $\bar{d}(x, y)=\min (1, d(x, y)) \leq \min (1, d(x, z)+d(z, y))$. We must show that $\min (1, d(x, z)+$ $d(z, y)) \leq \min (1, d(x, z))+\min (1, d(z, y))$
$\underline{\text { Case (a) }} d(x, z)+d(z, y)<1$. Then $d(x, z)<1$ and $(z, y)<1$. Furthermore,

$$
\begin{aligned}
\min (1, d(x, z)+d(z, y)) & =d(x, z)+d(z, y) \\
\min (1, d(x, z)) & =d(x, z) \\
\min (1, d(z, y)) & =d(z, y) .
\end{aligned}
$$

Therefore

$$
\min (1, d(x, z)+d(z, y))=\min (1, d(x, z))+\min (1, d(z, y))
$$

$\underline{\text { Case (b) }} d(x, z)+d(z, y) \geq 1$. Then

$$
\begin{aligned}
\min (1, d(x, z)+d(z, y)) & =1, \\
\min (1, d(x, z)) & = \begin{cases}1 & \text { if } d(x, z)>1 \\
d(x, z) & \text { otherwise }\end{cases} \\
\min (1, d(z, y)) & = \begin{cases}1 & \text { if } d(y, z)>1 \\
d(z, y) & \text { otherwise }\end{cases}
\end{aligned}
$$

In either case, $\min (1, d(x, z)+d(z, y)) \leq \min (1, d(x, z))+\min (1, d(z, y))$.
(b) Show that d and \tilde{d} are equivalent.

Proof. d is not equivalent to \tilde{d}. For if it is true, then there are positive constant c_{1} and c_{2} such that $c_{1} d(x, y) \leq \tilde{d}(x, y) \leq c_{2} d(x, y)$ for all $x, y \in S$.
i. If $d(x, y)<1$, then $\tilde{d}(x, y)=d(x, y)$ and thus

$$
\begin{gathered}
c_{1} d(x, y) \leq d(x, y) \leq c_{2} d(x, y) \\
c_{1} \leq 1 \leq c_{2}
\end{gathered}
$$

ii. If $d(x, y)>1$, then $\tilde{d}(x, y)=1$ and thus

$$
\begin{aligned}
c_{1} d(x, y) & \leq 1 \leq c_{2} d(x, y) \\
c_{1} & \leq \frac{1}{d(x, y)}
\end{aligned}
$$

As $d(x, y)$ gets larger, c_{1} has no positive lower bound but zero. If the set S is bounded, then $d(x, y) \leq M$. Then $c_{2}=1, c_{1}=\frac{1}{M}$ work and d is equivalent to \tilde{d}.
10. Let S be a set and d a function from $S \times S$ into \mathbb{R}^{1} with the properties:
(i) $d(x, y)=0$ if and only if $x=y$.
(ii) $d(x, z) \leq d(x, y)+d(z, y)$ for all $x, y, z \in S$.

Show that d is a metric and hence that (S, d) is a metric space.

Proof. From (ii)

$$
\begin{aligned}
0=d(x, x) & \leq d(x, y)+d(x, y) \\
2 d(x, y) & \geq 0 .
\end{aligned}
$$

Hence $d(x, y) \geq 0$ for all $x, y \in S$.
From (ii)

$$
\begin{aligned}
& d(x, z) \leq d(x, x)+d(z, x)=d(z, x) \\
& d(z, x) \leq d(z, z)+d(x, z)=d(x, z)
\end{aligned}
$$

Hence $d(x, z)=d(z, x)$ for all $x, z \in S$.
Now $d(x, z) \leq d(x, y)+d(z, y)=d(x, y)+d(y, z)$ from above.
Hence d is a metric on S.

