
Real Analysis

Test 3

Fall 2004

1. Suppose that f and g are positive and continuous on I = {x : a ≤ x ≤ b}. Prove that
there is a number ξ ∈ I such that

∫ b

a

f(x)g(x) dx = f(ξ)

∫ b

a

g(x) dx.

Proof. Suppose that f and g are positive and continuous on [a, b]. By Theorem 5.3(c),

m

∫ b

a

g(x) dx ≤

∫ b

a

f(x)g(x) dx ≤ M

∫ b

a

g(x) dx

where m = min{f(x) : a ≤ x ≤ b}, M = max{f(x) : a ≤ x ≤ b}. Since f is continous,
there exists xm, xM ∈ [a, b] 3 m = f(xm), M = f(xM). Hence

f(xm) ≤

∫ b

a
f(x)g(x) dx
∫ b

a
g(x) dx

≤ f(xM).

By the Intermediate Value Theorem, there exists ξ ∈ [a, b] 3
∫ b

a
f(x)g(x) dx/

∫ b

a
g(x) dx ≤

f(ξ).

2. A function f defined on an interval I is called a step-function if and only if I can be
subdivided into a finite number of subintervals I1, I2, . . . , In such that f(x) = ci for all x
interior to Ii where the ci, i = 1, 2, . . . , n, are constants. Prove that every step-function is
integrable (whatever values f(x) has at the endpoints of the Ii) and find a formula for the
value of the integral.

Proof. Let f(x) = f1(x)+ f2(x)+ · · ·+ fn(x), where fi(x) = ci defined on Ii. By Theorem
5.3(b)

∫ b

a
−

f(x) dx ≥

∫ x1

a
−

f1(x) dx +

∫ x2

x1

−

f2(x) dx + · · ·+

∫ b

xn−1

−

fn(x) dx (1)

−
∫ b

a

f(x) dx ≤

−
∫ x1

a

f1(x) dx +

−
∫ x2

x1

f2(x) dx + · · ·+

−
∫ b

xn

fn(x) dx (2)

Now on each Ii, fi(x) is continuous and thus is integrable by Corollary 1, p. 106. Hence

the terms in the right hand side of (1) and (2) are equal. Thus
∫ b

a
−

f(x) dx =
−
∫ b

a
f(x) dx

and consequently f is integrable. Moreover, by the Mean Value Theorem (Theorem 5.6),
∫ xi

xi−1

fi(x) dx = f(ξ)(xi − xi−1) = cil(Ii). Therefore,
∫ b

a
f(x) dx =

∑n

i=1 cil(Ii).



3. (a) Give an example of a function f such that |f | is integrable but f is not integrable.

Let f(x) =

{

1 if x ∈ Q

−1 if x 6∈ Q

Then f(x) is not integrable while |f(x)| is.

(b) Give an example of a function f such that f 2 is integrable but f is not integrable.

Let f(x) =
1

x
on [1,∞). Then f is not integrable, however f 2(x) =

1

x2
is.

(c) Give an example of a metric space in which there exists r > 0 such that the closure
of the open ball B(p0, r) is not equal to the closed ball B(p0, r) = {p : d(p, p0) ≤ r}.

Let S = (−∞, 0] ∪ [1,∞). Then B(0, 1) = [−1, 0] ∪ {1}. However, the closure of
B(0, 1) = [−1, 0].

(d) Give an example of two metrics on a set S that are not equivalent.

On R
1, let d1(x, y) = |x − y|, d(x, y) =

{

1 if x 6= y

0 if x = y
.

4. Show that
∫ c

a

f(x) dx =

∫ b

a

f(x) dx +

∫ c

b

f(x) dx

whether or not b is between a and c so long as all three integrals exist.

Proof. On page 103 in the book, the author proved that

−
∫ c

a

f(x) dx =

−
∫ b

a

f(x) dx +

−
∫ c

b

f(x) dx. (3)

We now show that
∫ c

a
−

f(x) dx =

∫ b

a
−

f(x) dx +

∫ c

b
−

f(x) dx.

There exists a subdivision ∆1 of [a, b] such that

S̄(f, ∆1) >

∫ b

a
−

f(x) dx −
1

2
ε.

Similarly, there exists a subdivision ∆2 of [b, c] such that

S̄(f, ∆2) >

∫ c

b
−

f(x) dx −
1

2
ε.



Let ∆ be the union of ∆1 and ∆2 on [a, c]. Then
∫ c

a
−

f(x) dx ≥ S̄(f, ∆)

= S̄(f, ∆1) + S̄(f, ∆2)

>

∫ b

a
−

f(x) dx +

∫ c

b
−

f(x) dx − ε.

Since ε > 0 can be made arbitrarily small,

∫ c

a
−

f(x) dx =

∫ b

a
−

f(x) dx +

∫ c

b
−

f(x) dx. (4)

If f is integrable, we combine (3) and (4) to get the desired result.

5. (a) Given the function f : x → x3 defined on I = {x : 0 ≤ x ≤ 1}. Suppost ∆ is a
subdivision and ∆′ is a refinement of ∆ which adds one more point. Show that

S+(f, ∆′) < S+(f, ∆) and S−(f, ∆′) > S−(f, ∆).

Proof. Let ∆ = {x0, x1, . . . , xi, . . . , xn}, ∆′ = {x0, x1, . . . , xi−1, x
′
i, xi, . . . , xn} where

x′
i is the new point. Then

S+(f, ∆′) =
i−1
∑

j=1

Mjl(Jj) +
n

∑

j=i+1

Mjl(Ii)

+ M ′
i(x

′
i − xi) + M ′′

i (x1 − x′
i)

where M ′
i = max

xi−1≤x≤x′

i

f(x), M ′′
i = max

x′

i
≤x≤xi

f(x). Notice that M ′
i ≤ Mi, M ′′

i ≤ Mi. Thus

S+(f, ∆′) ≤
n

∑

j=1

Mjl(Jj) = S+(f, ∆′).

Similarly, S
−
(f, ∆′) > S

−
(f, ∆).

(b) Give an example of the function f defined on I such that

S+(f, ∆′) = S+(f, ∆) and S−(f, ∆′) = S−(f, ∆)

for the two subdivisions in Part (a).

Let f(x) = c.



(c) If f is a strictly increasing continuous function on I show that S+(f, ∆′) < S+(f, ∆)
where ∆′ is any refinement of ∆.

Proof. This is similar to (a).

6. Prove that

lim

[

1

n + 1
+

1

n + 2
+ · · · +

1

n + n

]

= ln 2.

(Hint: Use the Fundamental Theorem of Calculus)

Proof. Let f(x) =
1

x + 1
defined on [0, 1]. Then

∫ 1

0

f(x) dx =

∫ 1

0

1

x + 1
dx = ln(x + 1)

]1

0

= ln 2.

(By the Fundamental Theorem of Calculus.)

Now

∫ 1

0

f(x) dx = lim
n→∞

n
∑

i=1

f(xi)∆x, xi =
2

n
, ∆x =

1

n

= lim
n→∞

n
∑

i=1

1
i
n

+ 1
·
1

n

= lim
n→∞

n
∑

i=1

1

i + n
.

Therefore

lim
n→∞

n
∑

i=1

1

i + n
= ln 2.

7. Suppose that f is continuous on an interval I = {x : a ≤ x ≤ b} with f(x) > 0 on I. Let
S = {(x, y) ∈ R

2 : a ≤ x ≤ b, 0 ≤ y ≤ f(x)} (Euclidean metric).

(a) Show that S is closed.

We will show that R
2 −S is open. Let (x0, y0) 6∈ S. Define l = inf{d((x0, y0), (x, y)) :

(x, y) ∈ S}. If y0 < 0, then l = |y0|; and if y0 > 0 and x0 < a or x0 > b, then either
l ≥ a − x0 or ≥ xb − b, respectively. The last case, a ≤ x ≤ b, y0 > 0, l > 0 for
otherwise y0 = f(x0), a contradiction. In each case B((x0, y0), r) ⊂ R

2 −S for r = l
2
.



(b) Find S ′ and S̄.
S ′ = S, S̄ = S

(c) Find S(0) and prove the result.

S0 = {(x, y) : a < x < b, 0 < y < f(x)}

(d) Find ∂S.

∂S = {(x, 0) : a ≤ x ≤ b} ∪ {(a, y) : 0 ≤ y ≤ f(x), a ≤ x ≤ b}

∪ {(b, y) : 0 ≤ y ≤ f(x), a ≤ x ≤ b} ∪ {(x, y) : a ≤ x ≤ b, y = f(x)}

8. Let A1, A2, . . . , An, . . . be sets in a metric space. Define B =
⋃

Ai. Show that B̄ ⊃
⋃

Āi

and give an example to show that B̄ may not equal
⋃

Āi.

Proof. Let x ∈ ∪n
i=1Āi. Then x ∈ Āj for some j. Then either x ∈ Aj or x ∈ A′

j. If x ∈ Aj,
then x ∈ ∪n

j=1Aj = B ⊂ B̄. On the other hand if x ∈ A′
j, then there exists a sequence

{an} in Aj, an 6= x, such that limn→∞ an = x. Since an ∈ Aj, an ∈ B. Hence x ∈ B′ ⊂ B̄.
Thus x ∈ B̄. Hence B̄ ⊃ ∪n

i=1Āi.

9. Let d be a metric on a nonempty set S. Let d̃(x, y) = min(1, d(x, y)), where x, y ∈ S.

(a) Show that d̃ is a metric on S.

Proof. d̄(x, y) = min(1, d(x, y))

i. d̄(x, y) is either equal 1 or d(x, y) and in both cases d̄(x, y) ≥ 0. Now d̄(x, y) = 0
if and only if d(x, y) = 0 if and only if x = y.

ii. d̄(x, y) = min(1, d(x, y)) = min(1, d(y, x)) = d̄(y, x)

iii. d̄(x, y) = min(1, d(x, y)) ≤ min(1, d(x, z)+d(z, y)). We must show that min(1, d(x, z)+
d(z, y)) ≤ min(1, d(x, z)) + min(1, d(z, y))
Case (a) d(x, z) + d(z, y) < 1. Then d(x, z) < 1 and (z, y) < 1. Furthermore,

min(1, d(x, z) + d(z, y)) = d(x, z) + d(z, y)

min(1, d(x, z)) = d(x, z)

min(1, d(z, y)) = d(z, y).

Therefore

min(1, d(x, z) + d(z, y)) = min(1, d(x, z)) + min(1, d(z, y)).



Case (b) d(x, z) + d(z, y) ≥ 1. Then

min(1, d(x, z) + d(z, y)) = 1,

min(1, d(x, z)) =

{

1 if d(x, z) > 1

d(x, z) otherwise

min(1, d(z, y)) =

{

1 if d(y, z) > 1

d(z, y) otherwise
.

In either case, min(1, d(x, z) + d(z, y)) ≤ min(1, d(x, z)) + min(1, d(z, y)).

(b) Show that d and d̃ are equivalent.

Proof. d is not equivalent to d̃. For if it is true, then there are positive constant c1

and c2 such that c1d(x, y) ≤ d̃(x, y) ≤ c2d(x, y) for all x, y ∈ S.

i. If d(x, y) < 1, then d̃(x, y) = d(x, y) and thus

c1d(x, y) ≤ d(x, y) ≤ c2d(x, y)

c1 ≤ 1 ≤ c2.

ii. If d(x, y) > 1, then d̃(x, y) = 1 and thus

c1d(x, y) ≤ 1 ≤ c2d(x, y)

c1 ≤
1

d(x, y)
.

As d(x, y) gets larger, c1 has no positive lower bound but zero. If the set S is
bounded, then d(x, y) ≤ M . Then c2 = 1, c1 = 1

M
work and d is equivalent to d̃.

10. Let S be a set and d a function from S × S into R
1 with the properties:

(i) d(x, y) = 0 if and only if x = y.

(ii) d(x, z) ≤ d(x, y) + d(z, y) for all x, y, z ∈ S.

Show that d is a metric and hence that (S, d) is a metric space.



Proof. From (ii)

0 = d(x, x) ≤ d(x, y) + d(x, y)

2d(x, y) ≥ 0.

Hence d(x, y) ≥ 0 for all x, y ∈ S.

From (ii)

d(x, z) ≤ d(x, x) + d(z, x) = d(z, x)

d(z, x) ≤ d(z, z) + d(x, z) = d(x, z)

Hence d(x, z) = d(z, x) for all x, z ∈ S.

Now d(x, z) ≤ d(x, y) + d(z, y) = d(x, y) + d(y, z) from above.

Hence d is a metric on S.


