Name: \qquad

Math 4364: Theory of Complex Variables
 Take Home Test 1
 Fall 2003

1. (a) Find all values of z for which $z^{5}=-32$.
(b) Locate these values in the complex plane.
2. (a) Prove that $\eta=e^{-x}(x \sin y-y \cos y)$ is harmonic.
(b) Find v such that $f(z)=u+i v$ is analytic.
3. (a) Find the image of the semi-infinite strip $x \geq 0,0 \leq y \leq \pi$ under the transformation $w=\exp z$, and label corresponding portions of the boundaries.
(b) Sketch the region onto which the sector $r \leq 1,0 \leq \theta \leq \frac{\pi}{4}$ is mapped by the transformation $w=z^{3}$.
4. Suppose that $f\left(z_{0}\right)=g\left(z_{0}\right)=0$ and that $f^{\prime}\left(z_{0}\right)$ and $g^{\prime}\left(z_{0}\right)$ exists, where $g^{\prime}\left(z_{0}\right) \neq 0$. Show that

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}
$$

5. (a) Show that if v and w are harmonic conjugates to u in a domain D, then $v(x, y)$ and $w(x, y)$ can differ at most by an additive constant.
(b) Let $f(z)=u+i v$ be differentiable at a nonzero point $z_{0}=r_{0} \exp \left(i \theta_{0}\right)$. Show that

$$
f^{\prime}\left(z_{0}\right)=\frac{-i}{z_{o}}\left(u_{\theta}+i v_{\theta}\right) .
$$

