
Research Experiences for Undergraduates in Mathematics

1 Past REU Summer Programs

(I) Results from Current REU-NSF Grant.

Project Director: Saber N. Elaydi
Title: Undergraduate Research Experience in Mathematics
Award: DMS-9619837, Award amount: $72,512
Award period: May 15, 1997 - April 30, 2000

In the last three years, application packets were mailed to approximately 200 colleges and uni-
versities primarily in Texas, Louisiana, Oklahoma, Arkansas, and New Mexico. A limited number
of packets were distributed to selected institutions of high quality outside this area. A web site
was also constructed allowing students to directly download the application and reference forms.
Participants for each session were selected using the criteria from the proposal: scholastic record,
interest in mathematics, and motivation level. In 1997 these students were selected

Noelle Dexheimer Texas A&M University
Kala Schrager University of Oregon
John May University of Oregon
Aaron Heap Texas Christian University
Phillip Lynch University of Washington

(i) Noelle Dexheimer worked with Dr. Saphire on some problems in the area of linkage analysis.
Linkage analysis is the study of frequency with which a pair of genes from one grandparent
recombine with the same pair of genes from another grandparent in a grandchild.

The linkage fraction. The linkage fraction, ∅, is defined as the probability that two given genes
recombine. The method of maximum likelihood estimate (MLE) is used to estimate ∅. Noelle
was able to show that in the case of a phase-known double backcross mating, (1) the bias in
the MLE of ∅ does not change as the sample size increases from an even number to the next
odd number; and (2) if the MLE of ∅ is non-zero for a particular odd sample size, then by
increasing the sample size by one, the magnitude of the bias strictly decreases. In addition,
she wrote several programs for computing and graphing the bias.

(ii) Kala Schrager worked with Dr. Chapman in a problem related to minimal systems. A nonempty
finite sequence S = {g1, . . . , gk} of not necessarily distinct elements of G is called (1) a system

of G if
k∑

i=1

gi = 0, (2) a minimal system of G if S contains no proper subsystems. Let U(G)

represent the set of minimal systems of G and set S1 ∼ S2 in G if there exists an automorphism
ϕ of G such that S1 = ϕ(S2). Let N(G) denote the number of equivalence classes in U(G)
under ∼ . Kala was able to prove the following theorem.

Theorem Let G =
k∑

i=1

Z2 be an elementary 2-group. Then N(G) = t + 1.

Her work led to the following interesting conjecture.

Conjecture
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Let G =
t∑

i=1

Z3 be an elementary 3-group. Then N(G) = t +
t∑

i=2

2i.

Using Mathematica, Ms. Schrager computed N(G) for various finite Abelian groups.

(iii) John May, Aaron Heap, and Phillip Lynch worked with Drs. Elaydi and Hasfura. They investi-
gated the dynamical behavior of the family of tent maps Tw(x) = w(0.5−|x−0.5|), for w > 0.
The students determined completely the nature of the sequence {wk}, where wk is the infi-
mum of the values of w for which the corresponding map has points of prime period k. Another
startling result is the discovery of the existence of transitive attractors for some of these one-
dimensional maps. Most of the results were first conjectured on the basis of vast empirical
evidence obtained using Maple.

A joint paper co-authored by Dr. Hasfura and Phillip Lynch was later submitted for publication
in a refereed mathematical journal.

Student activities in the Summer of 1998.

The following students were selected in the summer of 1998:

Michael McQuistan University of Nebraska
Beck Cantonwine Hanover College, Indiana
Jason Heller Elizabethotown College, Pennsylvania
Jeremy Herr University of Oklahoma
Michael McQuistan University of Nebraska
Natalie Rooney University of Texas

(i) Becky Cantonwine and Jason Heller worked with Dr. Hasfura. They considered the problem of
characterizing periodic orbits of the family of trapezoidal maps

fma(x)

 mx, 0 ≤ x ≤ a
ma, a < x ≤ 2− a
m(2− x), 2− a < x ≤ 2

The students succeeded in proving parts of an interesting combinatorial description of the set
of allowed types of periodic orbits.

(ii) Michael McQuistan worked under the supervision of Dr. Bailey who joined the REU team
replacing Drs. Elaydi and Saphire. He focused on problems in Real Analysis and obtained the
following result.

Theorem If f(y)− f(x) = (y − x)g(x) + (y − x)2h(y + 2x), where h is continuous, then f is a
cubic polynomial.

It is still an open question whether or not this result holds without the continuity of h.

(iii) Jeremy Herr and Natalie Rooney worked under the supervision of Dr. Chapman on problems
involving factorization of elements into irreducible in monoids. Let Z be the set of integers
and N the set of nonnegative integers. The basis of the project was to study the behavior of
factorizations of elements into sums of irreducible elements in additive monoids of the type

M(a1, . . . , an) = {x1, . . . , xn} ∈ Nn :
n∑

j=1

ajxj = 0},

where a1, . . . , an ∈ Z. The students successfully found the number of nonassociated irreducible
factorizations of x ∈ M(a1, . . . , an) for all x ∈ M, for the monoids

M(1, 1,−1,−1), M(1, 1,−2), M(1, 1, 1,−2, ), M(1, 1, 1, . . . , 1,−2).
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Moreover, they found a general formula for counting the number of nonassociated factorizations
of an element into irreducible elements in an algebraic number ring of class number 2.

A joint paper written by Herr, Rooney and Dr. Chapman has been submitted for publication
in a refereed mathematics journal.

Students activities in the summer of 1999

The following students were selected in the summer of 1999.

Matthew Westerhoff University of Texas at San Antonio
Nick Neumann University of Texas A& M University
Bryant Mathews Howard University
Steven Steincke University of Arizona
Vic DeLorenzo Grove City College
Holly Swisher University of Oregon

(i) Bryant Mathews and Nick Neumann worked under the supervision of Dr. Elaydi. They consid-
ered a discrete model of two competing species with planting of the form(

x1(n + 1)
x2(n + 1)

)
=

(
x1(ep1−q1(x1+x2)) + α

x2e
p2−q2(x1+x2)

)
with parameters p1, q1, p2, q2 > 0 and planting coefficients α ∈ (0, 1). The students first inves-
tigated the question of persistence of the two species. They showed that, with the possible
exception of the case when (p1 − ln(1 − α))/q1 = p2/q2 and p1 ≤ 2/(1 − α) + ln(1 − α), one
of the species goes extinct. The second question they considered is the existence of a globally
attracting 2-cycle. They proved the following result.

Theorem. The system has a 2-cycle if and only if p1/q2 > (p1 − ln(1 − α)/q1. Moreover, if
p1 = 1.5, q1 = q2 = 1, and α = 0.5, then the 2-cycle is asymptotically stable for 1.5 + ln 2 ≤
p2 ≤ 3.411822071.

Partial results on the global attractivity of the 2-cycle were obtained. Dr. Elaydi is still in
communication with the students and more progress has been made in recent weeks. These
results will be written in a paper to be submitted publication.

(ii) Steven Steincke and Matthew Westerhoff worked under the supervision of Dr. Hasfura. They
investigated the dynamics of the following family of maps:

fab(x) =


(

1−a
b

)
x, 0 ≤ x ≤ a

x−1
1−2b + b

1−2b , a < x ≤ 1− a
1−a

b (x− 1) + 1, 1− a < x ≤ 1,

where 0 ≤ a ≤ 1 and 0 < b < 1/2. The students showed that (1) if a ≤ 1/2, then fab is chaotic
on [0,1], (2) if 1/2 < a < 1− a, then fab has a global attractor on ([0, a] ⊂ [1− a, 1]) on which
it is chaotic. A remarkable dichotomy concerning the existence of certain periodic orbits was
obtained.

Theorem. If 1/4 < b < 1/2, there exist numbers ak increasing to (1-b) such that the map fab

has a periodic orbit of length 2(2k + 1) if and only if a < ak. On the other hand, if 0 < b < 1.
and 0 < a < 1− b, then the map fa,b has periodic orbits of length six.

Partial results on topological conjugacy between family members were established, for example
between f0,1/3 and f0,2/5. Steven Steincke has continued to make more progress on the project
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after leaving San Antonio and will incorporate his new findings in a final report to be sent to
Dr. Hasfura shortly.

(iii) During the summer of 1999, Vic DeLorenzo and Holly Swisher worked under the direction
of Professor Scott Chapman at Trinity University’s Mathematics REU Program. Their work
centered on the asymptotic behavior of irreducible factorizations in block monoids. Let G be
an Abelian group written additively and let

F(G) = {
∏
g∈G

gvg | vg ∈ Z+ ∪ {0}}

be the multiplicative free Abelian monoid with basis G. Given F ∈ F(G), we write F =∏
g∈G gvg(F ).

Definition 1. The block monoid over G is

B(G) = {B ∈ F(G) |
∑
g∈G

vg(B)g = 0}.

The elements of B(G) are called blocks. Note that the empty block acts as identity in B(G).
If G is a finite Abelian group, then B(G) is an atomic monoid (each nonempty block can be
written as a product of irreducible blocks). If B(G) is a block monoid and x a block in B(G),
then consider the following functions:

η(x) = the number of non-associated irreducible factorizations of x ∈ R,

and for a positive integer d the associated limit

η̄d(x) = lim
k→∞

η(xk)
kd

.

Definition 2. Let H be an atomic monoid and x a nonzero nonunit of R. Set

σ(x) = min{d | d ∈ N0 and 0 < η̄d(x) < ∞},

Ξ(H) = sup{σ(x) | x a non-zero non-unit in H},

and
Ψ(H) = sup{σ(x) | x ∈ I(H)}.

Theorem 3. Let n and m be positive integers with n ≤ m. There exists an atomic monoid H
such that Ψ(H) = n and Ξ(H) = m.

Theorem 4. If m is any positive integer then

lim sup
n→∞

Ψ(B(Zn))
nm

= ∞.

Theorem 5. Let G be a finite Abelian group. The following statements are equivalent.

1) G is an elementary p-group for some prime integer p.

2) If x = gn1
1 · · · gnt

t is an irreducible block in B(G) with σ(x) = 1, then n1 = n2 = · · · =
nt = 1.

3) There exists a prime integer p such that for all irreducible x ∈ B(G) with σ(x) = 1,
η̄1(x) = 1/p.

4) There exists a positive rational q such that for all irreducible x ∈ B(G) with σ(x) = 1,
η̄1(x) = q.
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Assessment of the program

We have been exceedingly fortunate in the selection of our REU students. They were very bright
and self-motivated. The students worked extremely hard and made many mathematical discoveries.
All of the supervisors were very impressed by the insight and deep understanding the students had
gained in a short period of time. The problems given to the students were by no means trivial
and most of them are known open problems in the mathematics literature. As an outcome of the
students research, two papers written jointly with supervisors have been submitted for publication
in refereed mathematical journals. Two more papers are under preparation and will be submitted
for publication shortly.

The student’s level of satisfaction with the program has been consistently high over the last three
summers. One student commented, “My first time to do research one on one with a professor was
a great experience.” A second student said, “I thought that the flexibility of the faculty to let the
students explore options within the research project was also exemplary.” A third student wished
that the program had been longer and a fourth student liked the daily tea-hour. Other students
responded in the following manner in their evaluations of the program:

I have really enjoyed my summer research experience at Trinity. I feel that it has definitely
given me a better understanding of what mathematics research is like. This will be very
helpful in making decisions about graduate school.

The two main strengths of Trinity’s REU are the high expectations held for its partic-
ipants and the small size of the program. The research in which we have participated,
though basic enough to be accessible to undergraduates, has also been ambitious enough
to make us stretch and enhance our mathematical knowledge.

While we are all pleased with the scientific success of the program, we did not succeed in achieving
one of our goals. An important aim of Trinity’s REU is to attract a sizable number of minority
students. In the first summer we had 40% female students; the second summer, 40% female students;
and the third summer, 16% female students. We tried very hard to recruit Hispanic students but,
unfortunately, we failed. In the next three years we will double our efforts to attract a sizable number
of Hispanic students and we hope to succeed in this endeavor.

2 Trinity and The Mathematics Faculty

Trinity University is a leading undergraduate institution. In fact, for the last 10 years Trinity has
been ranked as the number one college in the West by US News and World Report. We routinely
attract about 30 national merit finalists per year, and the average SAT and ACT scores for entering
students vary slightly from 1270 and 27, respectively. Trinity University is located in San Antonio,
TX, which is the eighth largest city in The United States. A large part of the city’s economic base
is provided from tourism, and there are many local attractions for REU participants to enjoy.

Undergraduate research is heavily emphasized within the division of Science, Mathematics, and
Engineering. The departments of Chemistry, Computer Science, and Mathematics have each had
REU programs for the last several summers. Each of these programs has been a success, with both
faculty and students enjoying fruitful research projects. The participants in the Mathematics and
Computer Science REU programs have been encouraged, through the use of afternoon tea-hour, to
socialize and exchange ideas. Students find that these informal meetings provide a time to discuss
a variety of scientific topics.

The department of mathematics is one of the strongest departments at Trinity, and the Principal
Investigators of this proposal are adept at working on research projects with undergraduates. In
demonstration of the principal investigators’ qualifications, we will: 1) discuss how undergraduate
research is implemented as part of the mathematics degree at Trinity, 2) highlight the principal
investigators prior experiences with undergraduate research, and 3) show a history of past support.

A student receiving an undergraduate mathematics degree from Trinity University must complete
a research project. This requirement is incorporated in the majors’ seminar, a mandated part of
both the junior and senior curriculum. To complete the majors’ seminar, students must address a
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research question, give a short talk about what they have discovered, and hand in a written report
about their findings. In an effort to make sure that each student has a successful project, each
student works closely with an advising faculty member. The Computer Science department has a
similar program, and members of the mathematics faculty have also directed some of these projects.

The faculty’s involvement just described is not the full extent to which faculty are engaged in
undergraduate research. Various distinctions of the principal investigators are now highlighted. Dr.
Saber Elaydi has served as an editor for a mathematical journal on difference equations and has
(co)authored over 60 research articles on topics in difference equations, topological dynamics, and
differential equations. In addition to mentoring REU students, Dr. Elaydi supervised the research
of five Trinity students who were funded by his RUI-NSF grant (1997-2000). Another principal
investigator, Dr. Scott Chapman, received a Fulbright scholarship in 1994, has over 30 refereed
publications, and has directed numerous senior projects. Dr. Chapman has also co-authored 3
papers with REU participants. These two principal investigators clearly demonstrate a thorough
knowledge of the areas they study. Having such a complete understanding of a field is invaluable
when choosing problems for undergraduates. Dr. Roberto Hasfura has mentored REU students for
the last three years, and has co-authored a paper with one REU student. In 1993, Dr. Allen Holder
directed undergraduate and high school research projects supported by NASA at The University
of Southern Mississippi. In short, the principal investigators have the experience required to guide
intelligent, young minds through their first experiences with mathematical research.

Over the last ten years, the mathematics department has received 3 PEW Foundation grants
to support undergraduate research and to develop courses. Over this same time period, 3 NSF
grants were awarded to the mathematics department. The first two were awarded in 1989 and 1994
and were used to set up computer labs. These computer labs are equipped with several software
packages and are available to the REU students. The third NSF grant has provided funding for the
mathematics REU program since 1996.

The mathematics faculty has had great success in attracting female students, with more than
50% of the mathematics majors being female. Upon graduation about 35% of the mathematics
majors go to graduate school, another 25% become teachers, and the remaining graduates seek jobs
in industry (often in actuarial science and software engineering). Our graduates have a proven record
of success.

3 Participant Recruitment

Students are recruited by a nationwide recruitment campaign. An advertisement describing the
Trinity REU program will be sent to schools throughout the US and will be posted on several
appropriate web pages. A special effort is made to recruit minorities and women. As the following
table indicates, a large portion of the regional student population is comprised of Hispanics (about
43%) and females (about 58%).
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Institution Total Hispanic Black Native Female
American

UTSA 17,494 7092 769 86 9,501

St. Mary’s
University 2,642 1,734 86 12 1,570

Incarnate
Word 2,606 1,355 52 8 1,847

Our Lady of
the Lake 2,421 1498 174 8 1,877

Trinity
University 2,323 205 54 11 1,228

∗ indicates latest data available.

To encourage minorities and females to apply, we will send announcements to these local schools
and invite their mathematics students to attend talks and colloquia at Trinity. Furthermore, we will
distribute announcements at local conferences in an attempt to recruit from regional schools with
similar diverse student populations. Having the continued involvement of Dr. Roberto Hasfura, a
Hispanic, strengthens these goals. Minority and/or female participants should be at least 6 out of
10 selected.

4 Participant Selection

Student applications for the REU program are ranked according to the following criteria:

1. Scholastic Achievement

2. Interest in Mathematics

3. Motivation

The selection of candidates will be done by the five Principal Investigators. Four points are given to
scholastic achievement, which is supported by a transcript. The other two criteria are given three
points each, and are assessed from short written statements supplied by the student.

5 Student Participation and Schedule

Before students arrive, the students will be distributed among the participating principal investiga-
tors. These decisions are based on a statement written by the student indicating their interest in
one of the advertised areas.

During the first five days of the summer program, general topic colloquia will be given (Elaydi
& Hasfura - discrete dynamical systems, Chapman - monoid theory, Holder - multi-criteria pro-
gramming, Ponomarenko - combinatorics). The purpose of these lectures is to let all of the REU
participants become familiar with the projects being worked on that summer. In the afternoon, the
students will meet with their mentors and begin a deeper investigation of their specific topics. The
remaining weeks will be comprised of mentor research seminars. The afternoon tea hour is held
every afternoon of the project. The following schedule is used for the first week.
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Day Time Activity Place

Monday 8:00 - 12:00 p.m. Check into dorm Witt Residence Hall
12:00 - 1:00 p.m. Lunch Coates Center
1:00 - 2:00 p.m. Orientation Math Department
2:00 - 3:30 p.m. Project Meetings
3:30 p.m. Free time Trinity University

Tuesday 9:00 - 10:00 a.m. Topic Colloquium MMS 104
10:00 - 11:00 a.m. Library Tour Library
11:00 - 12:00 p.m. Athletic Facilities Tour Athletic Center
12:00 - 1:30 p.m. Lunch Coates Center
1:30 - 2:30 p.m. Project Meetings MMS 104
2:30 - 3:30 p.m. Tea hour and conversation
3:30 - 5:00 p.m. Project Meetings MMS 104

Wednesday 9:00 - 10:30 a.m. Topic Colloquium MMS 104
10:30 - 11:00 a.m. Refreshments
11:00 - 12:00 p.m. Project Meetings MMS 104
12:00 - 1:30 p.m. Lunch Coates Center
1:30 - 2:30 p.m. Project Meetings MMS 104
2:30 - 3:30 p.m. Tea hour and conversation
3:30 - 5:00 p.m. Project Meetings MMS 104

Thursday Same as Wednesday
Friday Same as Wednesday

Trinity University is fortunate to be near several companies that employ applied mathematicians
(The Southwest Research Institute, Motorola, Texaco, The San Antonio Health Sciences Center).
Guest lectures from applied mathematicians employed by these companies will be scheduled as time
permits.

The last part of the program is devoted to completing a written report about the findings of
the project. These reports will become part the department’s technical report series and will be
posted on our web page. Besides being preprints to publishable articles, these reports will be useful
to prospective and incoming students. The final days of the REU program are reserved for student
presentations.

6 Evaluation

In a constant effort to improve the quality of the REU program, students are asked to evaluate their
experience. Quotes from some of the prior evaluations are found in the first section. Student input
is an invaluable source of information when contemplating changes in the program.

The principal investigators are always looking for ways to improve the REU program. Some
changes are already in place. We have made substantial changes to the schedule of the first week.
The first several days are no longer reserved for talks from the principal investigators on the topics
at hand. Instead, there are general lectures throughout the mornings of the first week, and in the
afternoons the students can start a more detailed investigations of their respective problems. This
allows more time for the participants to work on specific topics, while at the same time having an
awareness of the other projects. The principal investigators will meet after each summer to discuss
how the program can be strengthened.

The departmental news letter will be sent to participants for one year after their involvment.
Futhermore, past REU students will be invited to give presentations in the majors’ seminar. As in
prior years, student-mentor relationships are continued when scholarly papers are being prepared
for submission.
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7 Research Topics

Below are short descriptions of problems that REU participants will undertake.

Stability and Chaos in Competitive Discrete Models
by

Dr. Saber N. Elaydi

In this project, we study competitive discrete models. We will start with the analysis of the
growth dynamics of two discretely reproducing populations in competition. If xi(n) is the population
density of species i at generation n, i = 1, 2, then a reasonable model may be given by the nonlinear
difference equation [2]

x1(n + 1) = x1(n)g1(x1(n) + x2(n))

x2(n + 1) = x2(n)g2(x1(n) + x2(n))

 (1)

where gi : [0,∞) → [0,∞) is a strictly decreasing smooth function that takes on positive values
bigger than 1 and less than 1 and lim

xi(n)→∞
gi(xi(n)) = 0 [7, 6, 5].

The students will be asked to address the following questions.

(i) If gi(x1+x2) = eri−ki(x1+x2), i = 1, 2, find conditions under which species 2 ultimately excludes
species 1.

(ii) Find conditions under which species 2 ultimately excludes species 1.

A population may be subject to external agents (farmers, hunters, for example) which influence
the growth dynamics. When an agent acts to increase a population, the action is called planting or
stoking. A reasonable model for two competitive species with planting for species 1 is given by the
difference equation [7]

x1(n + 1) = x1(n)g1(x1(n) + x2(n)) + p(x1(n))
x2(n + 1) = x2(n)g2(x1(n) + x2(n))

}
(2)

The students will be asked to address the following.

(i) Show that every orbit in (2) is bounded.

(iii) If gi(x1+x2) = eri−ki(x1+x2), i = 1, 2, find conditions under which species 2 ultimately excludes
species 1.

(ii) Find conditions under which species 2 ultimately excludes species 1.

(iv) Constant Planting: If p(x1(n)) = α, gi(x1 + x2) = eri−ki(x1+x2), i = 1, 2, find conditions under
which there is a stable coexistence between the two species.

(v) Variable Planting: p(x1(n)) = α ∗ x1(n).

(a) Obtain conditions for the positive period 2 orbit to attract all positive solutions except
for one dimensional invariant manifold.

(b) Obtain conditions under which both species in System (2) persists [4].

(c) Numerical simulations indicate that the period 2 orbit undergoes period-doubling bifurca-
tion route to chaos [3, 1]. Investigate analytically and graphically the bifurcation diagram,
the existence of a Feigenbaum sequence and the Feigenbaum number. Finally, investigate
when does chaos occur.

(d) Let gi(x1 + x2) = eri−ki(x1+x2), i = 1, 2. If k1 = k2 = 1, α = 0.5 and r1 = 1.5, Show
that if 1.5 + ln 2 ≤ r2 ≤ 3.411822071, then System (2) has a positive period 2 orbit that
attracts all positive solutions except for one dimensional invariant manifold.
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Arithmetic Properties of Monoids Determined
by Linear Diophantine Equations

by

Scott T. Chapman

Much of the modern research and literature surrounding Semigroup Theory centers on the non-
commutative case. The study of the commutative case has recently gained additional attention
(for example, see the books of Redei [13] and Rosales and Garćıa-Sánchez [14]). An explanation
for this increased interest may lie in the diverse role which these semigroups play in Algebraic
Geometry, Commutative Algebra, Number Theory and Computational Algebra. One area where
these structures play a critical role is in the study of the arithmetic properties of commutative rings
([8], [3] and [1] provide nice summaries of some known results in this area). Problems in this area
were first motivated by classical questions from algebraic number theory (see Carlitz [2]) and their
solutions have involved techniques from not only Semigroup Theory, but also from Abelian Group
Theory, Number Theory, and Combinatorics.

In a recent paper [5], Chapman, Krause and Oeljeklaus, studied the arithmetic properties of the
following class of semigroups. For integers a1, . . . , an set

M(a1, . . . , an) = {(r1, . . . , rn) ∈ Nn |
n∑

j=1

rjaj = 0}.

The M(a1, . . . , an) are submonoids of Nn and while they seem to represent fundamental algebraic
objects, surprisingly little seems to be known about their algebraic structures (see Stanley [16] for
a discussion). The purpose of this proposal is to extend and strengthen the results of [5] to a larger
class of semigroups. In particular, if

f1 = a11x1 + . . . + a1nxn = 0
...

...
...

...
...

...
fk = ak1x1 + . . . + aknxn = 0

(3)

is a system of homogenous linear diophantine equations with integer coefficients, then denote its
monoid of nonnegative solutions by S(f1, . . . , fk). Hence M(a1, . . . , an) = S(f1) for an appropriately
chosen f1. We elaborate on the results in [5], their importance, and the specific questions they raise
with respect to the S(f1, . . . , fk) in the following paragraphs. The problems developed below are
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easily stated and accessible to advanced undergraduate mathematics majors who have completed
courses in abstract algebra, number theory and linear algebra. Several of these problems involve a
nontrivial programming component which is a good way to get a summer undergraduate projects
started. Solutions to many of these problems could gain enough outside interest to merit publication
in refereed mathematics journals. The current author has co-authored 2 papers with undergraduate
students (see [6] and [4]) and has a third preprint with his two summer 1999 REU students in
preparation.

Of fundamental importance in exploring the arithmetic of the S(f1, . . . , fk) is the notion of a
divisor theory. Let S be a commutative, cancellative monoid with quotient group Q(S). Let 5 be
the divisibility relation (or quasi-ordering) on S induced by the following: x 5 y in Q(S) if and only
if xz = y for some z ∈S. Let F be a nonempty family of homomorphism f 6≡ 0 of Q(S) into Z such
that for each x ∈ Q(S) the set F∗ = {f ∈ F | f(x) 6= 0} is finite. An element of F is called a state
on S. If the monoid S is defined by F (i.e., S= {x ∈Q(S) | f(x) ≥ 0 ∀ f ∈ F}) then S is a Krull
Monoid (see [8], [9] and [11]). A state on S is essential if for any x, y ∈ Q(S), there exists z ∈ Q(S)
such that x 5 z, y 5 z and f(z) = max{f(x), f(y)}. Let I denote the set of essential states f which

are normalized (i.e., f(Q(S)) = Z). Consider the map ϕ : S → Z(I)
+ defined by ϕ(x)(f) = f(x). This

map satisfies the following two properties: 1) for all x, y ∈S, x 5 y if and only if ϕ(x) ≤ ϕ(y) (here

≤ denotes the pointwise ordering), and 2) each element of Z(I)
+ is the minimum of finitely many

elements for the set ϕ(S). As described above, the essential states of Krull monoid yield a divisor

theory for S (see [8], [12], and [15]). The factor monoid Z(I)
+ /ϕ(S) ∼= Z(I)/ϕ(Q(S)) is a group known

as the divisor class group of S and denoted Cl(S). In a Krull monoid, every non-zero non-unit can
be written as a product of irreducible elements (such a monoid in general is called atomic). An
atomic monoid is factorial if and only if it is a Krull monoid with trivial divisor class group (see [8]).
The S(f1, . . . , fk) (and hence the M(a1, . . . , an)) possess a divisor theory and are thus atomic Krull
monoids.

Much of the work in [5] centers on the following factorization property first alluded to by Carlitz in
[2]. An atomic monoid H is called half–factorial if whenever x1, . . . , xn and y1, . . . , ym are irreducible
elements of H with x1 . . . xn = y1 . . . ym then n = m. Among the major results in [5] are:

1. the divisor class group of M(a1, . . . , an) is either Z or Zn for some n ≥ 2 (Theorem 1.3),

2. a characterization of when M(a1, . . . , an) is factorial (Corollary 1.4),

3. a geometric criterion in terms of hyperplanes which determines the half–factoriality of M(a1, . . . , an)
(Proposition 2.1),

A question which can be traced back to the early part of the 20th century concerns determining
the set of minimal solutions to a system of the form (3) (see [7]). These minimal solutions are
merely the irreducible elements of S(f1, . . . , fk). These irreducible elements can be determined in
a Krull monoid by using arguments centered about the divisor class group (see [8]). An answer
to the following question might lead to an alternate (and possibly improved) algorithm to the one
developed in [14] for computing the set of minimal solutions to (3). An answer to Question 1 would
also extend the characterization of factorial monoids for the M(a1, . . . , an) presented in [5].

Question 1. Compute the divisor class group of S(f1, . . . , fk). In particular, can every finitely
generated abelian group serve as the divisor class group of some monoid of the form S(f1, . . . , fk)?

This result leads to a central focus of the proposed research.

Question 2. Find a geometric connection between the monoids S(f1, . . . , fk) and their factorization
properties. In particular, does some form of the hyperplane condition of [5, Proposition 2.1] hold for
a monoid of the form S(f1, . . . , fk)?

In [10], Krause begins to explore the relationship between geometry and factorization properties
of certain monoids which arise through the study of cones in numerical modules. If S is a monoid
and {Mi}i∈I a family of factorial submonoids of S such that (i) Mi 6= Mj for i 6= j, and (ii) if x
is a nonunit of S then there exists a positive integer n such that xn ∈

⋃
i∈I Mi, then S along with

{Mi}i∈I is called a factorial complex. We ask the following.
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Question 3. Characterize monoids of the form S(f1, . . . , fk) which possess factorial complexes.
Specifically, if S(f1, . . . , fk) and {Mi}i∈I form a factorial complex, are all the irreducibles of S(f1, . . . , fk)
contained in

⋃
i∈I Mi?

A possible tool in the study of factorization in monoids is the extraction grade. If S is a monoid
and x, y ∈ S, then the extraction grade of x and y in S is defined by

ΛS(x, y) = sup{m

n
|xm divides yn,m ∈ Z+, n ∈ N}.

A monoid S is called an extraction monoid if the extraction grade for each pair of elements x, y ∈ S
is rational. Recall that the elasticity of an atomic monoid S is defined as

ρ(S) = sup{m

n
|x1 · · ·xm = y1 · · · yn where each xi, yj are irreducible in S}.

A survey of the known results concerning elasticity in integral domains can be found in [1].

Question 4. Is there a relationship between the extraction grades of S(f1, . . . , fk) and the elasticity
of S(f1, . . . , fk)? In general, must an extraction monoid have rational elasticity?
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Dynamical Properties of Continuous Maps of the Interval
Trinity REU Project Proposal

Roberto Hasfura

We propose here that student participants research the dynamical properties of certain families
of continuous functions of the interval [0, 1]. Many recent results showcasing surprisingly complex
behavior of very simple-looking (for example, piecewise linear) maps, as well as others yet to be
discovered, are accessible to students equipped with only the most elementary mathematical tools
in the undergraduate curriculum. ([3] is an example.) Such research would in fact build on the
successful work carried out by students who participated in REUs that took place at Trinity in
the summers of 1997, 1998 and 1999. Collectively, those students have considered the dynamical
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properties (especially insofar as periodic points are concerned) of the families (i) Tω(x) = ω(1/2 −
|x − 1/2|), 0 < ω ≤ 2 (tent maps); (ii) fm,e(x) = mx or me or m(2 − x) depending on whether
0 ≤ x < e or e ≤ x ≤ 2 − e or 2 − e < x ≤ 2, where m > 1 and me ∈ (2 − e, 2] (trapezoidal
maps); and (iii) the piecewise-linear maps of [0, 1] with three pieces, the ‘middle one’ mapping onto
[0, 1]. Some results obtained last summer concerning a subfamily of the family in (iii) suggest some
avenues of student research.

For specific examples, let’s consider the two-parameter family of continuous maps fa,b of [0, 1]
given by

fa,b(x) =


1−a

b x, 0 ≤ x ≤ a
1

1−2b (x− 1) + b
1−2b , a < x ≤ 1− a

1−a
b (x− 1) + 1, 1− a < x ≤ 1

where 0 ≤ a ≤ 1 and 0 < b < 1/2. A number of dynamical properties of this family were established
last summer ([4]) including some that beg for closer examination. The following surprising dichotomy
provides one good such example: for 1/4 < b < 1/2 there exist numbers ak increasing to 1− b such
that the map fa,b has a periodic orbit of length 2 · (2k + 1) if and only if a < ak; however, for
0 < b < 1/4 and for all 0 < a < 1− b the map fa,b always has periodic orbits of length six.

Another important question considered last summer was that of possible topological conjugacies
between maps in the family. A student constructed an interesting conjugacy between f0,1/3 and
f0,2/5. The construction, fractal-like in its recursive nature, possibly gives rise to a conjugacy which
appears to be almost everywhere non-differentiable. Elucidating this and other related questions
(for instance: given b and a′ 6= a′′ with no ak (as described above) satisfying a′ < ak < a′′, are the
maps fa′,b and fa′′,b topologically conjugate?) appears possible for motivated junior mathematics
majors with no more than a Real Analysis course in their background.

There are other questions that, albeit of slightly different flavor, are of relevance to the dynamical
behavior of maps of the interval and that may be susceptible to the efforts of bright undergraduates
and of those inclined to computer experimentation. For example, the students will be introduced to
the notion of invariant measure and to the standard hierarchy of mixing properties: ergodicity, weak-
and strong-mixing, K-ness and Bernoullicity. We will then ask whether a given map of the interval
admits an absolutely continuous (with respect to Lebesgue) invariant measure and, if so, what the
statistical properties of that measure are—is it Bernoulli? or, more generally, to what extent is it
mixing? Here is a simple example due to Ulam and von Neumann (see [2]) of this situation: the
map f(x) = 4x(1− x) of the interval [0, 1] preserves the measure dx

π
√

x(1−x)
. With this measure, the

map is measurably isomorphic to the one-sided Bernoulli 2-shift, a paradigm of random behavior.
Another situation that, time permitting, the students will be asked to consider is that where a

family of interval maps (such as those above) indexed by a subset of the integers is coupled locally.
Then we will ask whether we can choose the form of the coupling and its strength to produce certain
types of global behavior. Here is a version of that query: Can we couple maps with simple behavior
in a way to produce global complicated behavior? Work along these lines has been published by
L. A. Bunimovich and co-authors. (See, for example, [1].) Again, these questions provide ground
for computer experimentation and their resolution can sometimes be achieved with only a few
mathematical tools available in the usual undergraduate curriculum.
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Multiple Objective Linear Programming and
Interior Point Algorithms

by

Allen Holder

A multiple objective linear program (MOLP) is an optimization problem where one attempts to
optimize several linear functions relative to linear constraints. The standard form of an MOLP is

min{Cx : Ax = b, x ≥ 0},

where C ∈ IRp×n and A ∈ IRm×n. Because there are multiple objective functions, to find an optimal
solution really means to find a pareto optimal solution. This type of solution is a feasible vector,
x, such that any other feasible vector that decreases one of the objective functions also increases
another objective function. The set of pareto optimal solutions is called the efficient frontier. From
a practical standpoint, it is useful to know how the objective functions behave on this entire set.
Recent investigations into parameterizing the efficient frontier are found in [5].

Although interior point algorithms have revolutionized the field of linear programming (LP) [13],
very little has been done with their connection to MOLP, exceptions being [1, 3]. Recently, Caron,
Greenberg, and Holder [4] have developed new techniques to prove convergence of the analytic
center path, which most interior point algorithms trace to optimality. This path terminates at the
analytic center solution [11], which is a unique, interior solution. The uniqueness of this LP solution
finally allowed those using LP to discuss a common solution that is readily computable. Hence, post
solution analysis and interpretation could be based on a solution that is easily referenced. Using
the analytic center solution, many mathematicians have worked on (re)inventing the topics of LP
post solution analysis, see [6, 7, 8, 9, 10, 12]. The analytic center solution of an LP also induces the
optimal partition [11], which completely defines the optimal face.

The new results of Caron, Holder, and Greenberg [4] have natural extensions to MOLP and
may allow new classes of algorithms for this problem statement. Furthermore, there are several
theoretical questions to explore, a few of which are now presented.
Question 1 How does one define a unique, computable pareto optimal solution comparable to the
analytic center solution for LP?

Once the above definition is established, we are highly motivated to have a complete under-
standing of the information this solution contains. The following questions demonstrate the types
of information that are sought.
Question 2 Does the analytic center pareto optimal solution induce a partition similar to that of
the optimal partition?
Question 3 Is the analytic center pareto optimal solution somehow interior to the efficient frontier?
Does it define an interior facet of the efficient frontier?

Meaningful answers to these questions would be extremely interesting. Because there is so little
known about the above topics, students will find it a fruitful area to work. Moreover, several modern
software routines can be used to gain insight. Such computer work is often tangible and rewarding
to beginning researchers.
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Jump System Analysis

by

Vadim Ponomarenko

Jump systems are an exciting new combinatorial theory, with diverse applications throughout
combinatorics. First described in 1995, jump systems simultaneously generalize (see [1]) two gen-
eralizations of matroids: delta-matroids and integral polymatroids. They naturally model bidi-
rected graphs, and degree sequences of graphs[2]. They are also the lattice points in bisubmodular
polyhedra[1].

Jump systems have an appealingly simple definition that lends itself well to undergraduate in-
vestigation. Fix n > 0, and let J be a subset of Zn. Fix the L1 metric, where for x, y ∈ Zn,

d(x, y) =
n∑

i=1

|xi − yi|. Then J is a jump system provided it satisfies the following axiom:

(JS) ∀x, y ∈ J,∀z1 with x
y−→ z1, then either:

1. z1 ∈ J , or

2. ∃z2 ∈ J with x
y−→ z1

y−→ z2

where x
y−→ z means d(x, z) = 1 and d(x, y) > d(z, y).
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If x
y−→ z, we say that z is a step from x toward y. (JS) is then equivalent to the notion that for

every step z from x toward y (with both x and y in the jump system), either that step z is in the
jump system, or there is a second step from z toward y that is.

Students first will consider low-dimensional jump systems. While one-dimensional jump systems
are easily understood (they have no gaps of size larger than one), taxonomy of two-dimensional jump
systems remains open.

Currently there is only a limited collection of jump system results (See [1], [2],[3]). Two that
are almost obvious are that the Cartesian product of jump systems is a jump system, and that the
intersection of a jump system with a box is a jump system. Some less obvious and easily stated
results follow:

1. For two jump systems on Zn, their sum J1 + J2 = {x1 + x2 : xi ∈ Ji} is a jump system.

2. A face of a jump system – those elements of a jump system maximizing a linear objective
function – is a jump system.

3. The natural projection of a jump system on Zn onto Z<n is a jump system.

Students will be asked to consider these and similar, slightly less easily stated, questions. They
will be expected to construct their own arguments for proof; some of the existing proofs are cum-
bersome and might be improved upon. Due to the young nature of the field, there is also great
potential for discovery of other properties of similar flavor.

Next, students will be asked to consider the primary open question of jump system theory:
the intersection problem. The intersection problem is whether two given (abstractly defined) jump
systems have a point in common. There are several partial solutions ([2],[3]), but the main question
remains open. Students will be asked to consider special cases, such as:

1. Jump systems J where for all (x1, x2, . . . , xn) ∈ J ,
n∑

i=1

xi is zero.

2. Jump systems J where for all (x1, x2, . . . , xn) ∈ J ,
n∑

i=1

xi is constant.

3. Jump systems J where for all (x1, x2, . . . , xn) ∈ J ,
n∑

i=1

xi is even (or odd).

4. Jump systems J where for all x ∈ J , x ≥ 0.

Students will also be asked to consider algorithmic and computational aspects of solving the
intersection problem. If there is no good solution, students will consider whether there is at least a
(somewhat) efficient search that improves upon naively checking each element of one jump system
against each element of the other.
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