
ROOK THEORY & POLY-STIRLING NUMBERS

Abstract. Rook theory is the study of algebraic structures in terms of looking
at ways in which to place rooks on a chess board. I propose the study of a
new class of generalized Stirling numbers, called Poly-Stirling numbers, using
this theory.

Let N = {1, 2, 3, . . .} denote the set of natural numbers. We say that p(x) is a
polynomial if p(x) = a0 + a1x + a2x

2 + · · ·+ amxm, where m is a natural number
and the number ak is called the coefficient of xk. For any natural number n, we
let Bn = F (0, 1, 2, . . . , n − 1) denote the nth staircase board, which one can think
of as a chess board with column heights, from left to right, of 0, 1, 2, . . . , n− 1. An
example of B4 is shown here.

We wish to place nonattacking rooks on these staircase boards, that is, we will
place rooks in Bn such that no two rooks lie in the same row or column. We will
define rk(Bn) to be the number of ways of placing k nonattacking rooks in the board
Bn, and we will call rk(Bn) the kth rook number of Bn. As an example, r2(B4) = 7,
since there are seven ways to place two nonattacking rooks in the board B4. These
seven placements are shown here.
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In [13], Goldman, Joichi, and White used this notion of placing rooks on a board
to prove that for any natural number n and any number x,

(0.1) xn =
n∑

k=0

rn−k(Bn)(x) ↓k,

where (x) ↓k= x(x−1)(x−2) · · · (x− (k−1)). This idea of placing rooks on boards
to generate mathematical formulas is called rook theory, and since this original rook
theory paper in which Equation (0.1) appeared, generalizations of this rook theory
model have been studied in [3], [4], [5], [6], [7], [12], [15], [16], [19], and [26]. In many
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of these papers, different types boards are presented (not necessarily the staircase
boards), and consequently different types of rook numbers are defined and studied.

Now, in what appears at first to be a total divergence of topics, there exists
another class of numbers which have been studied for a very long time, called
Stirling numbers. These numbers satisfy the recursive relation

Sn+1,k = Sn,k−1 + kSn,k,

where S0,0 = 1 and Sn,k = 0 if n, k < 0 or n < k, and there are many interesting
formulas which involve the Sn,k. Two such formulas are

(0.2)
n∑

k=0

Sn,k
xn

n!
=

1
k!

(ex − 1)k

and

(0.3)
n∑

k=0

Sn,kxn =
xk

(1− x)(1− 2x) · · · (1− kx)
.

Many generalizations of these numbers have been studied, most notably in [8], [10],
[14], [17], [18], [21], [22], [23], [24], [25], [27], [28], [29], [30], [31], [32], [33], and
[34], and in some of these papers one can find the corresponding generalizations of
Equations (0.2) and (0.3).

These Stirling numbers are also referred to as the Stirling set numbers, because
Sn,k is equal to the number of ways of partitioning the set {1, 2, . . . , n} into k
unordered parts. For example, S4,2 = 7 since we can partition the set {1, 2, 3, 4}
into two parts in the following seven ways.

{1}{2, 3, 4}
{2}{1, 3, 4}
{3}{1, 2, 4}
{4}{1, 2, 3}
{1, 2}{3, 4}
{1, 3}{2, 4}
{1, 4}{2, 3}

In fact, one may notice that this happens to be the same number of ways of placing
two rooks in the board B4, which is no coincidence. In a paper by Garsia and
Remmel [9], it is shown that for all n and k,

rn−k(Bn) = Sn,k.

In other words, the number of ways of placing n − k rooks in Bn is always the
numbers of ways of partitioning the set {1, 2, · · · , n} into k parts. An example of
how one can match off such placements with the correct partition is shown on the
next page, where n = 7 and k = 3. Here, we start at the column labeled ”1” and
move to the right until we come to a rook. We then go up to the corresponding
number and repeat the process. If we move to the right and leave the board, then,
we start the process up again at whatever the smallest unused number is. In this
way, we turn a placement of n − k = 4 rooks in the board B7 into the partition
{1, 3, 6}{2, 4, 7}{5}.
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In the 20 years since [9] was published, many papers have been written which
use the relationship between Stirling numbers and rook boards to study completely
different branches of mathematics, such as group and ring theory in [1] and [2]and
special functions and hypergeometric series in [11] and [20].

I propose the study of the following generalized Stirling numbers, S
p(x)
n,k , which I

call Poly-Stirling numbers, defined by the following recursion:

S
p(x)
n+1,k = S

p(x)
n,k−1 + p(k)Sp(x)

n,k .

Here, p(x) is a polynomial with natural number coefficients, S
p(x)
0,0 = 1, and S

p(x)
n,k =

0 if n, k < 0 or n < k. In particular, I would like to investigate the following
problems.
Problem I. Are there correlations between special types of rook boards and Poly-
Stirling numbers?
Problem II. Are there formulas for the S

p(x)
n,k which correspond to Equations (0.2)

and (0.3)?
Problem III. Can the results from Problems I and II be used to study other
problems in mathematics?

As the notion of a Stirling number is one that most undergraduate math majors
deal with at some point in their studies, these problems are ideal for undergraduate
research. As a junior faculty at Trinity, one of my goals is to involve students from
my department in the research that I undertake, and the study of these proposed
problems is an excellent venue for such work.
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