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Abstract Many recent advances in biology, medicine and health care are due to
computational efforts that rely on new mathematical results. These
mathematical tools lie in discrete mathematics, statistics & probability,
and optimization, and when combined with savvy computational tools
and an understanding of cellular biology they are capable of remarkable
results. One of the most significant areas of growth is in the field of
systems biology, where we are using detailed biological information to



construct models that describe larger entities. This chapter is designed
to be an introduction to systems biology for individuals in Operations
Research (OR) and mathematical programming who already know the
supporting mathematics but are unaware of current research in this
field.
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1. Introduction

The field of systems biology represents a new, exciting collaboration
between biology, mathematics, and computer science. In broad collabo-
rations such as this, it is usually not the case that a single discipline ben-
efits to the exclusion of the others, but rather each discipline is rewarded
from the inventions of the interaction. Classic examples of similar inter-
actions involved mathematics and physics, which lead to the invention
of Calculus, and the interaction between agronomists and statisticians
that led to advances in experimental design, analysis of small sample
sizes, and the development of analysis of variance. Many have argued
that current problems in cellular biology are playing a similar role in
mathematics and computer science today. In particular, the nexus of
high-throughput data generation in biology and increasingly sophisti-
cated mathematical and computational tools makes systems biology an
exciting and innovative field of study.

Broadly speaking, biologists want to answer overarching questions
related to how organisms work. The complexity of life and the difficul-
ties inherent to experimental science have traditionally led biologists to
adopt a reductionist approach, working for example in a single species
to find and characterize single causative factors. Subsequent research
then finds factors that interact with the first factors, and so on. The
reductionist approach has shed light on many individual components of
an organism, but for all our work, we only know a small percentage of
how organisms work.

The painstaking progress of the reductionist approach is now being
accelerated, however, by new “high-throughput” technologies. The most
reductionist level of an organism is its DNA sequence, and it is almost
inconceivable that the structure of DNA was discovered approximately
50 years ago, and that less than 20 years ago researchers labored to
hand-sequence genes a few hundred bases at a time. Now our goal is
to produce affordable, personal sequences of the 3 billion bases of an
individual human genome in a matter of days or weeks, rather than the
years it took to complete the first human genome sequence.
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Although completing the human genome represented a pinnacle of
achievement, it did not provide all the information needed to holistically
model life’'s processes. To build a functional model of an organism,
we need to know which proteins are actually made, at what times, in
response to what environmental cues, and how these proteins interact
either physically with other proteins and/or in metabolic pathways to
create a static trait or dynamic response. Being able to characterize
these higher levels of complexity is crucial: if anything, our reductionist
studies have taught us that the whole is more than the sum of the parts.

Advances in technology similar to those seen in the sequencing arena
are now also expanding our understanding of these higher-order ques-
tions. The current difficulty is how best to deal with the embarrassment
of riches in biological information. On the whole, most biologists have
not been trained in model building, data management, and computa-
tional skills. Experts in Operations Research, however, are trained in
exactly these fields and are well positioned to accelerate this exciting
area of research. What OR professionals lack is an understanding of the
underlying biology and how it transforms into familiar research topics.
This tutorial is intended to fill this educational gap.

In the end, our goal is to have quantitative, predictive models that
describe systems from cells to entire organisms. In pursuing this goal,
it is important to remember that our interest is not solely focused on
understanding Homo sapiens. While it is true that much of our research
on the bacterium FE. coli, the single-celled eukaryotic yeast S. cerevisiae,
and the millimeter-sized roundworm C. elegans and fly D. melanogaster
is undertaken using these as surrogates, our interest also extends to a
myriad of other organisms that provide food, fiber, fuel, pharmaceuti-
cals, etc. It now appears that collaborations between biology, mathe-
matics, and computer science in the field of systems biology are the way
by which progress towards this goal will be made.

2. General Background

This chapter discusses the three levels of whole-cell modeling based
on interactions between genes, proteins and metabolites. A thorough
discussion of each whole-cell model exceeds the capability of this intro-
ductory chapter, so our goal in each section is to focus on key aspects of
the underlying biology and the network representation, and then provide
a summary of some of the insights this representation has provided.

To operate in modern biological terms, we need to understand the
basic premises that support the research. This section is divided into
two subsections: one that explains the guiding principle that dictates
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the related biological research, called the “Central Dogma” of molecular
biology, and another that defines the fundamental terms of the network
analysis used by systems biologists.

2.1 Basic Biological Definitions

The Central Dogma, elaborated by Francis Crick soon after his co-
discovery of the structure of DNA, states that biological information
flows from deoxyribonucleic acid (DNA) to messenger ribonucleic acid
(mRNA) to proteins. The DNA molecule that serves as the main repos-
itory of biological information is a pair of directional polymers whose
monomers are denoted A, T, G, and C. Each of these monomers has
a conserved portion that forms the backbone of the polymer and the
variable portion that makes it an A, T, G, or C. The DNA double he-
lix is comprised of two polymers that are oriented in opposite direc-
tions and held together by interactions between the variable parts of
the monomers, A-T pairs and G-C pairs, see Figure 1.1(a). A DNA
sequence is usually represented by the list of letters (ATGC) read di-
rectionally along one strand, the complementary strand being implied.
Each of the 46 chromosomes inside a human cell is a double helix with
about 107 to 10® base pairs, and a gene is a known stretch of hundreds
or thousands of bases of the double helix with a defined function, usually
encoding a protein.

The DNA is used as a template to make an mRNA polymer by a
process called transcription. The monomers of mRNA have a conserved
portion that forms the backbone of the polymer, although slightly differ-
ent from the corresponding DNA monomers, and four variable portions
denoted A, U, G, and C. Construction of an mRNA molecule involves
partial unwinding of the DNA molecule and then the exposed ATGC
bases of the DNA dictate the sequence of the mRNA through interac-
tions similar to those described above, except that where there is an A in
the DNA there will be a U in the mRNA, see Figure 1.1(b). The mRNA
molecule is also directional and is represented by a string of AUGC.

The mRNA intermediate of a gene is used as a template to make pro-
teins through a process called translation. During translation, cellular
machinery reads an mRNA three monomers at a time from a defined
starting position, see Figure 1.1(c). Each triplet determines one of the
20 amino acid monomers found in a protein or a message to stop protein
synthesis. While proteins are represented by their primary sequence
using an alphabet of 20 letters, protein function is ultimately deter-
mined by the protein’s three-dimensional structure, which may not be
predictable based on the primary sequence alone.
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Figure 1.1. The Central Dogma of molecular biology. (a) DNA, (b) mRNA being
made from a DNA template (transcription), (c) protein synthesis specification by
mRNA (translation), (d) the enzyme hexokinase acts on the metabolite glucose in
the metabolic pathway that breaks down glucose for energy production.

Proteins are both the structural and functional workhorses of a cell
that convert information stored in the DNA (the genotype) to the visible
characteristics of the cell or organism (the phenotype). In this chapter we
focus on the protein’s functional aspects as enzymes that take molecules
and convert these to the products needed for cellular functions. These
molecules are called metabolites, and Figure 1.1(d) gives an example of
how metabolites and enzymes are organized into metabolic pathway.

Exceptions to the Centra Dogma exist, but these subtleties and vari-
ations cannot be addressed in this presentation. Detailed descriptions
of all the biological processes we describe and exceptions can, however,
be found in any current biology or genetics textbook. Despite these
exceptions, the Central Dogma does appropriately model most of the
information flow within a living system, so we will operate on the sim-
plified Central Dogma throughout.
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2.2 Basic Network & Mathematical Definitions

Networks are used in systems biology to model the relationships be-
tween cellular entities. Networks are familiar to those in OR, and this
section specifies the common notation used throughout. In cases where
terms vary between the two disciplines, we mention both terms but use
those that are common to the field of systems biology. This convention
helps those in OR understand the language of systems biology.

A network is a directed graph (V| E), where the elements of V are
called nodes or vertices and the elements of E C V x V are called arcs
or links. In network analysis the direction of an arc is important, and
we distinguish between (v1,v2) and (ve,v1). If we are instead referring
to the graph (V| E), then direction is not important and there is no
distinction between (vi,v2) and (vg,v1). In this case the elements of E
are called edges. We assume throughout that |V| = N and |E| = M.
The nodes vy and v are adjacent if (v1,v9) € E, and we further say that
vy is incident to the edge (not arc) (vy,vs).

If E=V xV, then (V, E) is complete in the sense that it contains as
many arcs or edges as possible. Such graphs are defined by the size of
V and are called complete and denoted Kpy. We say that (V/, E’) is a
subnetwork or subgraph of (V,E)if V' CV E' CE,and E' CV' x V"
A clique of a network or graph is a complete subnetwork or subgraph.

A network’s structure is often referred to as the topology of the net-
work, which is a bit awkward for mathematicians. A graph’s topology
is often described by the adjacency matrix A = [a;;], where a;; = 1 if
nodes 7 and j are adjacent and zero otherwise. For networks a;; = 1 if
(vi,vj) € E and a;; = —1 if (vj,v;) € E. In a graph, the neighborhood
of a node is N(v;) = {v; : (vi,v;) € E} and the degree of the node is
deg(v;) = |N(v;)|. This concept naturally extends to a network where
we discuss out-degree and in-degree. Much of the analysis considered
by systems biologists is based on how well a graph is connected, and for
this reason, the deg(v;) is often called the connectivity of node i. Instead
of deg(v;), we denote the deg(v;) as k;, and for graphs we have

deg(v;) = k; = Zaij'
J

For an understood probability distribution, we let P(z) be the prob-
ability of observing x. We use the typical big-O notation and write
f(z) = O(g(x)) if there is a A such that f(z) < Ag(z). The vector of
ones is denoted by e, where length is decided by the context of its use.
Other notation is introduced as needed. All terms dealing with opti-
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mization agree with those defined in the Mathematical Programming
Glossary [33].

3. Gene Regulatory Networks

Complex organisms exhibit dramatic differences in cellular pheno-
types (characteristics). Examples of these differences are fixed differ-
ences between cell types (e.g., brain cells and liver cells) or temporarily
induced differences due to environmental stimuli (e.g., increased produc-
tion of melanin by skin cells after UV exposure). In general, all the cells
in an organism have the same DNA, so the cause of these phenotypic
differences is variation in the amount and types of proteins present in the
cell. Gene expression is the general term for this conversion of the infor-
mation in the inert DNA into the functional proteins, and tight control
over gene expression is what allows for different cellular phenotypes.

The majority of the control over gene expression occurs at the level of
initiation of transcription (the making of the mRNA intermediate). One
of the primary tools used to understand a cell, therefore, is characteri-
zation of what is called the transcriptome, the set of all genes expressed
under defined conditions. Biologists can detect the levels of different
mRNA molecules with precision, and new microarray technology even
allows for the simultaneous measurement of the levels of all mRNAs in a
cell. As will be seen later, presence of an mRNA does not always imply
the presence of a functional protein, but mRNA production is a neces-
sary first step and the correlation between mRNA and protein levels is
strong enough to make mRNA quantitation a meaningful first measure
for most gene expression studies.

Initiation of transcription for a gene is dependent on two factors.
Production of mRNA requires a large group of proteins that unwind the
DNA and facilitate the polymerization of the mRNA, and these proteins
must bind to the DNA of the gene at locations called regulatory regions.
Because multiple genes may have similar regulatory regions, coordinate
gene expression can occur when the proteins in a cell increase the ex-
pression of all these target genes simultaneously. Coordinate repression
of genes may also occur when binding of a protein to regulatory regions
prevents transcription. Coordinate regulation allows groups of genes
to be acted on as a unit, which is important given that many cellular
actions require multiple types of proteins.

3.1 Network clustering

Genetic interactions are frequently represented as networks, where the
nodes correspond to genes, and a (possibly directed) link is introduced
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between genes A and B if the presence or absence of gene A’s encoded
protein enhances or suppresses the expression of gene B, or vice versa.
The local properties of a gene-regulatory network are measured by how
closely they resemble a clique [77]. The clustering coefficient ¢; of a node,
defined as

2
Cc; = m;aijailaﬂ, (11)

measures the degree to which the neighborhood of a node resembles a
complete subgraph built from triangles, and is the ratio of the actual
number of triangles to possible triangles, for which node i is a member.
The average clustering coefficient (C) = (1/N) )", ¢; provides informa-
tion on the global distribution of links. A value of (C) close to unity
indicates a high level of modularity, or cohesiveness of triangles, in the
network, while a value close to zero indicates a lack of modularity. It is
customary to test the significance of a particular (C)-value by compar-
ing it to a random-network model with the same number of nodes and
edges [2]. Typical random graphs have an average clustering coefficient
of <C>Ttmd = 2]\4/1\72'

Assuming that a network has a non-zero (C), we further investigate
the network’s large-scale modularity structure by studying the average
clustering as function of degree k [19],

_ 2 fiki=k} Ci
D {iksmk} L

If the network shows a hierarchical modularity [64], the clustering C (k) ~
1/k. In this case, nodes with few neighbors tend to have network-
neighborhoods with high clustering, while the highly connected nodes
act as bridges tying the network together.

O(k) (1.2)

3.2 Network motifs

It has long been argued that biological systems are functionally modu-
lar [36], and understanding how this modularity is reflected in biological
network is a primary goal. Given this modularity, additional questions
arise, for example what network modules, or partitions, carry functional
information, and how does the functional modularity depend on the
environmental conditions and the dynamic states of a gene-regulatory
network? An interesting possibility was suggested in [47, 48, 74], intro-
ducing the idea of network “motifs” as the functional building blocks of
a gene-regulatory network. They suggest that these networks contain
particular sub-graphs, many with easily identifiable functions such as
feed-forward loops, at a significantly higher frequency than should be
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expected by chance alone. The enrichment of biological networks with
functional motifs is seen as a result of the evolutionary processes shaping
the system [48]. However, the recent results in [75] indicate that caution
is needed to determine if a motif is over expressed. By designing ran-
dom networks that matched the experimental results, they found that
certain sub-graphs occur at higher frequencies than in random networks
without this restriction.

4. Protein Interaction Networks

As stated above, the majority of the structural and functional macro-
molecules in a cell are proteins, and the presence of these proteins is
tightly regulated by the cell mainly through initiation of transcription.
Even after translation of an mRNA into a protein, however, the protein
may not be functional. The activity of many proteins is influenced by
modifications such as the addition of chemical groups by other proteins,
binding of cofactors (which may include other proteins), or cleavage by
other proteins, to name a few. These mechanisms allow for rapid cellular
responses by relying on quick modifications of existing proteins rather
than de novo production. Another advantage is that modification allows
for coordination and amplification of a signal if a single protein can in-
teract with many other proteins. The protein interaction network (PIN)
thus forms another level of biological organization that influences the
cell.

The data needed to characterize the PIN include determination of the
set of proteins present in a cell (the proteome), the state or location
of those proteins if variable, and how these proteins interact. High-
throughput methods to provide these data are developing, albeit more
slowly than methods used to identify mRNA levels. This disparity is due
to the lack of means to artificially increase the amount of any particular
protein in a sample. The technique of polymerase chain reaction allows
biologists to harness the natural process of DNA replication to make
millions of copies of any known DNA or mRNA molecule in a biological
sample, but no comparable technology exists for proteins.

When working with biological samples, specfic proteins can be de-
tected using either antibodies or techniques that separate proteins based
on biochemical properties and then calculate a molecular weight and
compare that to a database of known protein weights. These techniques
can sometimes reveal whether or not a protein has a phosphate group
attached, for example, or whether it is in a particular subcellular lo-
cation. Interactions between proteins can be determined (1) by assays
that use antibodies to pull proteins out of cellular extracts and look
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for proteins that are associated with the protein removed; (2) by assays
that use synthetic hybrid proteins that produce a visible result if two
proteins physically interact; or (3) by in wvitro or in vivo experimenta-
tion with cells and/or organisms that have had specific genes mutated.
Bioinformatics provides another method whereby protein function may
be inferred by comparing the sequence of a protein to genes with known
function. There are functional regions of proteins, called domains, that
occur in many different proteins, which can be detected in the DNA or
protein sequence. If a protein contains a sequence similar to a known
functional domain, the protein is also assumed to have that functionality.

In constructing a graph to represent the PIN, the individual proteins
are the nodes, and the existence of an interaction between a pair of pro-
teins corresponds to an edge between the nodes. As seen above, there are
many ways in which proteins may physically interact. Relations between
proteins may also be established by examining mRNA profiles, for ex-
ample. If the mRNA profiles of two proteins have a high correlation, we
assume the corresponding proteins are related and include the edge even
if there is not a physical interaction. Each of these techniques provides
different information, and combinations thereof are thus important for a
more complete characterization of the proteome and the protein-protein
interactions that occur.

4.1 Connectivity distribution

Analyzing systems as disparate as the World Wide Web and a PIN
has revealed surprising similarities in their structural organization. One
simple characterization is the average number of nearest neighbors, or
average degree. In a PIN, this corresponds to an average protein’s num-
ber of interaction partners.

The average degree is simply (k) = (1/N)>_,;; a;j. However, this
measure does not provide detailed insight into the structure of a net-
work. To gain further insight into the structure of a PIN, we study
the connectivity, or degree, distribution P(k), which is the number of
nodes of degree k. From this measure, we determine the variation in
connectivities on the network. Such distributions were studied by Erdos
and Rényi [12], and they showed that random graphs lead to a Poisson
distribution. However, for many real networks, P(k) does not have a
Poisson-type behavior as predicted by the Erdds-Rényi random graph
model. Instead, P(k) frequently adheres to a heavy-tailed distribution
often modeled as a power-law P(k) ~ k=< [2]. This is the case for the
PIN of the yeast S. cerevisiae, the nematode C. elegans, and the fruitfly
D. melanogaster in Figure 1.2 (see also Table 1.1).
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Figure 1.2. Connectivity distribution P(k) for the protein-interaction networks of
(a) the yeast S. cerevisiae, (b) the nematode C. elegans, and (c) the fly D.
melanogaster [10].

It is interesting to note that if the connectivity distribution had been
single-peaked, such as Poisson or Gaussian, the notion of a “typical”
node, as described by the average degree (k), would have been valid.
However, this is not the case for a heavy-tailed PIN. In these networks
the majority of the nodes only have a few interaction partners while
they coexist with nodes that participate in hundreds of interactions.
Consequently, there is no typical node. Such networks are typically
called “scale-free,” and nodes with a large number of interactions are
called “hubs.” Hub proteins often have biological properties that are
significantly different from non-hub proteins.

Organism | Nodes | (k) | S | (C) | (Crana) | »p
S. cerevisiae 5298 19.04 | 5294 | 0.154 | 0.0036 | -0.040
C. elegans 2774 3.14 | 2551 | 0.020 | 0.0011 | -0.159

D. melanogaster | 7490 6.67 | 7372 | 0.030 | 0.00089 | -0.039

Table 1.1. Properties of three whole-organism protein-interaction networks available
from [10]. For each network, we have indicated size, average node connectivity (k),
size of the giant component S, average clustering (C'), average clustering for a com-
parable Erdos-Rényi random network (Crqnd), and assortativity p, which is defined
momentarily.
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One of the most popular network models to capture the heterogeneity
of the connectivity distribution was proposed by Barabasi and Albert [6].
It is similar to the network model by Price [63] (see [53] for a detailed
discussion). These models are based on the notion that in a growing net-
work, new nodes are not connected with uniform probability to already
existing nodes. Instead, new nodes have a higher chance of connecting to
those with many neighbors than to nodes with few. This is often called
the “rich get richer” effect or “preferential attachment.” If the chance
of connecting to an already existing node ¢ is linearly proportional to
the degree, the resulting connectivity distribution is a power-law with
an exponent of 3 [2, 53].

4.2 Network assortativity

In many real networks, properties of adjacent nodes are correlated.
In particular, it is often the case that the connectivities of neighboring
nodes are correlated, making P(k;,k;) # P(k;)P(kj). Several meth-
ods have been developed [46, 51, 52, 60] to measure these connectivity
correlations, and we highlight two such methods.

The first method of [60] measures connectivity correlations by calcu-
lating the average nearest-neighbor degree:

1
knng = k—izj:kjaij (1.3)

Consequently, k,,, ; measures the affinity with which a node i connects to
other nodes of either high or low degrees. In Figure 1.3 we have plotted
knn(k), which is defined by

D {iksmk} Fnnsi
Fnn (k) = m (1.4)

So, knn(k) is the average neighborhood degree for nodes with connec-
tivity k, If knpn (k) is an increasing function of k, the network shows an
assortative mixing and high-degree nodes preferentially tend to be con-
nected to other high-degree nodes. For the opposite situation, where
knn(k) is a decreasing function of k (as in Figure 1.3(b)), low-degree
nodes tend to be connected to high-degree nodes, and the network is
disassortative. This is typically the case for computer networks, where a
limited number of servers are connected to a large number of individual
computers [60].

The second method of measuring degree-degree correlations collapses
the distribution P(k) into a single value called the assortativity of the
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Figure 1.3. Average nearest neighbor connectivity knn (k) for the protein-interaction
networks of (a) S. cerevisiae (b) C. elegans, and (c) D. melanogaster [10].

graph [51]. This index is a Pearson correlation in nearest neighbor de-
grees, defined as

) = MY, jiki — (33,06 + ki))2 (15)

= 7 )
IM Y2+ k2) — (55,6 + ki)

where the sums are over edges, and the numbers j; and k; are the con-
nectivities of the two nodes connected by edge i. The distribution &, (k)
and the assortativity index p are related as follows. If ky,, (k) is uniform,
then p = 0. However, if k,, (k) is increasing or decreasing, then p is posi-
tive or negative, respectively. The magnitude of p indicates the strength
of the correlation. It is straightforward to develop similar expressions
for directed networks [52].

The last column of Table 1.1 shows the assortativity p for three whole-
organism PINs. As expected, the trends displayed in Figure 1.3 agree
with the assortativity correlations calculated from equation (1.5). In
particular, panels (a) and (c) show no clear increasing or decreasing
trend in ky,,(k), which agrees with the calculated assortativity values
close to zero. Taken together, these two methods offer detailed insights
into the connectivity correlations of a network.

4.3 Community finding

The network properties just discussed are based on characteristics of
individual nodes, such as clustering, average degree and connectivity. As
stated previously, a longstanding hypothesis is that biological systems
are modular, meaning that they consist of separable functional units.
The idea of a community is different from the previous properties since
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it considers the entire network. By carefully analyzing a network, we
identify modules as collections of nodes that are tightly connected when
compared to the full network. These modules are often biologically sig-
nificant. For instance, since proteins that exist in a cell as a complex
are commonly members of the same functional class, we expect a tightly
connected region to indicate a single functional class [61, 62, 72, 79].

Several methods are currently available to detect community struc-
tures. Many of these were developed by sociologists, who have long
been interested in community analysis. Unfortunately, these methods
typically were designed for small networks and are not tractable on net-
works consisting of several thousands of nodes. Many of these methods
are related to a measure called betweenness-centrality (BC), which is
related to shortest paths [14, 26, 50, 76].

The study of shortest paths on networks is the source of the term
‘small-world’ [77]. The length of the average shortest path, ¢, between
two nodes can be calculated using a breadth-first search, which has com-
plexity O(NM). In a random network, such as that of the Erdos-Rényi
model, the average shortest distance scales with the network size as
¢ ~ In(N) [12]. The betweenness-centrality of an edge or node is the
fraction of shortest paths that pass through the node or edge (see [50]
for a detailed discussion).

A typical algorithm based on BC is to recursively remove the edge
with the largest BC value, followed by recalculating the BC values for
the remaining network. The complexity of such an algorithm is O(N3).
Approximations where the BC values are only calculated for the initial
network are much faster, but the gain in computational run-time reduces
accuracy.

There are alternatives to the BC approach, and we discuss two such
methods. These techniques have the advantage of rapidly identifying
communities on large networks with high accuracy. The first method
is due to Newman [54] and is described as agglomerative hierarchical
clustering. Let @ be the following measure of network modularity for
any node partition

2

Q:Z €ii — Zeij ; (1.6)

J

where e;; is the fraction of edges in the network connecting nodes from
module ¢ to those of module j. This measures the number of inter-
community links relative to that of a random occurrence. A value near
0 suggests that there is little information in the chosen partition, whereas
a value greater than 0.3 indicates significant modularity [54].
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Newman suggests optimizing () heuristically by starting with N com-
munities (one for each node) and joining the two that render the highest
value of (), which may increase or decrease the current value. When all
nodes have been joined into a single module, the algorithm is finished
and the optimal value of () indicates a collection of communities. This
approach is O(N?) and has been successfully applied to systems with
more than 50,000 nodes. Furthermore, it is possible to generalize this
community detection algorithm to incorporate varying link-strengths.

The second alternative to the BC method is called k-clique percola-
tion [57]. Unlike the method just described, this technique does not re-
quire that each node belong to a unique community. For many networks
this is favorable. For example, a protein may have multiple functions
and naturally belong to many communities.

This method is based on the observation that a community often
decomposes into nearly complete subgraphs that share nodes. Conse-
quently, this method is based on the k-clique. A network module is
defined as the union of all k-cliques (for a fixed k) that share k — 1
nodes, and thus are adjacent on the network. An alternative description
is that of a “rolling” k-clique, only moving one node at the time.

A further benefit of k-clique percolation is that it allows a higher-
level representation of a network. We may collapse the graph so that
each community is a node, and two communities are connected if they
have a non-empty intersection. This makes it possible to introduce a
scalable map of the network that represent the communities at different
levels of magnification, with the highest magnification corresponding to
the actual nodes, the second level to communities, the third level to
communities of communities, etc.

4.4 Biology and topology

So far we have discussed topological properties of PINs without em-
phasizing the connection between network representations and biological
information. The first indication that a PIN might carry biological in-
formation arose from questions of robustness [3], which demonstrated
that networks with heavy-tailed connectivity distributions were robust
against random failures yet fragile when an attack occurred at a highly
connected node.

Molecular biology techniques allow for the experimental disruption of
single genes, and examination of the phenotypes of these modified or-
ganisms can reveal whether the disrupted gene is essential for survival
of the organism under a set of defined conditions. In fact, a large-scale
experimental study in S. cerevisiae shows that only 18.7% of the to-
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tal number of genes are essential on disruption or removal [29], while a
study on E. coli found 13.7% of the genes are essential [27]. Motivated
by these experimental observations of network fragility, Barabési and co-
workers investigated the possibility of correlations between a protein’s
connectivity and phenotypic essentiality, discovering an increased likeli-
hood for highly connected proteins to be essential [43]. In other words, a
protein that has a large number of interaction partners is more likely to
be involved in an essential cellular function, often called the “centrality-
lethality” rule. Although recently debated, the centrality-lethality result
is considered robust [9].

A recent study suggests that this increased lethality of highly con-
nected proteins can be explained by a simple mechanism [37]. The idea
is to support the centrality-lethality rule by assuming essential nodes and
links are randomly distributed on the network. The function of an es-
sential link is carried out by the interaction of the incident proteins, and
both nodes are essential. This model generates the centrality-lethality
rule through the simple fact that it is more likely for a hub to be part
of an essential link than a low degree node. By choosing the essential
link and node fractions appropriately, it is possible to fit the observed
centrality-lethality rule within experimental error bars [37].

Since highly connected proteins occupy a special role in the network,
it is interesting to ask whether hub proteins evolve at a different pace
from proteins with only a few interaction partners. The rationale for this
question is that change to hub proteins might be constrained due to their
interactions. While initial results were contradictory [18], a recent more
decisive study [9] showed these results could be explained by subtle
biases in the methods used to generate the PINs. After accounting
for the equal density of active domains in hub and non-hub proteins,
it was shown that there are not significant differences in mean rate of
protein evolution. The hub proteins of S. cerevisiae did, however, contain
a higher number of phosphorylation sites than non-hub proteins and
showed a marked trend of being encoded by mRNA’s with short half-
lives. Taken together, this indicates that highly connected proteins are
subject to much tighter control, being part of a dynamic, short-lived
protein complex [9].

We have focused on static aspects of a PIN, but proteins are constantly
produced and degraded and many interactions occur in specific cellular
locations, such as the cellular membrane. A more realistic depiction
would address the temporal and spatial aspects of the situation. Whole-
organism protein-expression arrays are currently unavailable, and the
chosen substitute has been mRNA expression arrays. The recent anal-
ysis in [35] indicates that highly connected nodes in the S. cerevisiae
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PIN can be either “date-hubs”, binding to their partners at different
times or locations, or “party-hubs” interacting with most of their neigh-
bors simultaneously. Including temporal aspects such as this allows us
to investigate information flow since the temporal activation of protein
transcription is reflective of evolved regulatory mechanisms that ensure
proper cellular responses to external stimuli.

5. Metabolic Networks

Life depends on the ability to import molecules from the environ-
ment and convert these to the needed metabolites. These conversions
are carried out by enzymes that catalyze (facilitate) specific conversions
of starting molecules (reactants) into products. There may be several
intermediary steps from intial reactants to the ultimate product, each
carried out by a different enzyme, and the set of all these component
reactants, products, reactions, and enzymes forms a metabolic path-
way. Metabolic pathways can be classified as either anabolic pathways
that construct needed molecules or catabolic pathways that break down
molecules to provide necessary reactants.

The different reactions and catalyzing enzymes vary tremendously.
As seen in the previous section, the enzymes may or may not be active
depending on the presence of cofactors, modification state, etc. Another
difference between enzymes is in their rates of catalysis, which may vary
over orders of magnitude. Variation in these reaction rates affects the
overall rate of flow (flux) of metabolites in a particular pathway.

From the reactant perspective, a particular type of molecule may par-
ticipate in only one reaction or be used in several different reactions.
A reaction may require one or more reactants, and the ratios (stoi-
chiometry) of those reactants may vary. Finally, while for the most
part metabolic pathways can be assumed to be one-way, there are cases
of reversible reactions in a cell and cyclic reaction pathways that take a
reactant through a series of intermediates but end up regenerating the
initial reactant.

A cell’s metabolism is the sum of all the reactions it carries out. It is
important to recognize that while a cell has the potential to carry out
many reactions, the actual reactions that are being carried out at any one
time depend heavily on the cell’s environment. For example, differential
gene regulation in a bacterial cell will lead to different enzymes being
present under aerobic (oxygen present) vs. anaerobic (oxygen absent)
conditions or when glucose or lactose are present as the main carbon
source.



18

5.1 Metabolic network structure

To represent a cell’s metabolism with a network we need to assign
meaning to the nodes and links. The network abstraction is not unique,
and Figure 1.4 depicts several representations of a simple metabolic net-
work. The three reactions of the metabolism are found in Figure 1.4(a).
In the first reaction A+ B — C' 4+ D, we say that A and B are reactants
and C' and D are products. The most common representation of this
metabolism is represented in Figure 1.4(c), where metabolites are nodes
that are connected with an undirected link if they participate as reactant
and product in a reaction. Note that a link does not represent a single
reaction, as two metabolites may appear in multiple reactions. An ex-
ample is shown in Figure 1.4(a), where metabolites A and D co-occur in
reactions R1 and R3, and the edge or arc between A and D corresponds
to both reactions. Furthermore, one reaction appears as multiple edges
or arcs (see Figure 1.4).

An alternative representation that is particularly important for the
discussions that follow is a bipartite network in which the nodes represent
either metabolites or reactions. Allowing the set of reactions to be R and
the set of metabolites to be M, we are interested in the bipartite network
(R, M, E), where (i,r) € E if metabolite 7 is a reactant of reaction r and
(r,i) € E if metabolite 7 is a product of reaction r. A depiction is seen
in Figure 1.9.

Different network representations have different statistical properties.
Using the bacterial metabolism in E. coli as an example, Figure 1.5
shows the differences in the connectivity distribution, P(k), for the three
network representations detailed in Figure 1.4. Note that P(k) is heavy-
tailed in Figure 1.5; however, the result is not as simple when using a
bipartite network representation. In this case, it is possible to distin-
guish metabolites and enzymes. For the metabolites, the connectivity
distribution is still heavy tailed, while the enzyme distribution is ex-
ponential. This is not surprising, as cofactors such as ATP or NADP
may participate in hundreds of reactions while an enzyme has a limited
number of active domains. To further contrast and compare biases of
different network representations, Table 1.2 shows the average clustering
coefficient (C) and the assortativity index p for three organisms using
the representations in Figure 1.4(b) and (c). The clustering and assorta-
tivity corresponding to 1.4(b) is significantly higher than that of 1.4(c)
since it introduces a fully connected subgraph for each reaction.
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() (b)
R1
A+B —= C+D

R2
B —> E+F

R3
2A+E —= D

(d)

Figure 1.4. Cellular metabolism can be represented as a network. (a) A simplied
metabolic reaction set. Network description of this reaction set: (b) connecting
all metabolites in a single reaction with undirected links; (c) substrates are only
connected to products with undirected links; (d) same as (c¢) with directed links.

5.2 Weighted metabolic networks

The majority of network studies have focused on topological prop-
erties and not on the rate of metabolic activity, which can vary signifi-
cantly from reaction to reaction. This important function is not captured
by topological approaches, and to develop an understanding of how the
structure of a metabolic network affects metabolic activity, it is necessary
to include this information in the network description. A meaningful
understanding requires us to consider the intensity (strength) between
metabolites, the direction (when applicable), and the temporal aspects

Organism | N | My | M | (C)o | (C)e | po | e
H. pylori 489 | 4058 | 1920 | 0.72 | 0.28 | -0.285 | -0.261
E. coli 540 | 3753 | 1867 | 0.66 | 0.20 | -0.251 | -0.217

S. cerevisiae | 1064 | 6941 | 4031 | 0.67 | 0.23 | -0.182 | -0.150

Table 1.2. Average clustering and assortativity for three organismal metabolic net-
works using the network representations described in panels 1.4(b) and (c) - network
model indicated with a subscript.
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Figure 1.5. Connectivity distributions P(k) of E. coli metabolism using the three
metabolic network representations in Figure 1.4. (a) corresponds to panel (b); (b)
to panel (c); (c) to panel (d).

of the interactions. Although not much is known about the temporal as-
pects of metabolic activity, recent results [11, 16, 17, 23, 24, 25, 31, 68]
have provided information about the relative intensities of the inter-
actions in single-cell metabolism, which we incorporate by considering
weighted links. A natural, although not unique, measurement of inter-
action strength is the amount of substrate being converted to a product
per unit time, the flux of the reaction.

A linear optimization approach, called flux-balance analysis (FBA),
enables us to calculate the flux rate for each reaction in a whole-cell
metabolic network. The FBA method assumes that the concentration
of all metabolites that are not subject to transport across the cell mem-
brane are in a steady state. Let [A;] be the concentration of metabolite
i and S;, be the stoichiometric coefficient of metabolite ¢ in reaction r.
For example, if reaction r is 341 +2A45 — 2Ag3, then Sy, = —3, So, = —2
and Ss, = 2. If metabolite ¢ does not appear in reaction r, we assume
that S;- = 0. Allowing v, be the flux of reaction r, we have that the
steady state assumption requires

dlA:] o
= ;S“nl/r =0. (1.7)

Any flux values satisfying this equation correspond to a stoichiometri-
cally allowed state of the cell. To select flux values that are biologically
relevant, we optimize for cellular growth. Experiments support this hy-
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Figure 1.6. Distribution of metabolic reaction flux values (edge weights) from FBA
analysis for the metabolic network of the budding yeast S. cerevisiae in (a) aerobic,
glucose limited and (b) aerobic, acetate limited conditions.

pothesis in several conditions, but there are other meaningful objectives.
See [13, 44] for a more detailed discussion of FBA.

The recent advances in whole-genome annotation have made it pos-
sible to generate high-fidelity whole-cell metabolic networks. Metabolic
models of the bacteria H. pylori and E. coli, as well as the eukaryote S.
cerevisiae, have been used to predict essential genes [21, 20, 59, 69], ge-
netic interactions [73], and possible minimal microbial genomes [15, 56].
The fluxes from FBA measure each reaction’s relative activity. In partic-
ular, the work of [4] demonstrates that similar to the degree distribution,
the flux distribution of E. coli displays a strong overall inhomogeneity:
reactions with fluxes spanning several orders of magnitude coexist in
the same environment. The flux distribution for S. cerevisiae in Fig-
ure 1.6 is heavy-tailed, indicating that P(v) o< v=%. The flux exponent
is predicted to be @ = 1.5 by FBA methods. In a recent experiment,
the strength of the various fluxes of the central metabolism of E. coli
was measured using nuclear magnetic resonance (NMR) methods [23],
revealing the power-law flux dependence P(v) oc v~!. This power law
behavior indicates that the vast majority of reactions with small fluxes
coexist with the few reactions that have large fluxes.

The FBA approach allows us to analyze a metabolism as a weighted
network since each reaction is assigned a flux value. These values are
node weights in the bipartite representation (R, M, E). Unfortunately,
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the identity of a reaction in the other network models is opaque because
each reaction is a subgraph corresponding to the metabolites of the re-
action. To translate the node weights v, of the bipartite representation
to link weights of another representation, we let

wig = > St + Y Sjrtn]
T T

which is the aggregate rate at which metabolite ¢ transforms into metabo-
lite j. Generally, negative edge weights are possible and simply mean
that metabolite j transforms into metabolite 3.

Several measures have been introduced to study weighted networks
in the context of airline transportation and the relationship between co-
authors. One of these is called the “strength”, s;, of a node i, defined
as s; = ) wjja;;, which is simply a weighted node degree [7]. Fig-
ure 1.7 shows that the distribution of node strengths, P(s), for the E.
coli metabolism with glucose as the single carbon source is

(s(k)) ox k°. (1.8)

For networks without correlations between the node connectivity and
link-weights, the weights w;; are independent of i and j, and we can
represent the link-weights with their average value: w;; = (w), making
g=1][1.

We continue by generalizing the clustering coefficient to weighted net-
works. Since ¢; indicates the local density of triangles, a similar definition
with link-weights should determine if large or small weights are likely to
be found in clusters. One possible definition from [7] is

1 1
Cai = m ; 5 (wij +wir)aijagaj, (1.9)

where s; is the node strength. The average weighted clustering is (C,) =
(1/N)>", cas- If no correlations exist between weights and topology,
equation (1.9) is equal to that of the unweighted clustering (see equa-
tion (1.1)). We identify two possible scenarios. If (C,) > (C),
large weights are predominantly distributed in local clusters, whereas
if (Cy) < (C), triangles consist of low-weight links.

Other possible definitions of a weighted clustering coefficient have
been proposed [41, 55, 80]. The weighted clustering coefficient expression
in (1.9) only includes two weights of any triangle through node i. The
following definition from [55] extends this so that all three weights are
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Figure 1.7. Distribution of node strength values for S. cerevisiae metabolism in (a)
aerobic, glucose limited, and (b) aerobic, acetate limited conditions.

considered,

2 1/3
Cb,i = )]{ (k‘z — 1) ; (wijwilel) / aijailajl. (110)

(maxi;{wij }) ki

Notice that this is a geometric mean instead of an algebraic mean like (1.9).
The average weighted clustering is (Cp) = (1/N) Y. ¢y ;. Related analy-
sis from finance has shown that (1.9) and (1.10) can lead to significantly
different interpretations [55].

5.3 Fluxes and metabolic network structure

The flux distributions of a metabolic network rely on the network
topology. Some of this dependence is understood by studying the corre-
lation between w;; and k; and k;. The metabolic fluxes in E. coli scale
as

Wi 4

ij:kik;=k
<wij> = % 0.8 (/ﬂik‘j)e, (1.11)

{iskik;=k}
where 6§ =~ 0.5 for metabolic fluxes in glucose limited conditions in S.
cerevisiae (Figure 1.8(a)) and E. coli [45]. However, other values for 6
are possible, as demonstrated in Figure 1.8(b), where we find 6 ~ 0.7
for acetate limited conditions. In the case of no correlations between
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Figure 1.8. Correlation between (normalized) edge-weights and local connectivity
for metabolic fluxes in S. cerevisiae in (a) glucose limited and (b) acetate limited
conditions, as well as (c) betweenness-centrality for the Barabasi-Albert model [45].
The dashed lines serve as guides to the eye.

the connectivity k; and kj, we have from [7] that the exponent 6 in
equation (1.11) is related to 8 (equation (1.8)) in the scaling of node
strength as 3 =1+46.

We further investigate how the flux values depend on the network
topology at the single metabolite level. There are two flux structures
of interest. A homogeneous local organization implies that all reac-
tions producing (consuming) a given metabolite have comparable flux
values. On the other hand, a more delocalized, or “hot backbone,” is
expected if the local flux organization is heterogeneous. To distinguish
between these two scenarios, we define the following measure [4, 8] for
each metabolite produced or consumed by k reactions, define Y (k,7) by

b Sirl, ?
Y(k,i)zZ( e ) . (1.12)

k
= \ 1= Sav

If all reactions producing (consuming) metabolite i have comparable
values, Y (k,i) scales as 1/k. However, if a single reaction’s activity
dominates equation (1.12), we expect that Y (k,i) ~ 1. For the two
cases where the E. coli metabolic performance is optimized with glucose
and succinate as the only available carbon sources, we find that sepa-
rately calculating Y (k, ) for the in and out degrees follow the power law
Y(k,i) ~ k=927, We interpret this as intermediate behavior between
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the two cases described above. However, the exponent of —0.27 indicates
that the large-scale inhomogeneity observed in the overall flux distribu-
tion is increasingly valid at the level of the individual metabolites.

The local flux inhomogeneity suggests that we can identify a single
reaction dominating the production or consumption of most metabo-
lites. A simple algorithm is capable of extracting the subnetwork solely
consisting of these dominate reactions, called the high-flux backbone
(HFB) [4]. The algorithm has two steps,

1 For each metabolite, discard all incoming and outgoing links except
the two dominating mass production.

2 From this set of reactions, keep only those reactions that appear
as both maximal producer and maximal consumer.

The resulting HFB is specific to the particular choice of environmental
conditions. Interestingly, the HFB mostly consists of reactions linked to-
gether, forming a giant component with a star-like topology that includes
almost all metabolites produced in a specific growth environment. Only
a few pathways are disconnected: while these pathways are members
of the HFB, their end-products serve only as the second most impor-
tant source for some other HFB metabolite. Connected reactions in the
HEFB largely agree with the traditional, biochemistry-based partitioning
of cellular metabolism. For example, in E. coli all metabolites of the
citric-acid cycle of are recovered, as well as most of the other impor-
tant pathways, such as those being involved in histidine-, murein- and
purine biosynthesis. While the detailed nature of the HFB depends on
the particular growth conditions, the HFB captures the reactions that
dominate the activity of the metabolism for this condition. As such, it
offers a complementary approach to the analyses in [58, 70, 71].

Our final discussion about metabolic networks focuses on identifying
the reactions that are used in varying environments, and we explore how
the fluxes depend on environmental changes. Referring to Figure 1.9, we
let vg be the collection of uptake fluxes that provide nutrients (resources,
inputs, etc.) to the cell. We also let ¢ be the reactions that occur within
the cell (output reactions are not considered). For each v, we let 75 (vR)
be the point-to-set map whose image is the collection of reactions that
can have a positive flux while the cell achieves optimal growth with the
input fluxes fixed at vg. The metabolic core is

m TE(VR)v
I/RZO

which defines the reactions that are allowed to be active in any environ-
ment when the cell achieves optimal growth.



26

A stochastic procedure to calculate the metabolic core is to uniformly
sample the set of input fluxes and use FBA to optimize growth for each
sample. If a reaction’s flux is positive, we know that this flux is in
r&(vr) for the sample. Taking the intersection of these sets over the
sampled inputs yields a subset of the metabolic core. The computational
results in [5] sampled 30,000 input fluxes between 0 and 20 (20 is large
enough to guarantee that a nutrient is available if needed, and hence,
setting the intake fluxes to 20 assumes the cell is in an environment
with unlimited resources). The metabolic core contained 138 of the 381
metabolic reactions in H. pylori (36.2%), 90 of 758 in E. coli (11.9%),
and 33 of 1,172 in S. cerevisiae (2.8%).

The metabolic core is partitioned into two types of reactions. The first
type consists of those that are essential for biomass formation under all
environmental conditions (81 out of 90 reactions in E. coli), while the
second type of reaction is required only to assure optimal metabolic per-
formance. In case of the inactivation of the second type, alternative sub-
optimal pathways can be used to ensure cellular survival. The metabolic
core of S. cerevisiae, however, only contains reactions predicted by FBA
to be indispensable for biomass formation under all growth conditions.

The analysis in [5] further suggests that optimal metabolic flows ad-
just to environmental changes through two distinct mechanisms. The
more common mechanism is “flux plasticity,” involving changes in the
fluxes of already active reactions when the organism is shifted from one
growth condition to another. For example, changing from glucose- to
succinate-rich media alters the flux of 264 E. coli reactions by more
than 20%. The reactions in the metabolic core always adapt to changing
environmental conditions through flux plasticity. Less commonly, envi-
ronmental changes induce “structural plasticity,” resulting in changes to
the metabolism’s active wiring diagram, turning on previously zero-flux
reactions and inhibiting previously active pathways. For example, when
shifting E. coli cells from glucose- to succinate-rich media, 11 previously
active reactions are turned off completely, while 9 previously inactive
reactions are turned on.

A similar selection of metabolic reactions was suggested by [15]. Their
“minimal reaction” contains the metabolic core as well as all reactions
necessary for the sustained growth on any chosen substrate. A different
definition of a minimal reaction set was proposed by [65], which consists
of the 201 reactions that are always active in E. coli for all 136 aerobic
and anaerobic single-carbon-source “minimal environments” capable of
sustaining optimal growth.

A reasonable speculation is that the reactions in the metabolic core
play an important role in the maintenance of crucial metabolic functions
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since they are active under all environmental conditions. Consequently,
the absence of individual core-reactions may lead to significant metabolic
disruptions. This hypothesis is strengthened through cross-correlation
with gene deletion data [27]: 74.7% of those E. coli enzymes that catalyze
core metabolic reactions (i.e. core enzymes) are essential, compared with
a 19.6% lethality fraction characterizing the noncore enzymes. A similar
pattern of elevated essentiality is also observed when analyzing deletion
data for S. cerevisiae [29], in which essential enzymes catalyze 84% of the
core reactions, whereas the conditionally active enzymes have an average
essentiality of only 15.6% [5]. The likelihood that the cores contain such
a large concentration of essential enzymes by chance is minuscule, with
p-values of 3.3e—23 and 9.0e—13 for E. coli and yeast, respectively.

Metabolic core enzymes also stand apart from the conditionally ac-
tive ones when comparing their evolutionary conservation. In comparing
the set of DNA sequences of core enzymes from E. coli with the DNA
sequences for these same enzymes in a reference set of 32 bacteria, the
average amount of sequence conservation is 71.1% (P < le—6). Similar
comparisons using the set of non-core enzymes show a sequence conser-
vation of only 47.7%. Even taking into account correlations between
essentiality and evolutionary conservation, one would expect the core
enzymes to have a conservation level of only 63.4% [5], thus showing
that selection acts against excessive tinkering with these enzymes.

These results indicate that an organism depends largely on the con-
tinuous activity of the metabolic core, regardless of the environmental
conditions. The conditionally active metabolic reactions represent the
different ways in which a cell is capable of adjusting to utilize substrates
from its environment. From a practical perspective, the core enzymes es-
sential for biomass formation, both for optimal and suboptimal growth,
may prove effective antibiotic targets given the cell’s need to maintain
the activity of these enzymes in all conditions.

6. Systems Biology and Operations Research

One of the primary research fields in Operations Research (OR) is
Network Optimization, including modeling, algorithms, and analysis.
The variety of problems that can be modeled via a network is stagger-
ing, and numerous OR experts have spent their careers analyzing such
problems. As the previous sections demonstrate, a cell’s processes can
be modeled with networks that highlight the interactions within a cell.
This is a powerful new tool for biologists, and the experts in OR are well
positioned to help advance this important science.
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The goal of this section is to highlight a few of the places where
systems biology and OR overlap. This is not meant to be an exhaustive
exposition, which is not possible in the confines of this chapter. We
encourage interested readers to look at the cited articles to begin a more
thorough investigation. No matter what the particular expertise, there
is likely an important and novel application in biology.

To begin we consider the linear program that identifies the metabolic
fluxes of a cell in a steady state. A simplistic but powerful depiction
of the associated network is illustrated in Figure 1.9. This is a bipar-
tite network where reactions on the left are linked to metabolites on
the right. For example, if r is the reaction Ay + 24, — As + 3A4, then
(Ay,7), (Ag,r), (r, A3), and (r, A4) are arcs. The cell’s inputs (resources)
are modeled as reactions that transport metabolites through the cellular
membrane into the cell. Similarly, the cell’s outputs (products) are re-
actions that transport metabolites out of the cell. We let C', R and P be
matrices of the form [S;,|, where the columns are respectively indexed
by reactions within the cell, reactions that add resources to the cell, and
reactions that terminate in products, except growth. Growth is defined
as the collection of metabolites that need to pass through the cell to
achieve a unit of growth, and we let G’ be the column vector that ex-
presses this relationship. As an example, suppose the metabolites used
to model the cell are Ay, Ao, ..., A1g. Then a unit of growth being de-
fined as 243 + A7 + 3Ag is the same as G being (0,0,2,0,0,0,1,3,0,0)T.
We point out that the matrix [C|R|P|G] is similar to the biadjacency
matrix, the difference being that the nonzero components are the signed
stoichiometric coefficients of the associated reaction.

Although the terms used to describe this network are new to OR,
the model is not. The fluxes of the reactions control the flows across
the arcs, and hence the amount of metabolites in the cell. Although
researchers often discuss a metabolic flow, the fluxes are not traditional
flow variables since they are associated with nodes instead of edges.
In particular, a positive flux can indicate that several arcs have pos-
itive flow. We let vo, vg, vp and vg be the respective flux vectors
for the reactions within the cell, the reactions that provide resources,
the reactions that make products other than growth, and the amount
of growth. The steady state assumption in (1.7) guarantees the con-
servation of metabolic flux throughout the network. This assumption
essentially balances the metabolites in the cell so that they do not ac-
crue.

Experimental results have shown that maximizing growth is a biolog-
ically relevant objective [13, 44|, and the linear program that achieves
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Figure 1.9. A simple bipartite representation of cellular metabolism.
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this is
max{z : Cvg + Rvgr + Pvp + Grg =0,
0<vgp<u,0<vp,0<vc<U}, (1.13)

where u limits the cell’s inputs and U bounds the flux values (each bound
is the maximum rate the corresponding reaction). This linear program
allows us to give a mathematical definition to a few of the terms of the
previous section. Let P(u) be the feasible region of (1.13) and make the
notational convention that P(co) means the input flows are unrestricted.
We also assume the v = (Vg , I/}Q, I/g , I/g)T. With this notation, reaction
j € C is essential (or necessary) if

{veP(x):vj=0,vg =1} =0. (1.14)

So, if reaction j is turned off, then it is impossible to achieve a unit of
growth no matter what resources are given to the cell.

Identifying the essential reactions can be accomplished by sequentially
investigating the feasibility of (1.14) for each j € C, which is possible by
optimizing the zero function over the associated constraints. However,
this tedious calculation has a more elegant solution. The question of
partitioning the reactions into those that are necessary and those that
are not is actually the problem of identifying the implied equalities in

Cve+ Rvgp+Pvp=—-G,0<vc<U,0<vg, 0<vp. (1.15)

The implied equalities of this system further indicate the inputs and
outputs of the cell that are necessary for growth as well as those reactions
that operate at their maximum rate. Identifying implied equalities has
a long and important history in OR, and we point readers to [32] and
the associated bibliography. We highlight two methods, one theoretical
and one more practical.
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The theoretical method relies on the concept of the optimal parti-
tion, which is a central topic in the study of interior-point algorithms.
Consider the standard form linear program

min{c’z : Az = b,z > 0}, (1.16)

where A € R™*™ and we assume that there is a strictly positive feasi-
ble element (Slater’s condition). Throughout the late 1980s and 1990s
interior-point algorithms were studied with regards to this problem, with
the most important contribution being that these algorithms solve the
problem in polynomial time. Fairly early in these investigations it was
realized that the solution produced by the most popular interior-point
algorithms (called path-following interior-point algorithms) differed from
the solution produced by the venerable simplex algorithm. The differ-
ence is that interior-point algorithms terminate in the strict interior of
the optimal set instead of at an optimal vertex. If there is a single
solution, there is no difference, but in the presence of degeneracy, the
solutions are different. In particular, the solution rendered by a path
following interior algorithm induces the optimal partition. Let 2* be the
theoretical optimal solution produced by a path-following interior-point
algorithm and define

B={i:z; >0} and N = {i:z; =0}.

Clearly (B, N) is a two set partition of {1,2,...,n}, but this partition
uniquely defines the optimal set,

P*={z: Az =b,x> 0,2y =0},

where the set subscript indicates the subvector indexed by the elements
of the set. This means that a component of x* is zero if and only if it is
required to be zero to achieve optimality. A component being positive
indicates that it can be positive in an optimal solution, but some optimal
solutions may have a zero at this component.

The conditions identifying the optimal partition of the linear program
in (1.16) are

Az =b, ATy4+s=c,2>0,5>0 27s=0,2+s>0. (1.17)

As any person in OR recognizes, these are the KKT (or Lagrange) condi-
tions of optimality with the added condition that x+s > 0. Any (z,y, s)
satisfying these conditions is called a strictly complementary solution to
the linear program, and such solutions have been known to exist since
1956 [30]. Until the advent of interior-point algorithms, strictly com-
plementary solutions held theoretical value only. If (x,y, s) satisfies all
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but the last condition, i.e. z; + s; = 0 for some %, then the solution is
degenerate. Any pair (z;,s;) such that x; + s; = 0 is called a degener-
ate pair and the extent of degeneracy refers to the maximum number
of possible degenerate pairs. Degeneracy is a topic that is mistakingly
ignored in many first courses in linear programing, a pedagogical mis-
take that propagates misguided analysis [42]. Understanding degeneracy
provides for robust and sound analysis that appropriately explains the
problem, and as we shall see momentarily, metabolic networks are highly
degenerate.
A linear program that identifies the essential reactions is

min{0%ve + 0T vg + 0T vp
Cvec+ Rvgp+ Prp = —-G,0<ve <U0<wvp0< I/p} (1.18)

Adapting (1.17) to this problem, we see that we want to solve

Cvc + Rvgp+ Pvp = -G, (vo,vRr,vp) >0, vo <U
Cly+st—p = 0,s1>0,p>0
STy+s> = 0,s2>0
PTy +s3 = 0, s3>0,
vEst +vkst +vps® = 0
p'U—-ve) = 0

(V07VR>VP)+(31782>83> > 0

p+(U—-ve) > 0.

In theory, solving (1.18) with a path-following interior-point algorithm
should return a solution that satisfies this system. However, numeri-
cal instabilities often lead to the failure of the last two conditions —i.e.
path-following interior-point algorithms regularly return a degenerate so-
lution instead of the strictly complementary solution they theoretically
should. As an example, we solved the linear program that maximizes
growth for the metabolic network of yeast with two popular interior
solvers, CPLEX’s barrier method (with crossover turned off) and PCx.
Table 1.3 indicates the difference between theory and practice appears es-
pecially wide in this metabolic network. We point out that this problem
does not address the linear program in (1.18) but instead solves (1.13)
over P(20e). From a biological perspective 20 provides sufficient re-
sources to achieve growth, so this problem is an adequate surrogate.
What is important to observe from Table 1.3 is that even if variables
greater 10710 are declared positive, the metabolic network is at least
33% degenerate (the true extent of degeneracy would be the maximum
number of degenerate pairs). Remember that these algorithms should
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Tolerance for Zero
1078 10716
CPLEX | 552 / 1382 (40%) | 376 / 1382 (27%)
PCx | 606 / 1382 (44%) | 457 / 1382 (33%)

Table 1.3. CPLEX’s barrier method (with crossover turned off) and PCx were used
to maximize the flow into the growth node over P(20¢). Although the solution should
be strictly complementary, both solvers terminated with highly degenerate solutions.

theoretically provide a solution that is void of degeneracy, which high-
lights the fact that this problem has interesting and difficult numeric
properties.

As the numerical results show, the theoretical value of an interior-
point algorithm can be undermined by numerical instabilities. So, we of-
fer a recent alternative that was born out of the necessity for researchers
to overcome the same problem when investigating the optimal design
of radiotherapy treatments [22]. The goal of this technique is to force
variables to be positive by decreasing the largest values of a solution.
When this is done iteratively, the result is called the balanced solution.
To define this solution, we let sort(z) be the function that sorts the ele-
ments of x and lists them in descending order. The balanced solution is
defined as the unique solution to

lexminsort = lexmin{sort(x) : Az = b,z > 0},

where lexmin is the lexicographic minimum. It is easy to show that if
Xe is feasible and A and b are both positive, then the solution to this
problem is Ae, which means that this technique correctly identified that
each component of z can be positive in a feasible solution.

Adapting this idea to the metabolic network, we have

lexminsort = lexmin{sort(vc, vgr,vp) :
Cvc+ Rvgp+ Pvp=—-G,U >ve >0,vg >0, vp > 0}.

This technique of identifying the implied equalities is new and has not
been thoroughly tested. An interesting direction for future research is
to compare the speed and results of this method to those in [5, 15, 65].
We mention that there are interpretive advantages in this approach. For
example, suppose that that largest value of this calculation is v; = [. If
1 € C, this indicates that reaction ¢ must have flux [ to achieve a unit of

growth. Similar interpretations correspond to the cases of ¢ being in R
and P.
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There are only a few mathematical results regarding the calculation
of lexminsort. One of these is that the solution is unique, and we let z*
be this solution. Similar to the definition of B and N, we let 8 = {i :
xf >0} and n = {i: 2f = 0}. A desirable property would be for B =
and N = n, however there are examples for which this is not the case.
This means that x* does not generally identify the optimal partition.
Preliminary numerical studies have shown that it is often the case that
z* does induce the optimal partition, and the authors suggest that it is
likely for metabolic networks. The insight comes from the fact that this
method ‘smooths out’ the flux values by reducing the maximum flux,
which in turn should cause other fluxes to increase.

There are several questions left to be answered about the linear pro-
gram in FBA. As mentioned earlier, the constraints of this problem
require that the fluxes adhere to a steady state assumption. However,
a cell’s state is dynamic rather than static. A major research direc-
tion is to use this technique to understand the how the fluxes change as
the cell’s environment changes. The environment is currently modeled
through the cell’s inputs, and asking how the the fluxes change is a ques-
tion in classical sensitivity analysis. Since the solutions are significantly
degenerate, a more appropriate question is how does B and N change
with regards to the upper bound vector u. This question was studied for
general linear programs in [1, 38, 40, 49, 67|, but the special properties
that exist in FBA are completely open. An alternative would be the
modern interpretation of robust optimization, which provides comple-
mentary information to classic sensitivity analysis.

The steady state assumption prohibits metabolite accumulation. A
more realistic model would allow metabolites to accrue and then have
different reactions process these metabolites. However, we do not know
what objective, if any, would eliminate the extra metabolites. One sim-
ple experiment would be to replace the constraints with

Cve+ Rvr+ Prp+Grg>0,0<vyc <U,0<vg <u,0<vp,

which relaxes the steady state assumption and allows metabolites to
accumulate. Maximizing growth with this set of constraints will likely
show that some metabolites remain in the cell. This is not realistic, so a
secondary (or tertiary, etc.) objective is likely governing the elimination
of metabolites. This re-casts FBA into the realm of multiple objective
programming, which is likely more appropriate. This is an untapped
research venue.

Another area where the degeneracy in FBA has been ignored is that
of calculating the HFB. This calculation depends on an optimal solution
from FBA, but the high level of degeneracy implies that the dimension
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of the primal and/or the dual solution spaces is significant. Categorizing
the source of degeneracy as primal or dual for each pair would add insight
to the problem. Moreover, it would be interesting to know the variability
of the HFB is over the optimal set, see [78] for related work.

Outside of FBA, we have from earlier sections that community iden-
tification is important. The algorithms used to identify communities
need to be efficient due to the size of most biological networks. Mathe-
matical programmers are trained in algorithm design and analysis, and
these skills are needed. As previously mentioned, the BC measure used
for many social networks is O(N?). This polynomial bound is typically
considered favorable, but the cubic growth is realized in implementation,
making this attack less attractive on large networks. The alternative
based on (1.6) is O(N?2). These are both significantly better than clique
finding, which is a classic NP-complete problem.

The recent suggestion of k-clique percolation [57] was published with-
out complexity analysis, which is understandable since the first step is
to locate a k-clique, and hence, the algorithm is NP-complete. However,
k is typically smaller than the size of the maximum clique, and identi-
fying a small clique is generally considered simple. This begs the ques-
tion, What is the complexity of identifying a community from a known
k-clique? A simple argument shows that the algorithm in Table 1.4
locates a community in O(A¥N?), where A = max{deg(v) : v € V}.
Since A < N, we generally have the possibility of O(N**2), which is
polynomial for fixed k& but is worse than both of the other algorithms
since k > 2. The numerical computations in [57] do not indicate that
this bound is achieved in practice, and an interesting direction for fu-
ture research would be to explain the difference between the theoretical
complexity and the practical efficiency.

The traditional clustering techniques of k-means and k-medians can
also be used to identify communities. Both of these problems are tradi-
tional facility location problems in OR and their application to biological
networks deserves attention. Although facility location is related to com-
munity finding, it is inherently different. This is because facility location
is concerned with locating positions that optimize some quality of an as-
signment to these positions. So these problems have the two goals of
grouping entities and assigning a representative to each group, which
is often (but not necessarily) a member of the group. The community
idea equates nicely to grouping, but how the representative part leads
to biological information is not known. We discuss the recent results
of [39] to foreshadow some future applications of the k-median problem
in systems biology.
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1 Let C be the nodes of an initial k-clique.
2 Set C' = 0.
3 For each v € C:

a For each v' € N(v)\C:

i If IN(v)UN(v)UC| > k—2, add nodes N (v")UN (v)UC
to C'.

4 IfC"#0,let C=CUC" and go to 2.

Table 1.4. An algorithm to calculate a community from a known k-clique.

The k-median problem is one of the 4 primary questions in discrete lo-
cation theory (the others being the k-means problem, the uncapacitated
facility location problem, and the quadratic assignment problem). Ini-
tial investigations into the problem were undertaken by Hakimi [34], and
this work spawned a substantial literature [66]. Hakimi’s original intent
was to locate positions from the continium of a network or graph —i.e.
facilities were allowed to be positioned on an edge or vertex. This is a
graph restriction of the classic Weber problem. Assuming that positions
on the graph were related by a metric, Hakimi proved two significant
results: 1) There is always an optimal facility location for which the fa-
cilities are located at vertices and 2) The problem of optimally locating
facilities is NP-hard in N and k. An often overlooked and misunder-
stood property is that the problem is polynomial for a fixed k, making
it fixed-parameter tractable.

The discrete k-median problem is concerned with selecting &k positions
on a graph from a discrete set P on (V, E). The positions in P can be
located on any edge or vertex and it is assumed that V' C P. Each pair
of positions is related by a nonnegative similarity score d(p,p’), which
need not be a metric, and each node is assigned a weight S(v). The
discrete k-median problem is

min Z Z d(p,v)B(v) :PC(V,E), |[Pl=k ;,

peEP veV,

where

Vy ={veV:d(vp) <d(v,p) for peP}. (1.19)
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Any collection of k positions solving this problem are called medians.
The nearest neighbor condition in (1.19) assigns the vertices of the graph
to the medians, but unfortunately, this definition does not uniquely de-
fine V}, since some nodes may be equally similar to multiple medians.
However, the assumption that |P| < |N| allows us to list the elements of
P, and subsequently to decide ties by assigning the vertex to the position
with the least index. A result in [39] similar to Hakimi’s original work
shows that there is always a solution of vertices.

With regards to community location, it makes sense that P = V.
However, although the similarity measure d and the node weight § are
natural in many OR applications, their interpretation in a biological
framework is not clear. Indeed, the communities are defined in terms
of these graph characteristics, and it is likely that they can be tailored
to different biological situations, yielding a flexible model. In the dis-
cussions that follow, we assume that P = V, d(p,p’) = |lp — p'[|2 and
B(v) = 1. The use of the Euclidean norm implies the network is co-
ordinitized in some meaningful way, which is awkward for biological
networks. However, it is a place to start.

The main result of [39] shows that the discrete k-median problem is
identical to a well studied problem in data compression that optimally
designs a vector quantizer. A full discussion of vector quantization is
not warranted due to space limitation, and we direct interested readers
to [28]. The importance of the relationship is that it allows us to cast
the graph theory problem in a way that is amenable to the efficient
algorithms designed to work on the vector quantization problem. The
most preeminent and significant of these techniques is the discrete Lloyd
algorithm in Table 1.5. This algorithm is not an exact solution procedure
since it converges to a local optimal solution. The pertinent complexity
results from [39] are

» The discrete k-median problem is O(N**2) and

m  The discrete Lloyd algorithm is O(Nk).

The first result shows that the worst case complexity of the discrete k-
median problem is no worse than that of the k-clique percolation’s. Since
k << N, the second result shows that the discrete Lloyd algorithm is
theoretically faster than the other community finding techniques.
Using the discrete k-median problem to locate communities within a
biological network is promising. The questions are numerous and include

»  What similarity measure and node weight are meaningful?



REFERENCES 37

1 Select an initial collection of k nodes, M.
2 Calculate the nearest neighbors V,, as in (1.19) for each v € M.

3 Calculate the centroid of V,, for each v € M with each node
weighted with 3(v).

4 Project each centroid onto its nearest neighbor in V forming a new
collection of k nodes denoted by M.

5 If M = M’, stop. Otherwise, replace M with M’ and go to 2.

Table 1.5. The discrete Lloyd algorithm for P = V.

s Can a solution to the discrete k-median problem be found as effi-
ciently as communities can be found with k-clique percolation in
practice?

m Does the discrete Lloyd algorithm outperform other community
finding algorithms in practice?

m How do we initialize the discrete Lloyd algorithm so that it locates
a global solution instead of a local solution?

We close by mentioning that although we have focused on the linear
optimization problem associated with FBA and the community finding
algorithms that identify biological structures, these are but two of the
many problems in systems biology that make use of standard OR tech-
niques. The purpose of this section was to show that the problems are
plentiful, important, and natural, and we encourage the involvement of
the OR community. Please contact the authors if we can be of assistance.
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