
INCOMPRESSIBILITY AND GLOBAL INVERSION
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Abstract. Given a local diffeomorphism f : Rn → Rn, we consider certain in-

compressibility conditions on the parallelepiped Df(x) ([0, 1]n) which imply that

the pre-image of an affine subspace is non-empty and has trivial homotopy groups.

These conditions are then used to establish criteria for f to be globally invertible,

generalizing in all dimensions the previous results of Sabatini.

1. Introduction

The question of deciding whether a locally invertible map admits a global inverse

is one of obvious importance in mathematics. Hadamard’s observation in [8] that a

local homeomorphism f : Rn → Rn is bijective if and only if it is proper (i.e., the pre-

image of a compact set is compact) was very influential and related ideas eventually

made their way into Riemannian Geometry and Non-linear Analysis (see [2] and [5],

for instance). Meanwhile, questions pertaining to the general area of Global Inver-

sion arose in Algebra and Algebraic Geometry (the Jacobian Conjecture, see [7] and

[9]), as well as Differential Equations and Dynamical Systems (the Markus-Yamabe

Conjecture, see [3], [4], [6], and [20]). Global invertibility is also an important topic

in applied disciplines such as Network Theory, Economics, and Numerical Analysis

([15] and [17]).

Our purpose in this paper is to use geometric methods in order to obtain new

analytic conditions under which one can detect global injectivity and global invertibil-

ity. In particular, we extend to Rn the results of Sabatini [21] on global invertibility

of planar local diffeomorphism.

2. Invertibility in all dimensions

We begin by recalling the results of Sabatini:

Theorem 2.1 ([21], Cor. 2.1). Let f = (f1, f2) ∈ C1(R2,R2) be a local diffeomor-

phism. If
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∫ ∞

0

inf
‖x‖=r

‖∇f1(x)‖ dr = ∞ ,(2.1)

then f1 assumes every real value and f is injective.

Theorem 2.2 ([21], Cor. 2.3). Let f = (f1, f2) ∈ C1(R2,R2) be a local diffeomor-

phism. If

∫ ∞

0

inf
‖x‖=r

| det Df(x)|
‖∇f2(x)‖ dr =

∫ ∞

0

inf
‖x‖=r

| det Df(x)|
‖∇f1(x)‖ dr = ∞,(2.2)

then f is a diffeomorphism of R2 onto R2.

The results above invite comparison with the classical Hadamard-Plastock the-

orem [18]. The later states that a Banach space local diffeomorphism f : X → X is

bijective if

(2.3) sup
x∈X

‖Df(x)−1‖ < ∞ .

For instance, (2.2) implies the invertibility of the simple planar map (x, y) 7→ (x +

y3, y), a fact which is not covered by (2.3). In the finite-dimensional case the Hadamard-

Plastock theorem has been substantially improved by Nollet and Xavier in [12] using

degree theory. A special case of the main result in [12] states that a local diffeomor-

phism f : Rn → Rn is bijective if, for every unit vector v ∈ Rn,

(2.4) inf
x∈Rn

‖Df(x)tv‖ > 0 .

The same simple map (x, y) 7→ (x + y3, y) can be shown to be invertible via condi-

tion (2.4). For more on global invertibility see, for instance, [1], [6], [11], [14], [12],

[13], [21], [22], [24], [23], and [25]. We highlight the approach in [1] where it is shown

that the above mentioned result of [12] is a manifestation of a topological phenome-

non. Namely, using intersection theory, it is shown in [1] that a local diffeomorphism

f : Rn → Rn is bijective if and only if the pre-image of every affine hyperplane is

non-empty and acyclic (i.e., has the homology of a point). Hence there is a clear

conceptual link between invertibility and the topology of the pre-images of affine

subspaces.

An initial examination of [21] would seem to suggest that Sabatini’s results re-

flect a purely two-dimensional phenomenon. For instance, this is the case with the

Gutierrez global injectivity theorem [6], which does not extend to higher dimensions

[22, Thm.4]. Contrary to this expectation, we show in this paper that the results in

[21] have a natural extension in all dimensions.
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Letting ∧ denote the wedge product of vectors in Rn, the determinant of the

Jacobian matrix can be expressed as

| det Df(x)| = ‖
∧

1≤j≤n

∇fj(x)‖ = | det (〈∇fj(x),∇fk(x)〉)1≤j,k≤n |1/2.

We will also consider the quantity

‖
∧

1≤j≤n
j 6=i

∇fj(x)‖ = | det (〈∇fj(x),∇fk(x)〉)1≤j,k≤n
j,k 6=i

|1/2.

Hence, in the expression above, we take the wedge product of the rows of the Jacobian

matrix with the ith row removed. Our main result is the following.

Theorem 2.3. Let n ≥ 2, f = (f1, f2, . . . , fn) : Rn → Rn be a local diffeomorphism,

k an integer with 1 ≤ k ≤ n, and H an affine subspace of codimension k. Assume

that

(2.5)

∫ ∞

0

inf
‖x‖=r

‖∧
1≤j≤n∇fj(x)‖

‖∧
1≤j≤n

j 6=i
∇fj(x)‖ dr = ∞ ,

for each i = 1, . . . , k. Then f−1(H) is non-empty and πj (f−1(H)) = 0 for j =

0, 1, . . . , n− k. In particular, f−1(H) is non-empty and connected.

As with [21] and many works in this type of problem, our proof is based on the

use of certain flows associated to the local diffeomorphism. However, our geometric

idea to use the pullback of the standard hyperplane foliation and projecting the flows

on the leaves is new.

As we consider hyperplanes of higher codimension, we have the following re-

sults establishing injectivity and invertibility which generalize Theorems 2.1 and 2.2,

respectively.

Corollary 2.4. Let n ≥ 2 and f = (f1, f2, . . . , fn) : Rn → Rn be a local diffeomor-

phism such that, for each i = 1, . . . , n− 1, we have

∫ ∞

0

inf
‖x‖=r

‖∧
1≤j≤n∇fj(x)‖

‖∧
1≤j≤n

j 6=i
∇fj(x)‖ dr = ∞ ,

then f is injective.
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Corollary 2.5. Let n ≥ 2 and f = (f1, f2, . . . , fn) : Rn → Rn be a local diffeomor-

phism such that, for each i = 1, . . . , n, we have

∫ ∞

0

inf
‖x‖=r

‖∧
1≤j≤n∇fj(x)‖

‖∧
1≤j≤n

j 6=i
∇fj(x)‖ dr = ∞ ,

then f is bijective.

Using the estimate ‖v1 ∧ · · · ∧ vn‖ ≤ ‖v1‖ · · · ‖vn‖, we have the following conse-

quence of Corollary 2.5.

Corollary 2.6. A C1 local diffeomorphism f = (f1, f2, . . . , fn) : Rn → Rn is bijective

provided that, for all i = 1, . . . , n,

inf
x∈Rn

| det Df(x)|∏

1≤j≤n,j 6=i

‖∇fj(x)‖
> 0 .(2.6)

We observe that Corollary 2.6 may be interpreted geometrically. Given an in-

vertible linear transformation A : Rn → Rn, the unit n-cube [0, 1]n ⊆ Rn is mapped

by A into the n-parallelepiped A ([0, 1]n). The distance `i between the ith-pair of

opposite (n− 1)-faces of A ([0, 1]n) is given by:

(2.7) `i =
‖∧

1≤j≤n Aej‖
‖∧

1≤j≤n
j 6=i

Aej‖ ,

where {e1, . . . , en} is the canonical basis of Rn. Taking A = Df(x) we see that an

uniform bound on the distance between opposite faces of Df(x) ([0, 1]n), i.e., a volume

incompressibility condition, is equivalent to (2.6).

3. Geometric Arguments

Recall the following estimate on the norm of two simple vectors ξ, η ∈ Λ∗Rn,

(3.1) ‖ξ ∧ η‖ ≤ ‖ξ‖‖η‖ ,

with equality if and only if ∗ξ ∧ η = 0. Here ∗ denotes the Hodge operator. Then

(3.1) implies that

(3.2) ‖∇fi(x)‖ ≥=
‖∧

1≤j≤n∇fj(x)‖
‖∧

1≤j≤n
j 6=i

∇fj(x)‖ .

Our approach will make use of the flows associated to the vector fields ∇fi, for

each i. The issue of completeness of vector fields appears naturally in the context of
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global invertibility (see [12], [18], [19], and [21]). The two lemmas below are certainly

well known. The proof of lemma 3.1 may be found, for instance, in [12, Lemma 2.2],

while Lemma 3.2 deals with the simplest situation that arises in Morse Theory and

the argument is the same one as given in [16, p.113] (see also [10] and [20] for these

results in a broader setting).

Lemma 3.1. Let Z : Rn → Rn be a non-vanishing smooth vector field which satisfies∫ ∞

0

min
‖x‖=r

‖Z(x)‖dr = ∞ .

Then the vector field
Z(x)

‖Z(x)‖2
is complete.

Lemma 3.2. Let M be a connected complete Riemannian manifold with metric g.

If h : M → R is smooth, ∇h(p) in non-vanishing for all p ∈ M and
∇h

‖∇h‖2
is a

complete vector field, then M is diffeomorphic to R× h−1(c). In particular, h−1(c) is

non-empty and connected for every c ∈ R
We now provide the proof of our main result.

Proof of theorem 2.3: We start out by observing that f may be assumed to be smooth

(see [22, p.441]). Without lost of generality, we may also assume that the subspace H

is parallel to the last n−k axis. Indeed, consider a rotation A ∈ SO(n) so that A(H) is

parallel to the last n−k axis. We then establish the result for the local diffeomorphism

A ◦ f : Rn → Rn. In view of the above geometric interpretation of (2.5) in terms of

parallelepipeds, the quantity given by (2.5) will remain unchanged. For simplicity,

let H = span {ei| i = n− k + 1, . . . , n}. Consider C = (c1, c2, . . . , cn) ∈ Im(f), by an

iteration process of restricting f onto pre-images of higher codimensional subspaces

of Rn, we will show that CH = (0, . . . , 0, cn−k+1, . . . , cn) ∈ H ∩ Im(f) and in the

process we will establish the desired topological properties of f−1(H).

Let f1 : Rn → R be the first component map of f and consider f−1
1 (t). Note

that f−1
1 (t) is the pre-image of the affine hyperplanes with unit normal e1 at distance

t from the origin. For notational purposes, let H1(t) := {x ∈ Rn|〈x, e1〉 = t} be the

leaves of a codimension one foliation F1 of Rn, note that f−1
1 (t) = f−1(H1(t)). The

integral in (2.5) ensures that,
∫ ∞

0

inf
‖x‖=r

‖∇f1(x)‖dr = ∞ ,

since ‖∇f1(x)‖ ≥ ‖∧
1≤j≤n∇fj(x)‖

‖∧
1≤j≤n

j 6=1
∇fj(x)‖ . Therefore, by Lemma 3.1,

∇f1

‖∇f1‖2
is complete.

Lemma 3.2 now implies that f−1
1 (t) × R is diffeomorphic to Rn. Since πj(A × B) =
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πj(A) × πj(B), we establish that πj(f
−1
1 (t)) is trivial for j = 0, 1, . . . , n − 1 and, in

particular, f−1
1 (t) is non-empty and connected for all t ∈ R.

Next, consider the leaf of F1 containing C denoted by H1 = H1(c1) and let

N1 = f−1(H1) which is non-empty and connected.

Once this first step is accomplished, we consider an iteration of the argument

above by restricting the map f to higher codimensional subspaces as follows. Begin-

ning with m = 2 until m = k, assume that we have done the process above m − 1

times and obtained from Hm−1 = H1(c1)∩ · · · ∩Hm−1(cm−1) the non-empty and con-

nected set Nm−1 = f−1(Hm−1). Now take a codimension one foliation Fm of Hm−1

where the leaves are the (intersection of) hyperplanes Hm(t). Note that Fm induces

a foliation on Rn. Let the component map fm of f restricted to Nm−1 be given by

gm : Nm−1 → R. The gradient of gm is

∇gm(x) = ProjTxNm−1
(∇fm(x)) .

Because ∇fi(x) ⊥ TxNm−1 for i = 1, . . . , m − 1, the decomposition ∇fm(x) =

∇gm(x) + wm(x), is such that wm(x) ∈ span{∇f1(x), . . . ,∇fm−1(x)}. Then,

(3.3)

‖
∧

1≤j≤m−1

∇fj(x) ∧∇fm(x)
∧

m+1≤j≤n

∇fj(x)‖ =

‖
∧

1≤j≤m−1

∇fj(x) ∧ (∇gm(x) + wm(x))
∧

m+1≤j≤n

∇fj(x)‖ =

‖
∧

1≤j≤m−1

∇fj(x) ∧∇gm(x)
∧

m+1≤j≤n

∇fj(x)‖

where we use the distributive properties of wedge product and the last term vanishes

because it contains the wedge product of vectors in the same subspace. Inequality

(3.1) implies that

(3.4) ‖
∧

1≤j≤m−1

∇fj(x) ∧∇gm(x) ∧
∧

m+1≤j≤n

∇fj(x)‖ ≤ ‖∇gm(x)‖‖
∧

1≤j≤n
j 6=m

∇fj(x)‖

Combining (3.4) with (3.3), we obtain

(3.5) ‖∇gm(x)‖ ≥ ‖∧
1≤j≤n∇fj(x)‖

‖∧
1≤j≤n
j 6=m

∇fj(x)‖ .

Considering the vector field Ym =
∇gm

‖∇gm‖2
, we note that Ym may be globally

defined by projecting the vector field
∇fm

‖∇fm‖2
onto the sets f−1(Hm−1(t)). Hence

(3.5) can then be considered as a global condition and integrating both sides of (3.5)
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we obtain,

(3.6)

∫ ∞

0

inf
‖x‖=r

‖∇gm(x)‖dr ≥
∫ ∞

0

inf
‖x‖=r

‖∧
1≤j≤n∇fj(x)‖

‖∧
1≤j≤n
j 6=m

∇fj(x)‖ dr = ∞ .

Lemma 3.1 establishes that Ym is complete and notice that the integral curves of Ym

will remain on the same level set of fm. Next, by Lemma 3.2 we have that g−1
m (t)×R

is diffeomorphic to Nm−1 and thus πj(g
−1
m (t)) is trivial for j = 0, 1, . . . , n−m and, in

particular g−1
m (t) is non-empty and connected for all t ∈ R.

Next, consider the particular leaf of Fm containing C, denoted by Hm = Hm−1 ∩
Hm(cm). Now let

Nm = g−1
m (cm) =

(
f−1

1 (c1) ∩ · · · ∩ f−1
m−1(cm−1)

) ∩ f−1
m (cm).

We repeat the above argument until m = k, thus showing that

Nk = f−1
1 (c1) ∩ · · · ∩ f−1

n−1(ck) = f−1(H)

is non-empty and has the property that πj(f
−1(H)) is trivial for j = 0, 1, . . . , n− k.

In particular, f−1(H) is non-empty and connected. ¤
Corollary 2.4 follows by observing that when k = n−1, we obtain as a conclusion

in Theorem 2.3 that the pre-image of a line is connected. Then a simple argument

in [12, p.24] shows that C is assumed exactly once, thus ensuring that f is injective.

Corollary 2.5 follows from Corollary 2.4 and the observation that a codimension n

subspace reduces to a point. Indeed, since the pre-image of a point is non-empty by

Theorem 2.3, f is both injective and surjective.
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