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Abstract

We investigate the x log x condition for a general (Crump–Mode–
Jagers) multi-type branching process with arbitrary type space by
constructing a size-biased population measure that relates to the or-
dinary population measure via the intrinsic martingale Wt. Sufficiency
of the x log x condition for a non-degenerate limit of Wt is proved and
conditions for necessity are investigated.
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1 Introduction

The x log x condition is a fundamental concept in the theory of branching
processes, being the necessary and sufficient condition for a supercritical
branching process to grow as its mean. In a Galton-Watson process with
offspring mean m = E[X] > 1, let Zn be the number of individuals in the nth
generation and let Wn = Zn/m

n. Then Wn is a nonnegative martingale and
hence Wn → W for some random variable W . The Kesten-Stigum Theorem
is
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Theorem 1.1 If E[X log+ X] < ∞ then E[W ] = 1; if E[X log+ X] = ∞
then W = 0 a.s.

It can further be shown that P (W = 0) must either be 0 or equal the extinc-
tion probability and hence E[X log+ X] < ∞ implies that W > 0 exactly on
the set of nonextinction (see e.g. Athreya and Ney (1972)).

The analogue for general single-type branching processes appears in Jagers
and Nerman (1984) and a partial result (establishing sufficiency) for general
multi-type branching processes in Jagers (1989). Lyons, Pemantle and Peres
(1995) give a slick proof of the Kesten-Stigum theorem based on comparisons
between the Galton-Watson measure and another measure, the size-biased
Galton-Watson measure, on the space of progeny trees. In Olofsson (1998),
these ideas were further developed to analyze general single-type branching
processes and the current paper proceeds to general multi-type branching
processes with an arbitrary type space. In addition to providing a new proof
of a known result, the ideas of size-biased processes now provide tools to
further analyze conditions for necessity of the x log x condition.

A crucial concept for the Lyons-Pemantle-Peres (LPP) proof is that of
size bias. If the offspring distribution is {p0, p1, ...} and has m = E[X], the
size-biased offspring distribution is defined as

p̃k =
kpk

m

and a size-biased Galton-Watson tree is constructed in the following way: Let
X̃ denote a random variable that has the size-biased offspring distribution
and let the ancestor v0 have a number X̃0 of children. Pick one of these at
random, call her v1, give her a number X̃1 of children, and give her siblings or-
dinary Galton-Watson descendant trees. Pick one of v1’s children at random,
give her a number X̃2 of children, give her sisters ordinary Galton-Watson
descendant trees, and so on and so forth. With Pn denoting the ordinary
Galton-Watson measure restricted to the n first generations, P̃n denoting
the measure that arises from the above construction, and Wn = Zn/m

n, the
relation

dP̃n = WndPn, (1.1)

holds. Hence, it is the fundamental martingale Wn that size-biases the
Galton-Watson process. The construction of P̃ can also be viewed as de-
scribing a Galton-Watson process with immigration where the immigrants
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are the siblings of the individuals on the path (v0, v1, ...). Thus, the measure
P is the ordinary Galton-Watson measure and the size-biased measure P̃ is
the measure of a Galton-Watson process with immigration where the i.i.d.
immigration group sizes are distributed as X̃ − 1. The relation between P
and P̃ on the space of family trees can now be explored using results for
processes with immigration which is the key to the proof.

The idea of using size-bias as such in branching processes appeared be-
fore LPP. One early example is Joffe and Waugh (1982), where size-biased
Galton-Watson processes show up in the study of ancestral trees of ran-
domly sampled individuals. This approach was further explored by Olofsson
and Shaw (2002) with a view toward biological applications. The only ap-
proach that is anywhere near that of LPP, however, seems to be Waymire
and Williams (1996), developed simultaneously with, and independently of
LPP. Later applications and extensions of the powerful LPP method include
Athreya (2000) and Biggins and Kyprianou (2004).

To make this paper self-contained, we give a short review of general multi-
type branching processes and their x log x condition in the next section. As
in the Galton-Watson case, branching processes with immigration are crucial
in the proof; for that purpose we briefly discuss processes with immigration
in Section 3 following Olofsson (1996). The size-biased measure on the space
of population trees and its relation to the ordinary branching measure is
investigated in Section 4 and in Section 5, sufficiency of the x log x condition
is proved. Finally, in Section 6, we discuss various conditions for necessity.

2 The x log x Condition for General Branch-

ing Processes

In a general branching process, individuals are identified by descent. The
ancestor is denoted by 0, the children of the ancestor by 1, 2, ... and so on,
so that the individual x = (x1, ..., xn) is the xnth child of the xn−1th child
of...of the x1th child of the ancestor. The set of all individuals can thus be
described as

I =
∞⋃

n=0

Nn
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At birth, each individual is assigned a type s chosen from the type space S,
equipped with some appropriate σ-algebra S. The type s determines a prob-
ability measure Ps(·), the life law, on the life space Ω, equipped with some
appropriate σ-algebra F . The information provided by a life ω ∈ Ω may dif-
fer from one application to another but it must at least give the reproduction
process ξ on S×R+. This process gives the sequence of birth times and types
of the children of an individual. More precisely, let (τ(k), σ(k)) be random
variables on Ω denoting the birth time (age of the mother) and type of the
kth child, respectively, and define

ξ(A × [0, t]) = #{k : σ(k) ∈ A, τ(k) ≤ t}

for A ∈ S and t ≥ 0. We let τ(k) ≡ ∞ if fewer than k children are born.
The population space is defined as ΩI , an outcome of which gives the lives
of all individuals. The set of probability kernels {Ps(·), s ∈ S} defines a
probability measure on ΩI , the population measure Ps, where the ancestor’s
type is s. By using projections, we can view individual lives, types, etc, as
random variables on ΩI rather than Ω; if ωI ∈ ΩI , we for example define
ωx = Ux(ω

I), the life of the individual x. With each individual x ∈ I, we
associate its type σx, its birth time τx, and its life ωx where σx is inherited
from the mother (a function of the mother’s life) and ωx is chosen according
to the probability distribution Pσx

(·) on (Ω,F). The birth time τx is defined
recursively by letting the ancestor be born at time τ0 = 0 and if x is the kth
child of its mother y (i.e., x = yk), we let τx = τy + τ(k). Note that τx and
τy refer to absolute time whereas τ(k) refers to the mother’s age at x’s birth.

An important entity is the reproduction kernel, defined by

µ(s, dr × dt) = Es[ξ(dr × dt)]

the expectation of ξ(dr × dt) when the mother is of type s. This kernel
plays the role of m = E[X] in the simple Galton-Watson process and deter-
mines the growth rate of the process as eαt where α is called the Malthusian
parameter. For the rest of this section, we leave out technical details and as-
sumptions, instead focusing on the main definitions and results. The details
can be found in Jagers (1989, 1992) and we simply refer to a process that
satisfies all the conditions needed as a Malthusian process.

Given α, we define the Laplace transform of µ as
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µ̂(s, dr) =
∫ ∞

0
e−αtµ(s, dr × dt)

and under certain conditions this kernel has eigenmeasure π and eigenfunc-
tion h given by

π(dr) =
∫

S
µ̂(s, dr)π(ds)

h(s) =
∫

S
h(r)µ̂(s, dr) (2.1)

where both π and hdπ can be normed to probability measures. The measure
π is called the stable type distribution and h(s) is called the reproductive
value of an individual of type s. The interpretation of π and hdπ is that π
is the distribution of the type of an individual chosen at random from an
old population, and hdπ is the limiting type distribution backward in the
family tree from this individual. The asymptotic age of child-bearing in this
backward sense is denoted by β and satisfies

β =
∫

S×S×R+

te−αth(r)µ(s, dr × dt)π(ds) < ∞ (2.2)

To count, or measure, the population, random characteristics are used.
A random characteristic is a real-valued process χ where χ(a) gives the con-
tribution to the population of an individual of age a. Thus χ is a process
defined on the life space and by letting χx be the characteristic pertaining to
the individual x, the χ-counted population is defined as

Zχ
t =

∑

x∈I

χx(t − τx)

which is the sum of the contributions of all individuals at time t (when the
individual x is of age t−τx). The simplest example of a random characteristic
is χ(a) = IR+

(a), the indicator for being born, in which case Zχ
t is simply

the total number of individuals born up to time t.
To capture the asymptotics of Zχ

t , the crucial entity is the intrinsic mar-
tingale Wt, introduced by Nerman (1981) for single-type processes and gen-
eralized to multi-type processes in Jagers (1989). For its definition, denote
x’s mother my mx and let
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It = {x : τmx ≤ t < τx} (2.3)

the set of individuals whose mothers are born before time t but who them-
selves are not yet born at time t. Let

Wt =
1

h(σ0)

∑

x∈It

e−ατxh(σx)

the individuals in It summed with time- and type-dependent weights, normed
by the reproductive value of the ancestor. It can be shown that Wt is a
martingale with respect to the σ-algebra Ft generated by the lives of all
individuals born before t, and that Es[Wt] = 1 for all s ∈ S. Hence, Wt plays
the role that Wn = Zn/m

n does in the Galton-Watson process and the limit
of Zχ

t turns out to involve the martingale limit W = limt→∞ Wt. The main
convergence result is of the form

e−αtZχ
t →

Eπ[χ̂]

αβ
h(s)W

where s is the type of the ancestor, Eπ =
∫
S Esπ(ds), and χ̂ is the Laplace

transform of χ(t). As in the Galton-Watson case, the question is when the
martingale limit W is non-degenerate. As Wt → W a.s. and Es[Wt] = 1,
L1−convergence is equivalent to Es[W ] = 1 (Durrett (2005), p.258). Note
that although it is the process Zχ

t that is of interest and not Wt itself, the
asymptotics are determined by Wt, one of many examples of the usefulness
of finding an embedded martingale.

We are ready to formulate the general x log x condition and the main
convergence result. For the reproduction process ξ, define the transform

ξ̄ =
∫

S×R+

e−αth(r)ξ(dr × dt)

which plays the role of X in the Galton-Watson process (in fact, in that case
ξ̄ = X/m) and the x log x is defined in terms of ξ̄. The x log x condition and
convergence result are given in the following theorem from Jagers (1989).

Theorem 2.1 Consider a general multi-type Malthusian branching process
with

Eπ[ξ̄ log+ ξ̄] < ∞
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Then Es[W ] = 1 for π−almost all s and

e−αtZχ
t →

Eπ[χ̂]

αβ
h(s)W

in L1(Ps) for π−almost all s.

3 Processes with Immigration

Now consider a general branching process where new individuals v1, v2, ...
immigrate into the population according to some point process η(dr × dt)
with points of occurrence and types (τ1, σ1), (τ2, σ2), ... (for ease of notation,
we write τk rather than τvk

etc). The kth immigrant initiates a branching
process according to the population measure Pσk

. The immigration process
has the transform

η̄ =
∫ ∞

0
e−αth(r)η(dr × dt) =

∞∑

k=1

e−ατkh(σk)

and it can be shown that the process Wt is now a submartingale rather than
a martingale (which is intuitively clear because immigrants are added to the
set It). The limit of Wt is therefore not automatically finite but needs a
condition on the immigration process, established by the following lemma
from Olofsson (1996).

Lemma 3.1 Suppose that η̄ < ∞. Then Wt → W a.s. as t → ∞ where
W < ∞ a.s.

The a.s. qualification refers to the joint probability measure of the immigra-
tion process and the population.

4 The size-biased population measure

Recall that Lyons-Pemantle-Peres’s size-biased Galton-Watson measure was
constructed from the size-biased offspring distribution. General branching
processes require a more general concept of size-bias. In a general process,
the offspring random variable X is replaced by the reproduction process ξ,
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the size of which is properly measured by the transform ξ̄ which leads to the
following definition.

Definition 4.1 The size-biased life law P̃s is defined as

P̃s(dω) =
ξ̄(ω)

h(s)
Ps(dω)

The following lemma follows immediately from the definition of P̃s.

Lemma 4.2 Let Ps and P̃s be as above and denote the set of realizations of
reproduction processes by (Γ,G). Then

(i) For A ∈ F ,

P̃s(A) =
Es[ξ̄; A]

h(s)

(ii) For every G−measurable function g : Γ → R,

Ẽs[g(ξ)] =
Es[ξ̄g(ξ)]

h(s)

In particular, note that P̃s is indeed a probability measure for all s ∈ S
because

P̃s(Ω) =
1

h(s)
Es[ξ̄] = 1

where Es[ξ̄] = h(s) follows from (2.1). Also note that a size-biased process
always contain points because

P̃s(ξ(S × R+) = 0) = Es[ξ̄; ξ(S × R+) = 0] = 0

To construct the size-biased population measure, consider an outcome
ωI ∈ ΩI and let ωI

t denote the set of family trees that coincide with ωI up
to time t. The goal is to have dP̃s = WtdPs, that is

P̃s(dωI
t ) = Wt(ω

I)Ps(dωI
t )
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Let x be an individual in It, defined in (2.3). By the definition of Wt, the
desired relation between P̃s and Ps holds if

P̃s(dωI
t ; x) =

h(σx)e
−ατx

h(σ0)
Ps(dωI

t )

so we define P̃s by this last expression. Note that

P̃s(Ω
I) =

∑

x∈It

P̃s(Ω
I ; x)

= Es[Wt]Ps(Ω
I) = 1

so that P̃s is indeed a probability measure for all s ∈ S.
To further investigate the relation between P̃s and Ps, let ξ̄0 denote ξ̄(ω0).

The individual x ∈ It stems from some individual i in the first generation,
thus we have x = iy for some y. Let us start by manipulating the regular
population measure to obtain

Ps(dωI
t ) = Ps(dω0)

ξ0(t)∏

j=1

Pσj
(dω

(j)
t−τj

)

= Ps(dω0)Pσi
(dω

(i)
t−τi

)
∏

j 6=i

Pσj
(dω

(j)
t−τj

)

= ξ̄0Ps(dω0)
h(σi)

ξ̄0

1

h(σi)
Pσi

(dω
(i)
t−τi

)
∏

j 6=i

Pσj
(dω

(j)
t−τj

)

Now multiply by
e−ατxh(σx)

h(s)
and note that τx = τi + τy to obtain

P̃s(dωI
t ; x) =

h(σx)e
−ατx

h(s)
Ps(dωI

t )

=
ξ̄0

h(s)
Ps(dω0) ·

h(σi)e
−ατi

ξ̄0

·
h(σy)e

−ατy

h(σi)
· Pσi

(dω
(i)
t−τi

) ·
∏

j 6=i

Pσj
(dω

(j)
t−τj

)
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=
ξ̄0

h(s)
Ps(dω0) ·

h(σi)e
−ατi

ξ̄0

· P̃σi
(dω

(i)
t−τi

) ·
∏

j 6=i

Pσj
(dω

(j)
t−τj

)

where we used the fact that the individual x is also the individual y when i is
viewed as the ancestor; thus h(σx) = h(σy) (formally, recall the projections
mentioned in Section 1).

The expression for P̃s suggests the following construction. Start with the
ancestor, now called v0, and choose her life ω0 according to the size-biased

distribution
ξ̄0

h(s)
Ps(dω0). Pick one of her children, born in the reproduction

process ξ0, such that the ith child is chosen with probability
h(σi)e

−ατi

ξ̄0

. Call

this child v1, let her start a population according to the measure P̃σi
and

give her sisters independent descendant trees, such that sister j follows the
law Pσj

. Continue in this way and define the measure P̃s to be the joint

distribution of the random tree and the random path (v0, v1, ...); then P̃s

satisfies the recursive expression above.
The individuals off the path (v0, v1, ...) constitute a general branching

process with immigration (the immigrants being the children of v0, v1, ...).
To describe the immigration process, let Ij,k be the indicator of the event
that vj−1’s kth child is not chosen to be vj and denote the kth point in ξj by
τk(j). The immigration process η is

η(ds × dt) =
∑

j,k

δσk(j)(ds)δτk(j)(dt − τj)Ij,k

which has

η̄ =
∑

j,k

h(σk(j))e
−ατje−ατk(j)Ij,k (4.1)

The sequence of types σ0, σ1, ... of the immigrants v1, v2, ... in the con-
struction of the size-biased population measure is of particular interest to
our analysis. This sequence is a Markov chain with transition probabilities
given by
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P̃ (σ1 ∈ dr|σ0 = s) =
∑

i

P̃ (σ1 ∈ dr, v1 = i|σ0 = s)

=
∑

i

Ẽs

[
e−ατih(σi)

ξ̄0

δσi
(dr)

]

=
1

h(s)

∑

i

Es

[
e−ατih(σi)δσi

(dr)
]

=
1

h(s)

∫ ∞

0
Es

[
e−αth(r)ξ(dr × dt)

]

=
h(r)

h(s)
µ̂(s, dr)

Now let ν(ds) = h(s)π(ds). As
∫

S
µ̂(s, dr)π(ds) = π(dr)

we get

∫

s∈S

h(r)

h(s)
µ̂(s, dr)ν(ds) = ν(dr)

and thus the Markov chain of types has stationary distribution ν = hdπ.
In a similar fashion, the sequence of types and times, (σ0, T0), (σ1, T1), ...

is a Markov renewal process with transition kernel given by

P̃ (T1 ∈ dt, σ1 ∈ dr|σ0 = s)

=
∑

i

P̃ (T1 ∈ dt, σ1 ∈ dr, v1 = i|σ0 = s)

=
h(r)

h(s)
e−αtµ(s, dr × dt)

and the expected value under the stationary distribution ν = hdπ is
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Ẽν [T1] =
∫

S×[0,∞)
t
h(r)

h(s)
e−αth(s)µ(s, dr × dt)π(ds)

=
∫

S×[0,∞)
te−αth(r)µ(s, dr × dt)π(ds)

= β < ∞

by (2.2).
There is an interesting connection between the size-biased measure and

the stable population measure from Jagers (1992). The latter is an asymptotic
probability measure that is centered around a randomly sampled individual
as t → ∞. In such a stable population, the randomly sampled individual
is born in a point process that has the size-biased distribution, and the
asymptotic type distribution as time goes backwards through the individual’s
line of descent is hdπ. The transition probabilities in this backward chain
also involve µ̂(s, dr) but have weights that are expressed in terms of π rather
than h as we have in the size-biased measure where time goes forward. This
relation becomes clearer in a finite-type Galton Watson process where π and
h are simply the left and right eigenvectors of the mean reproduction matrix.

5 Sufficiency of the x log x condition

We are soon ready to prove the general x log x theorem, the key to which
is the relation between P̃s and Ps. Recall that the two are related through
Wt which is a martingale under Ps and a submartingale under P̃s. The
following lemma relates the limiting behavior of Wt under Pπ =

∫
S Psπ(ds)

to its limiting behavior under P̃ν =
∫
S P̃sh(s)π(ds).

Lemma 5.1 Let W = lim supt Wt. Then

(i) P̃ν(W = ∞) = 0 ⇒ Eπ[W ] = 1

(ii) P̃ν(W = ∞) = 1 ⇒ Eπ[W ] = 0

Proof. By Durrett (2005), p.239
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P̃ν(A) = Eν [W ; A] + P̃ν(A ∩ {W = ∞})

If P̃ν(W = ∞) = 0, we have P̃ν(A) = Eν [W ; A] and get

P̃ν(W = 0) = Eν [W ; W = 0] = 0

and hence

Eν [W ] = Eν [W : W > 0] = P̃ν(W > 0) = 1

Moreover, as

Eν [W ] =
∫

S
Es[W ]ν(ds)

and as Fatou’s lemma implies that Es[W ] ≤ 1 for all s, we must have Es[W ] =
1 for ν−almost all s ∈ S. As π ≪ ν, we also get Eπ[W ] = 1.

Next, suppose that P̃ν(W = ∞) = 1. As W is an a.s. finite martingale
limit under Ps, we have Pν(W = ∞) =

∫
S Ps(W = ∞)h(s)π(ds) = 0. Hence,

the measures P̃ν(·) and Eν [W ; · ] are mutually singular and as P̃ν(W > 0) >
0, we get

Eν [W ] = Eν [W ; W > 0] = 0

which implies that Eπ[W ] = 0 as well, and the proof of the lemma is
complete.

We now aim to prove that finite x log x moment under Pπ implies that
η̄ < ∞, landing us at part (i) of Lemma 5.1. To that end, choose g(x) =
log+(x) in Lemma 4.2 to obtain

Eπ[ξ̄ log+ ξ̄] =
∫

S
Es[ξ̄ log+ ξ̄]π(ds)

=
∫

S
h(s)Ẽs[log+ ξ̄]π(ds)

= Ẽν [log+ ξ̄]

where, we recall, ν = hdπ is the stationary distribution for the type sequence
σ0, σ1, ... The following lemma brings us one step closer to the proof.
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Lemma 5.2 Consider a general branching process with immigration process
η as above. If Ẽν [log+ ξ̄] < ∞, then W = limt→∞ Wt exists and is finite
P̃ν−a.s.

Proof. First note that

Ẽν [log+ ξ̄] < ∞ ⇒
∑

n

P̃ν(log+ ξ̄ > cn) < ∞ for all c > 0

Now consider the sequence ξ̄0, ξ̄1, ..., which is stationary under P̃ν which gives

∑

n

P̃ν(log+ ξ̄n > cn) < ∞

which implies that, for all c > 0,

P̃ν(log+ ξ̄n > cn i.o.) = 0

which, by (4.1) gives

η̄ ≤
∑

j,k

h(σk(j))e
−ατje−ατk(j)

=
∞∑

j=1

e−ατj ξ̄j < ∞ P̃ν − a.s.

as the τj are sums of the Tk which, being the regeneration times in a Markov
renewal process, obey the law of large numbers (Alsmeyer (1994)), so that
τj ∼ βj as j → ∞. By Lemma 3.1 we conclude that limt Wt exists and is
finite P̃ν−a.s.

Proof of Theorem 2.1. Eπ[ξ̄ log+ ξ̄] = Ẽν [log+ ξ̄] < ∞ implies P̃ν(W = ∞) =
0 and Lemma 5.1 gives Eν [W ] = 1. Moreover, as

Eν [W ] =
∫

S
Es[W ]ν(ds)

and as Fatou’s lemma implies that Es[W ] ≤ 1 for all s, we must have
Es[W ] = 1 for ν−almost all s ∈ S. As π ≪ ν, the proof is complete.
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6 Necessity of the x log x condition

For single-type processes, the condition of having finite x log x moment is
both sufficient and necessary. Using the size-bias method, this can be es-
tablished by using the first and second Borel–Cantelli lemmas, respectively.
However, in the multi-type setting, the main result in Jagers (1989) estab-
lishes only sufficiency and as pointed out in Athreya (2000), additional con-
ditions are typically needed in the general multi-type setting. The method
of size-biased branching processes provides a way of investigating conditions
for necessity, and although the second Borel–Cantelli lemma can not be used
due to dependence, more general versions can be employed. This section is
explorative in nature and does not provide any definite solutions but outlines
two different approaches through the conditional Borel–Cantelli lemma and
the Kochen–Stone lemma, respectively. Below, by “the x log x condition,”
we mean Eπ[ξ̄ log+ ξ̄] < ∞.

The conditional Borel–Cantelli lemma states that if Fn is a filtration and
An a sequence of events with An ∈ Fn, then

{An i.o.} =

{
∞∑

n=1

P (An|Fn−1) = ∞

}

see Durrett (2005). For us, An = {log+ ξ̄n > cn}, the σ-field Fn−1 gives the
type of the nth individual, and we get

P (log+ ξ̄n > n|Fn−1) = Pσn
(log+ ξ̄ > cn)

and the question becomes under which conditions

∞∑

n=1

P̃σn
(log+ ξ̄ > cn) = ∞ P̃ν − a.s.

given that

∞∑

n=1

P̃ν(log+ ξ̄ > cn) = ∞

One more step is necessary in order to invoke part (ii) of Lemma 5.1, namely
to argue that log+ ξ̄n > cn i.o implies that W = ∞ P̃ν−a.s. Consider Wτn

,
the value of Wt at the time of the arrival of the nth immigrant. As all
the children of this immigrant belongs to Iτn

and the kth child is born at
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time τn + τ(k) and has type σ(k) where τ(k) and σ(k) are the points in the
reproduction process ξn of the nth immigrant, we get

Wτn
=

1

h(σ0)

∑

x∈Iτn

h(σx)e
−ατx

≥
e−τn

h(σ0)

∞∑

k=1

h(σ(k))e−ατ(k)Ij,k

≥
e−τn

h(σ0)
(ξ̄n − C)

where C = sups h(s) < ∞ (Jagers (1989)). Hence, if log+ ξ̄n > cn i.o, we
have W = lim supt Wt = ∞ P̃ν−a.s.

A potential problem is that a random variable can have infinite expecta-
tion under Ẽν but finite expectations under Ẽs for all s ∈ S. The following
condition for x log x necessity precludes this possibility.

Proposition 6.1 If the Markov chain of types has one positive recurrent
state s such that Es[ξ̄ log+ ξ] = ∞ and σk = s for some k, then the x log x
condition is necessary.

Proof. The result follows from the following observation regarding infinite
series. Let an ≥ 0 be a decreasing sequence of real numbers such that

∑
n an =

∞, let X1, X2, ... be i.i.d. nonnegative random variables with finite mean µ,
and let Tn = X1 + X2 + ... + Xn. Then

∞∑

n=1

aTn
= ∞ a.s.

This holds because if k ≥ µ is an integer, then aTn
≥ ank a.s. for large n by

the strong law of large numbers and obviously
∑

n ank = ∞ for all fixed k.
Finally, apply this result to an = Ps(log+ ξ̄ > cn).

An obvious special case of Proposition 6.1 is if the type space is finite. We
leave it as an open problem whether it is possible to construct a branching
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process that has Eπ[ξ̄ log+ ξ̄] = ∞, Es[ξ̄ log+ ξ̄] < ∞ for all s ∈ S, and
∞∑

n=1

Pσn
(log+ ξ̄ > cn) < ∞ Pν − a.s., thus demonstrating a case when the

x log x condition is not necessary.
Another approach is to consider the rate of convergence toward the sta-

tionary distribution ν; if this convergence is fast enough, necessity of the
x log x condition follows. To simplify the analysis, let Y =

∑
n log+ ξ̄ ·

I{n−1≤ξ̄≤n} which is nonnegative integer-valued and has finite mean if and

only if ξ̄ does. The result is

Proposition 6.2 Suppose that

∑

k≥1

nEν

∣∣∣∣∣
1

n

n∑

k=1

Pσk
(Y = n) − Pν(Y = n)

∣∣∣∣∣ < ∞

Then the x log x condition is necessary.

Proof. The condition in the proposition implies that

∑

n≥1

n

∣∣∣∣∣
1

n

n∑

k=1

Pσk
(Y = n) − Pν(Y = n)

∣∣∣∣∣ < ∞ Pν-a.s.

which yields

∞∑

k=1

Pσk
(Y > k) =

∞∑

k=1

∑

n>k

Pσk
(Y = n)

=
∑

n>1

n

(
1

n

n∑

k=1

Pσk
(Y = n)

)

≥
∑

n>1

nPν(Y = n) −
∑

n≥1

n

∣∣∣∣∣
1

n

n∑

k=1

Pσk
(Y = n) − Pν(Y = n)

∣∣∣∣∣ = ∞

if the first term is infinite and the second is finite.

Note that if {σn} is positive Harris recurrent with stationary distribution ν,
the ergodic theorem yields
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1

n

n∑

k=1

Pσk
(Y = j) → Pν(Y = j) Pν-a.s.

for all j so our condition means that this convergence is, in some sense, “fast
enough.”

Another generalization of Borel–Cantelli is the Kochen-Stone lemma that
states that if

∑
n P (An) = ∞, then

P (An i.o.) ≥ lim sup
n

{
∑n

k=1 P (Ak)}
2

∑
1≤j,k≤n P (Aj ∩ Ak)

We can apply it to prove

Proposition 6.3 Let An = {log+ ξ̄n > cn}. If the (indicators of the) An are
pairwise negatively correlated, the x log x condition is necessary.

Proof. Becuase P̃ν(Aj ∩ Ak) ≤ P̃ν(Aj)P̃ν(Ak), we get

P̃ν(An i.o.) ≥ lim sup
n

{
∑n

k=1 P̃ν(Ak)}
2

∑
1≤j,k≤n P̃ν(Aj ∩ Ak)

≥ 1
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