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Abstract

This survey contains the most updated results on the dynamics of periodic
difference equations or discrete dynamical systems this time. Our focus will
be on stability theory, bifurcation theory, and on the effect of periodic forcing
on the welfare of the population (attenuance versus resonance). Moreover, the
survey alludes to two more types of dynamical systems, namely, almost periodic
difference equations and stochastic difference equations.

Keys Words: Discrete dynamical systems, Nonautonomous periodic
difference equation, Skew-product systems, Cycles, Stability, Bifurcation,
Attenuance and resonance

Contents

1 Introduction 2

2 Preliminaries 3

3 Skew-product Systems 4

4 Periodicity 6

∗Department of Mathematics, Trinity University, San Antonio, Texas, USA. Email: se-
laydi@trinity.edu

†Center for Mathematical Analysis, Geometry, and Dynamical Systems, Instituto Superior Tec-
nico, Technical University of Lisbon, Lisbon, Portugal. Email: rafael@ebsaas.com

‡Department of Mathematics, Instituto Superior Tecnico, Technical University of Lisbon, Lisbon,
Portugal. Email: holiv@math.ist.utl.pt

1



5 Stability 10

6 An extension of Singer’s Theorem 12

7 Bifurcation 13

8 A note on bifurcation equations 20

9 Attenuance and resonance 27
9.1 The Beverton-Holt equation . . . . . . . . . . . . . . . . . . . . . . . 27
9.2 Neither attenuance nor resonance . . . . . . . . . . . . . . . . . . . . 28
9.3 An extension: monotone maps . . . . . . . . . . . . . . . . . . . . . . 28
9.4 The loss of attenuance: resonance. . . . . . . . . . . . . . . . . . . . . 29
9.5 The signature functions of Franke and Yakubu . . . . . . . . . . . . . 30

10 Almost periodic difference equations 31

11 Stochastic difference equations 34

1 Introduction

In a series of papers, Elaydi and Sacker [13, 14, 15, 32] embarked on a systematic
study of periodic difference equations or periodic dynamical systems. The authors
also wrote a survey [16] which has not been readily available to researches. The main
purpose of this survey is to update, extend, and broaden the above-mentioned survey.

Since the appearance [16], there have many exciting and new results by many
authors as reflected by the extensive list of references.

An emphasis is placed here on bifurcation theory of periodic systems, particularly,
those obtained by the authors and their collaborators. In fact, some of the results
reported here appear for the first time. A more detailed account of bifurcation theory
will appear somewhere else.

Two important omissions should be noted. The first is the extension of Sharkovsky’s
theorem to periodic difference equations [3]. The second is the study of periodic sys-
tems with the Allee effect [29]. One reason for not including these topics is our
self-imposed limitations on the size of the survey. A second reason is the limitation
in the expertise of the writers of this survey. We promise the reader to explore these
two topics in a forthcoming work.

In section 2, we motivate the need for introducing skew-product techniques in the
study of nonautonomous difference equations. Section 3 develops the basic construc-
tion of skew-product dynamical systems.
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Subsequently, in section 4 our study is focused on periodic difference equations.
This section includes two important results in the theory of periodic systems, namely,
lemma 6 and lemma 8. Then in section 5, we tackle the question of stability in both
the space X and in the skew-product X ×Y . The section ends with the fundamental
result in theorem 14, which states that in a connected topological space, the period of
a globally asymptotically stable periodic orbit must divide the period of the system.

In section 6 we extend Singer’s theorem to periodic systems. And in section 7
we develop a bifurcation theory for 2−periodic difference equations. In particular,
a unimodal map with the Allee effect is thoroughly analyzed. A bifurcation graph
of the parameter space of a 2−periodic system consisting of these maps is developed
using the techniques of resultant in Mathematica software.

In section 8 we address the question of whether the solutions of bifurcation equa-
tions are independent of the phase shifts.

In section 9, we present an updated account of results pertaining to attenuance
and resonance. The question we tackle here is whether periodic forcing has a dele-
terious effect on the population (attenuance) or it is advantageous to the population
(resonance). Section 10 introduces almost periodicity and contains some of the re-
sults obtained in [10]. This is followed by section 11 in which the study of stochastic
difference equations is conducted.

2 Preliminaries

Let X be a topological space and Z be the set of integers. A discrete dynamical
system (X, π) is defined as a map π : X × Z → X such that π is continuous and
satisfies the following two properties

1. π(x, 0) = x for all x ∈ X,

2. π(π(x, s), t) = π(x, s + t), s, t ∈ Z and x ∈ X (the group property).

We say (X, π) is a discrete semidynamical system if Z is replaced by Z+, the set of
nonnegative integers, and the group property is replaced by the semigroup property.

Notice that (X, π) can be generated by a map f defined as π(x, n) = fn(x), where
fn denotes the nth composition of f . We observe that the crucial property here is the
semigroup property.

A difference equation is called autonomous if it is generated by one map such as

xn+1 = f(xn), n ∈ Z+. (1)

Notice that for any x0 ∈ X, xn = fn(x0). Hence, the orbit O(x0) = {x0, x1, x2, . . .}
in Eq. (1) is the same as the set O(x0) = {x0, f(x0), f

2(x0), . . .} under the map f .
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A difference equation is called nonautonomous if it is governed by the rule

xn+1 = F (n, xn), n ∈ Z+, (2)

which may be written in the friendlier form

xn+1 = fn(xn), n ∈ Z+, (3)

where fn(x) = F (n, x). Here the orbit of a point x0 is generated by the composition
of the sequence of maps {fn}. Explicitly,

O(x0) = {x0, f0(x0), f1(f0(x0)), f2(f1(f0(x0))), ...}
= {x0, x1, x2, ...}.

It should be pointed out here that equation (2) or equation (3) may not generate
a discrete semidynamical system as it may not satisfy the semigroup property. The
following example illustrates this point.

Example 1 Consider the nonautonomous difference equation

xn+1 = (−1)n

(
n + 1

n + 2

)
xn, x(0) = x0. (4)

The solution of Eq. (4) is

xn = (−1)
n(n−1)

2
x0

n + 1
.

Let π(x0, n) = xn. Then

π(π(x0, m), n) = π

(
(−1)

m(m−1)
2 · x0

m + 1
, n

)

= (−1)
n(n−1)

2 (−1)
m(m−1)

2 · x0

(n + 1)(m + 1)

However,

π(x0,m + n) = (−1)
(n+m)(n+m−1)

2
x0

m + n + 1
6= π(π(x0,m), n).

3 Skew-product Systems

Consider the nonautonomous difference equation

xn+1 = F (n, xn), n ∈ Z+, (5)
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where F (n, ·) ∈ C(Z+ × X, X) = C. The space C is equipped with the topology of
uniform convergence on compact subsets of Z+ × X. Let Ft(n, ·) = F (t + n, ·) and
A = {Ft(n, ·) : t ∈ Z+} be the set of translates of F in C. Then G(n, ·) ∈ ω(A), the
omega limit set of A, if for each n ∈ Z+,

|Ft(n, x)−G(n, x)| → 0

uniformly for x in compact subsets of X, as t →∞ along some subsequence {tni
}. The

closure of A in C is called the hull of F (n, ·) and is denoted by Y = cl(A) = H(F ).
On the space Y , we define a discrete semidynamical system σ : Y × Z+ → Y by

σ(H(n, ·), t) = Ht(n, ·); that is σ is the shift map.
For convenience, one may write equation (5) in the form

xn+1 = fn(xn) (6)

with fn(xn) = F (n, xn).
Define the composition operator Φ as follows

Φi
n = fi+n−1 ◦ . . . ◦ fi+1 ◦ fi ≡ Φn(F (i, ·)),

and the reverse composition operator Φ̃ as

Φ̃i
n = fi ◦ fi+1 ◦ · · · ◦ fi+n−1.

When i = 0, we write Φ0
n as Φn and Φ̃0

n as Φ̃.
The skew-product system is now defined as

π : X × Y × Z+ → X × Y

with

π((x, G), n) = (Φn(G(i, ·)), σ(G,n)).

If G = fi, then π((x, fi), n) = (Φi
n(x), fi+n).

The following commuting diagram illustrates the notion of skew-product systems
where P(a, b) = a is the projection map.

X × Y × Z+ π //

P×id
²²

X × Y

P
²²

Y × Z+
σ

// Y
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For each G(n, ·) ≡ gn ∈ Y , we define the fiber Fg over G as Fg = P−1(G). If
g = fi, we write Fg as Fi.

Theorem 2 [16] π is a discrete semidynamical system.

Example 3 (Example (1) revisited) Let us reconsider the nonautonomous differ-
ence equation

xn+1 = (−1)n
(

n+1
n+2

)
xn, x(0) = x0.

Hence, F (n, x) = (−1)n
(

n+1
n+2

)
x = fn(x). Its hull is given by G(n, x) = (−1)nx,

that is, gn is a periodic sequence given by g0 = g2n, g1 = g2n+1, for all n ∈ Z+, in
which g0(x) = x, and g1(x) = −x.

It is easy to verify that π defined as π((x, fi), n) = (Φi
n(x), fi+n) is a semidynamical

system.

4 Periodicity

In this section our focus will be on p−periodic difference equations of the form

xn+1 = fn(xn), (7)

where fn+p = fn for all n ∈ Z+.
The question that we are going to address is this: What are the permissible periods

of the periodic orbits of equation (7)?
We begin by defining an r−periodic cycle (orbit).

Definition 4 An ordered set of points Cr = {x0, x1, ..., xr−1} is r−periodic in X if

f(i+nr) mod p(xi) = x(i+1) mod r, n ∈ Z+.

In particular,

fi(xi) = xi+1, 0 ≤ i ≤ r − 2,

and

ft(xt mod r) = x(t+1) mod r, r − 1 ≤ t ≤ p− 1.

It should be noted that the r−periodic cycle Cr in X generates an s−periodic cycle
on the skew-product X×Y of the form Ĉs = {(x0, f0), (x1, f1), ..., (xs mod r, fs mod p)},
where s = lcm[r, p] is the least common multiple of r and p.

The r-periodic orbit Cr is called an r−geometric cycle, and the s−periodic orbit
Ĉr is called an s−complete cycle.
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Figure 1: A 2−periodic cycle in a 4−periodic difference equation.

Example 5 Consider the nonautonomous periodic Beverton-Holt equation

xn+1 =
µnKnxn

Kn + (µn − 1)xn

, (8)

with µn > 1, Kn > 0, Kn+p = Kn, and µn+p = µn, for all n ∈ Z+.

1. Assume that µn = µ > 1 is constant for all n ∈ Z+. Then one may appeal to
Corollary 6.5 in [14] to show that equation (8) has no nontrivial periodic cycles
of period less than p. In fact, equation (8) has a unique globally asymptotically
stable cycle of minimal period p.

2. Assume that µn is periodic. Let µ0 = 3, µ1 = 4, µ2 = 2, µ3 = 5, K0 = 1,
K1 = 6

17
, K2 = 2, and K3 = 4

11
. This leads to a 4−periodic difference equation.

There is, however, a 2−geometric cycle, namely, C2 =
{

2
5
, 2

3

}
(see Figure 1).

This 2−periodic cycle in the space X generates the following 4−complete cycle
on the skew-product X × Y

Ĉ4 =
{
(2

5
, f0), (

2
3
, f1), (

2
5
, f2), (

2
3
, f3)

}
,

where f0(x) = 3x
1+2x

, f1(x) = 24x
6+51x

, f2(x) = 4x
2+x

, and f3(x) = 5x
1+11x

.

We are going to provide a deeper analysis of the preceding example. Let d =
gcd(r, p) be the greatest common divisor of r and p, s = lcm[r, p] be the least common
multiple of r and p, m = p

d
, and ` = s

p
. The following result is one of two crucial

lemmas in this survey.

Lemma 6 [14] Let Cr = {x0, x1, . . . , xr−1} be a set of points in a metric space X.
Then the following statements are equivalent.

1. Cr is a periodic cycle of minimal period r.
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2. For 0 ≤ i ≤ r − 1, f(i+nd) mod p(xi) = x(i+1) mod r.

3. For 0 ≤ i ≤ r − 1, the graphs of the functions

fi, f(i+d) mod p, . . . , f(i+(m−1)d)mod p

intersect at the ` points

(xi, x(i+1) mod r), (x(i+d) mod r, x(i+1+d) mod r), . . . (x(i+(`−1)d) mod r, x(i+(`−1)d+1) mod r).

Corollary 7 [29] Assume that the one-parameter family F (α, x) is one to one in α.
Let fn(xn) = F (αn, xn). Then if the p−periodic difference equation, with minimal
period p,

xn+1 = fn(xn) (9)

has a nontrivial periodic cycle of minimal period r, then r = tp, t ∈ Z+.

Proof. Suppose that equation (9) has a periodic cycle Cr = {x0, x1, . . . , xr−1} of
period r < p, and let d = gcd(r, p), s = lcm[r, p], m = p

d
, and ` = s

p
. Then by

Lemma 6, the graphs of the maps f0, fd, . . . , f(m−1)d must intersect at the points
(x0, x1), (xd, xd+1), . . . , (x(`−1)d, x(`−1)d+1).

Since F (α, x) is one to one in α, the maps f0, fd, . . . , f(m−1)d do not intersect,
unless they are all equal. Similarly, one may show that fi = fi+d = . . . = fi+(m−1)d.
This shows that equation (9) is of minimal period d, a contradiction. Hence r is equal
to p or a multiple of p.

Applying corollary 7 to the periodic Beverton-Holt equation with Kn+p = Kn, µn =
µ, for all n ∈ Z+, shows that the only possible period of a nontrivial periodic cycle
is p. However, for the case µn and Kn are both periodic of common period p, the
situation is murky as was demonstrated by Example 5, case 2.

For the values µ0 = 3, µ1 = 4, µ2 = 2, µ3 = 5, K0 = 1, K1 = 6/17, K2 = 2, and
K3 = 4/11, we have f0(x) = 3x

1+2x
, f1(x) = 24x

6+51x
, f2(x) = 4x

2+x
, and f3(x) = 5x

1+11x
. Let

F = {f0, f1, f2, f3}. Clearly x∗ = 0 is a fixed point of the periodic system F . To have
a positive fixed point (period 1) or a periodic cycle of period 3, we must have the
graphs of f0, f1, f2, f3 intersect at points (x0, x1), (x1, x2), . . . , (x`−1, x`), where ` = 1
or ` = 3. Simple computation shows that this is not possible. Moreover, one may
show that the graphs of f0 and f2 intersect at the points (2/5, 2/3) and the graphs of
f1 and f3 intersect at the points (2/3, 2/5). Hence C2 = {2/5, 2/3} is a 2−periodic
cycle. Moreover, the equation has the 4−periodic cycle

{
238
361

, 119
298

, 238
417

, 238
607

}
.

Suppose that the p-periodic difference equation

xn+1 = fn(xn), fn+p = fn, n ∈ Z+ (10)
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Figure 2: A 6−periodic cycle in a 9−periodic system

has a periodic cycle of minimal period r. Then the associated skew-product system
π has a periodic cycle of period s = lcm[r, p] (s−complete cycle). There are p fibers
Fi = P−1(fi). Are the s periodic points equally distributed on the fibers? i.e. is the
number of periodic points on each fiber equal to ` = s/p?

Before giving the definitive answer to this question, let us examine the diagram
present in Figure 2 in which p = 9, and r = 6.

There are two points
(
2 = lcm[6,9]

9

)
on each fiber. Since d = gcd(6, 9) = 3, the

graphs f0, f3, and f6 intersect at the two points (x0, x1), (x3, x4); the graphs f1, f4,
and f7 intersect at the two points (x1, x2), (x4, x5); and the graphs f2, f5, f8 intersect
at the points (x2, x3), (x5, x0).

Note that the number of periodic points on each fiber is 2, which is ` = lcm[r,p]
p

.
The following crucial lemma proves this observation.

Lemma 8 [13] Let s = lcm[r, p]. Then the orbit of (xi, fi) in the skew-product system
intersect each fiber Fj, j = 0, 1, . . . , p− 1, in exactly ` = s/p points and each of these
points is periodic under the skew-product π with period s.

Proof. Let Cr = {x0, x1, . . . , xr−1} be a periodic cycle of minimal period r. Then
the orbit of (x0, f0) in the skew-product has a minimal period s = lcm[r, p]. Now
S = O ((x0, f0)) = {π((x0, f0), n) : n ∈ Z+} ⊂ X × Y is minimal, invariant under π
and has s distinct points.

For each i, 0 ≤ i ≤ p− 1, the maps

fi : S ∩ Fi → S ∩ F(i+1) mod p (11)
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are surjective. We now show that it is injective.
Let Ni be cardinality of S∩Fi. Then Ni is a non-increasing integer valued function

and thus stabilizes at some fixed value from which it follows that Ni is constant. Thus
each S ∩ Fi contains the same number of points, namely ` = s/p.

5 Stability

We begin this section by stating the basic definitions of stability.

Definition 9 Let Cr = {x0, x1, . . . , xr−1} be an r−periodic cycle in the p−periodic
equation (10) in a metric space (X, ρ) and s = lcm[r, p] be the least common multiple
of p and r. Then

1. Cr is stable if given ε > 0, there exists δ > 0 such that

ρ(z, xi mod r) < δ implies ρ(Φi
n(z), Φi

n(xi mod r)) < ε

for all n ∈ Z+, and 0 ≤ i ≤ p− 1. Otherwise, Cr is said unstable.

2. Cr is attracting if there exists η > 0 such that

ρ(z, xi mod r) < η implies lim
n→∞

Φi
ns (z) = xi mod r.

3. We say that Cr is asymptotically stable if it is both stable and attracting. If in
addition, η = ∞, Cr is said to be globally asymptotically stable.

Lemma 10 [29] An r−periodic cycle Cr = {x0, x1, . . . , xr−1} in equation (10) is

1. asymptotically stable if |∏s
i=0 f ′i mod p(xi mod r)| < 1,

2. unstable if |∏s
i=0 f ′i mod p(xi mod r)| > 1,

where s = lcm[r, p] is the least common multiple of p and r.

Consider the skew-product system π on X×Y with X a metric space with metric
ρ, Y = {f0, f1, . . . , fp−1} equipped with the discrete metric ρ̃, where

ρ̃(fi, fj) =

{
0 if i = j
1 if i 6= j

.

Define a metric D on X × Y as

D ((x, fi), (y, fj)) = ρ(x, y) + ρ̃(fi, fj).
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Let π1(x, f) = π((x, f), 1), then πn(x, f) = π((x, f), n). Thus π1 : X×Y → X×Y
is a continuous map which generates an autonomous system on X×Y . Consequently,
the stability definitions of fixed points and periodic cycles follow the standard ones
that may be found in [11, 9].

Now we give a definition of stability for a complete periodic cycle in the skew-
product system.

Definition 11 A complete periodic cycle Ĉs = {(x0, f0), ..., (xs mod r, fs mod p)} is

1. stable if given ε > 0, there exits δ > 0, such that

D((z, fi), (x0, f0)) < δ implies D(πn(z, fi), π
n(x0, f0)) < ε, ∀n ∈ Z+.

Otherwise, Ĉs is said unstable.

2. attracting if there exists η > 0 such that

D((z, fi), (x0, f0)) < η implies lim
n→∞

πns (z, fi) = (x0, f0).

3. asymptotically stable if it is both stable and attracting. If in addition, η = ∞,
Ĉs is said to be globally asymptotically stable.

Since fi+ns = fi for all n, it follows from the above convergence that fi = f0.
Hence, stability can occur only on each fiber X × {fi}, 0 ≤ i ≤ p− 1.

It should be noted that one may reformulate lemma 10 in the setting of the skew-
product theorem. However, to do so, one needs to develop the notion of derivative in
the space X × Y .

Definition 12 Let g = πp : X × Y → X × Y defined as g(x, fi) = (Φi
p(x), fi). The

generalized derivative of g is defined as g′(x, fi) = d
dx

(
Φi

p(x)
)

=
(
Φi

p

)′
(x).

Lemma 13 A complete periodic cycle C̃s = {(x0, f0), ..., (xs mod r, fs mod p)} of the
skew-product system π on X × Y is

1. asymptotically stable if |∏s
i=0 f ′i mod p(xi mod r)| < 1,

2. unstable if |∏s
i=0 f ′i mod p(xi mod r)| > 1,

where s = lcm[r, p] is the least common multiple of p and r.

We are now ready to state our main result in this survey.
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Theorem 14 [13] Assume that X is a connected metric space and each fi ∈ Y is
a continuous map on X, with fi+p = fi. Let Cr = {x0, x1, . . . , xr−1} be a periodic
cycle of minimal period r. If Cr is globally asymptotically stable, then r divides p.
Moreover, r = p if the sequence {fn} is a one-parameter family of maps F (µn, x) and
F is one to one with respect to µ.

Proof. The skew-product system π on X × Y has the periodic orbit

{(x0, f0), (x1, f1), . . . , (xs mod r, fs mod p)}
which is globally asymptotically stable. But as we remarked earlier, globally stability
can occur only on fibers. By Lemma 8, there are ` = s/p points on each fiber. If
` > 1, we have a globally asymptotically `-periodic cycle in the connected metric
space X ×{fi} under the map πp. This violates Elaydi-Yakubu Theorem [12]. Hence
` = 1 and consequently r|p.

Note that by Lemma 6, the graphs of the maps fi, fi+d, ,fi+(m−1)d, 0 ≤ i ≤ p− 1,
must intersect at ` points. However, since {fi} is a one parameter family of maps
F (µn, x) where F is one to one with respect to the parameter µ, it follows that
fi = fi+d, 0 ≤ i ≤ p− 1. This implies that d is the period of our system and since p
is the minimal period of the system, this implies that d = p. Hence r = p.

6 An extension of Singer’s Theorem

One of the well known work done by Singer is present in his famous paper [33] and
currently known by Singer’s theorem. It is a useful tool in finding an upper bound
for the number of stable cycles in autonomous difference equations. In this section
we present the natural extension of this theorem to the periodic nonautonomous
difference equations.

Recall that the Schwarzian derivative, Sf , of a map f at x is defined as

Sf (x) =
f
′′′

(x)

f ′ (x)
− 3

2

(
f
′′
(x)

f ′ (x)

)2

.

Let f : I → I be a C3 map with a negative Schwarzian derivative for all x ∈ I,
defined on the closed interval I. If f has m critical points in I, then f has at most
m + 2 attracting period cycles of any given period.

Now consider the p−periodic system F = {f0, f1, f2, ..., fp−1} of continuous maps
defined on a closed interval I.

Assume that there are mi critical points for the map fi, 0 ≤ i ≤ p−1. On the fiber
F0 = I× f0, there are m0 critical points of f0, at least m1 critical points consisting of
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all the pre-images under f0 of the m1 critical points of f1,... and at least mp−1 critical
points that consist of all the pre images, under Φp−2, of the mp−1 critical points of
fp−1. Since each critical point of Φp is mapped, under compositions of our maps, to
one of the original critical points of one of the maps fi, it follows that the number of
significant critical points is

∑p−1
i=0 mi.

By Singer’s Theorem, there are at most
[∑P−1

i=0 mi + 2
]

attracting periodic cycles

of any given period. Notice that periodic cycles that appear on fiber Fi are just phase
shifts of periodic cycles that appear on fiber F0. Hence we conclude that there are at
most

∑P−1
i=0 mi + 2 attracting cycles of any given period (See [2] for details).

So a consequence of this extension, one may show that if the maps are the logistic
maps

fi(x) = µix(1− x), µi > 0, 0 ≤ i ≤ p− 1,

defined on the interval [0, 1], then the p-periodic system {f0, f1, ..., fp−1} has at most
p−attracting cycles of any given period r. Notice that each map fi has one critical
point, x = 1/2, and the boundary points 0 and 1 are attracted only to 0.

7 Bifurcation

The study of various notions of bifurcation in the setting of discrete nonautonomous
systems is still at its infancy stage. The main contribution in this area are the papers
by Henson [24], Al-Sharawi and Angelos [2], Oliveira and D’Aniello [30], and recently
Lúıs, Elaydi and Oliveira [29].

The main objective in this section is to give the pertinent definitions, notions,
terminology and results done in [29]. Though our focus here will be on 2−periodic
systems, the ideas presented can be easily extended to the general periodic case.

Throughout this section we assume that the maps f0 and f1 arise from a one-
parameter family of maps such that f1 = fα1 and f0 = fα0 with α0 = qα1 for some
real number q > 0. Thus one may write, without loss of generality, our system as
F = {f0, f1}.

Moreover, we assume that the one-parameter family of maps is one-to-one with
respect to the parameter. Let Cr = {x0, x1, . . . , xr−1} be an r−periodic cycle of F .
Then by corollary 7 the latter assumption implies that r = 2m, m ≥ 1.

With Φ2 = f1 ◦ f0, one may write the orbit of x0 as (see figure 3)

O(x0) =
{
x0, f0(x0), Φ2(x0), f0 ◦ Φ2(x0), Φ4(x0), ..., Φ2(m−1)(x0), f0 ◦ Φ2(m−1)(x0)

}

= {x0, Φ1(x0), Φ2(x0), ..., Φ2m−1(x0)} (12)
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Figure 3: Sequence of the periodic points {x0, x1, ..., xr−1} in the 2−periodic system
F = {f0, f1} illustrated in the fibers, where Φ2 = f1 ◦ f0 and r = 2m,m ≥ 1.

Equivalently, one may write the sequence of points given in (12) as

O(x1) =
{

f1 ◦ Φ̃2(m−1)(x1), x1, f1(x1), Φ̃2(x1), f1 ◦ Φ̃2(x1), ..., Φ̃2(m−1)(x1)
}

= {Φ̃2m−1(x1), x1, Φ̃1(x1), Φ̃2m(x1), ..., Φ̃2m−2(x1)} (13)

where Φ̃ = f0 ◦ f1. Hence the order of the composition is irrelevant to the dynamics
of the system.

The dynamics of F depends very much on the parameter as the qualitative struc-
ture of the dynamical system changes as the parameter changes. These qualitative
changes in the dynamics of the system are called bifurcations and the parameter val-
ues at which they occur are called bifurcation points. For autonomous systems or
single maps the bifurcation analysis may be found in Elaydi [11].

In a one-dimensional systems generated by a one-parameter family of maps fα,
a bifurcation at a fixed point x∗ occurs when ∂f

∂x
(α∗, x∗) = 1 or −1 at a bifurcation

point α∗. The former case leads to a saddle-node bifurcation, while the latter case
leads to a period-doubling bifurcation.
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Now we are going to extend this analysis to 2−periodic difference equations or
F = {f0, f1}. To simplify the notation we write Φ2(α, x) instead of Φ2(x) and Φ̃2(α, x)

instead of Φ̃2(x). Then Φ2m(x2i) = x(2i)modr and Φ̃2m(x2i+1) = x(2i+1)modr, 1 ≤ i ≤ m.

In general, we have Φ2nm(x2i) = x(2i)modr and Φ̃2nm(x2i+1) = x(2i+1)modr, n ≥ 1.
Assuming ∂Φ2m

∂x
(α, x0) = 1 at a bifurcation point α, by the chain rule, we have

∂Φ2

∂x
(α, x2m−2)

∂Φ2

∂x
(α, x2m−4) ...

∂Φ2

∂x
(α, x2)

∂Φ2

∂x
(α, x0) = 1

or

f ′1(x2m−1)f
′
0(x2m−2)f

′
1(x2m−3)f

′
0(x2m−4)...f

′
1(x3)f

′
0(x2)f

′
1(x1)f

′
0(x0) = 1 (14)

Applying f0 on both sides of the identity Φ2m(α, x0) = x0, yields Φ̃2m(α, x1) = x1.
Differentiating both sides of this equation yields

∂Φ̃2

∂x
(α, x2m−1)

∂Φ̃2

∂x
(α, x2m−3)...

∂Φ̃2

∂x
(α, x3)

∂Φ̃2

∂x
(α, x1) = 1

or equivalently

f ′0(x0)f
′
1(x2m−1)f

′
0(x2m−2)f

′
1(x2m−3)...f

′
0(x4)f

′
1(x3)f

′
0(x2)f

′
1(x1) = 1. (15)

Hence Eq. (14) is equivalent to Eq. (15). More generally the following relation holds

∂Φ2m

∂x
(α, x2j) =

∂Φ̃2m

∂x
(α, x2j−1), j ∈ {1, 2, ...,m} . (16)

Now we are ready to write the two main results of this section.

Theorem 15 (Saddle-node Bifurcation for 2−periodic systems [29]) Let Cr =

{x0, x1, ..., xr−1} be a periodic r−cycle of F . Suppose that both ∂2Φ2

∂x2 and ∂2Φ2

∂2 exist

and are continuous in a neighborhood of a periodic orbit such that ∂Φ2m

∂x
(α, x0) = 1

for the periodic point x0. Assume also that

A =
∂Φ2m

∂α
(α, x0) 6= 0 and B =

∂2Φ2m

∂x2
(α, x0) 6= 0.

Then there exists an interval J around the periodic orbit and a C2−map α = h(x),
where h : J → R such that h(x0) = α, and Φ2m(x, h(x)) = x. Moreover, if AB < 0,
the periodic points exists for α > α, and, if AB > 0, the periodic points exists for
α < α.
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When ∂Φ2m

∂x
(α, x0) = 1 but ∂Φ2m

∂α
(α, x) = 0, two types of bifurcations appear. The

first is called transcritical bifurcation which occurs when ∂2Φ2m

∂x2 (α, x0) 6= 0 and the

second is called pitchfork bifurcation which appears when ∂2Φ2m

∂x2 (α, x0) = 0. For more
details about this two types of bifurcation see table 2.1 in [11, pp. 90], and [30]. In the
former work the author presents many cases for autonomous maps while in the latter
article the authors study the pitchfork bifurcation for nonautonomous 2−periodic
systems in which the maps have negative Schwarzian derivative.

The next result gives the conditions for the period-doubling bifurcation.

Theorem 16 (Period-Doubling Bifurcation for 2−periodic systems [29]) Let

Cr = {x0, x1, ..., xr−1} be a periodic r−cycle of F . Assume that both ∂2Φ2

∂x2 and ∂Φ2

∂α

exist and are continuous in a neighborhood of a periodic orbit, ∂Φ2m

∂x
(α, x0) = −1

for the periodic point x0 and ∂2Φ4m

∂α∂x
(α, x0) 6= 0. Then, there exists an interval J

around the periodic orbit and a function h : J → R such that Φ2m(x, h(x)) 6= x but
Φ4m(x, h(x)) = x.

Now we are going to apply these two results with an interesting example from
[29]. First we need the following definition.

Definition 17 A unimodal map is said to have the Allee1 effect if it has three fixed
points x∗1 = 0, x∗2 = A, and x∗3 = K, with 0 < A < K, in which x∗1 is asymptotically
stable, x∗2 is unstable, and x∗3 may be stable or unstable.

Remark 18 Note that if F is a periodic set formed by unimodal Allee maps, nei-
ther the zero fixed point nor the threshold point can contribute to bifurcation, since
the former is always asymptotically stable and the latter is always unstable. Hence
bifurcation may only occur at the carrying capacity of F .

Example 19 [29] Consider the 2−periodic system W = {f0, f1}, where

fi(x) = aix
2(1− x), i = 0, 1

1The Allee effect is a phenomenon in population dynamics attributed to the American biologist
Warder Clayde Allee 1885-1955 [1]. Allee proposed that the per capita birth rate declines at low
density or population sizes. In the languages of dynamical systems or difference equations, a map
representing the Allee effect must have tree fixed points, an asymptotically stable zero fixed point,
a small unstable fixed point, called the threshold point, and a bigger positive fixed point, called the
carrying capacity, that is asymptotically stable at least for smaller values of the parameters.
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Figure 4: A unimodal Allee map with three fixed points 0, A and k.

in which x ∈ [0, 1] and ai > 0, i = 0, 1. For an individual map fi, if ai < 4 we have
a globally asymptotically stable zero fixed point and no other fixed point. At ai = 4
an unstable fixed point is born after which fi becomes a unimodal map with an Allee
effect (see Figure 4). Henceforth, we will assume that a0, a1 > 4.

Since 0 is the only fixed point under the system W, we focus our attention on
2−periodic cycles {x0, x1} with f0(x0) = x1, and f1(x1) = x0.

A Saddle-node bifurcation occurs when ∂
∂t

(Φ2(t))
∣∣
t=x0

= Φ′
2(x0) = 1, and a period-

doubling bifurcation occurs when ∂
∂t

(Φ2(t))
∣∣
t=x0

= Φ′
2(x0) = −1.

For the saddle-node bifurcation we then solve the equations

{
x0 = f1 (f0 (x0))
f ′1 (f0 (x0)) f ′0 (x0) = 1

(17)

and for the period-doubling bifurcations we solve the equations

{
x0 = f1 (f0 (x0))
f ′1 (f0 (x0)) f ′0 (x0) = −1

(18)
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Using the command “resultant”2 in Mathematica or Maple Software, we eliminate
the variable x0 in equations (17) and (18). Eq. (17) yields

16777216 + 16384a0a1 − 576000a2
0a1 + 84375a3

0a1 − 576000a0a
2
1 + 914a2

0a
2
1 −

350a3
0a

2
1 + 84375a0a

3
1 − 350a2

0a
3
1 + 19827a3

0a
3
1 − 2916a4

0a
3
1 − 2916a3

0a
4
1 + 432a4

0a
4
1 = 0

while Eq. (18) yields

100000000− 120000a0a1 − 2998800a2
0a1 + 453789a3

0a1 − 2998800a0a
2
1 − 4598a2

0a
2
1 +

2702a3
0a

2
1 + 453789a0a

3
1 + 2702a2

0a
3
1 + 89765a3

0a
3
1 − 13500a4

0a
3
1 − 13500a3

0a
4
1 + 2000a4

0a
4
1 = 0

For each one of these last two equations we invoke the implicit function theorem to
plot, in the (a0, a1)−plane, the bifurcation curves (see figure 5). The black curves are
the solution of the former equation at which saddle-node bifurcation occurs, while the
gray curves are the solution of the latter equation at which period-doubling bifurcations
occurs. The black cusp is the curve of pitchfork bifurcation. In the regions identified
by letters one can conclude the following.

• If a0, a1 ∈ A then the fixed point x∗ = 0 is globally asymptotically stable.

• If a0, a1 ∈ B\D then there are two 2−periodic cycles, one attracting and one
unstable.

• If a0, a1 ∈ D then there are two attracting 2−periodic cycles (from the pitchfork
bifurcation) and two unstable 2−periodic cycles.

• If a0, a1 ∈ (C1 ∪ C2)\(D1 ∪ D2) then there is an attracting 4−periodic cycle
(from the period doubling bifurcation) and two unstable 2−periodic cycles.

• If a0, a1 ∈ D1∪D2 then there are two attracting 4−periodic cycles (from pitchfork
bifurcation) and two unstable 2−periodic cycles.

• If a0, a1 ∈ E then there are two attracting 8−periodic cycles (from period dou-
bling bifurcation), two attracting 4−periodic cycles (from pitchfork bifurcation),
and four unstable 2−periodic cycles.

It should be noted here that the bifurcation curves for the system W in figure
5 are incomplete. If we want to draw more bifurcation curves in the space of the
parameters we must do the same for 4−periodic cycles, 8−periodic cycles, and so

2The command “resultant” is a powerful tool that helps us in finding the implicit solutions for
a polynomial equations with low degree. We are not aware of similar techniques that work for
nonpolynomial equation such the Ricker map Rp(x) = xep−x, p, x > 0.
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Figure 5: Bifurcations curves for the 2−periodic nonautonomous difference equation
with Allee effects xn+1 = anx2

n(1 − xn), in the (a0, a1)−plane, where an+2 = an and
xn+2 = xn.

on. Finding the implicit solutions of these two new equations involve horrendous
computations. The command “resultant” does not produce answers after certain
values of the degree of the polynomial. So, for the system W , unfortunately we are
unable to draw these curves for the 4−periodic cycle. However, it should be noted
that AlSharawi and Angelos [2] have used the command “resultant” to investigate the
bifurcations of the periodically forced logistic map, and they were able to draw these
curves for the 4−periodic cycles of the 2−periodic system. Moreover, these authors
drew the bifurcation surfaces for the 3−periodic cycle of the 3−periodic system in
the three dimensional space of the parameters.

Finally, we should mention that Grinfeld et al [20] have used the command “re-
sultant” much earlier to study the bifurcation of 2−periodic logistic systems.
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8 A note on bifurcation equations

In [5] the authors study the symmetry of degenerate bifurcation equations of periodic
orbits in a nonautonomous system with respect to the order of the composition. They
proved that the cyclic permutation in the order of the composition do not affect the
solutions of the bifurcations in the parameter space.

In order to see this last observation, let f0, f1, . . . , fp−1 be a collection of maps

fj : Ij × RK −→ R
(x, λ) −→ fj (x, λ)

where λ is a parameter vector, the fiber Fj = Ij × {fj} and fj ∈ Cm
(
Ij,RK

)
,

j = 0, 1, . . . , p− 1.
We are concerned with the bifurcations that can occur, in particular with the

bifurcations with higher degeneracy conditions on the derivatives of the iteration
variable x and not on the degeneracy conditions on the parameters.
These below are the bifurcation equations with the most degenerate conditions that
appear with j fixed , 0 ≤ j ≤ p− 1

Φj
kp (x) = x, (19)

dΦj
kp

dx
(x) = 1,

d2Φj
kp

dx2
(x) = 0,

d3Φj
kp

dx3
(x) = 0,

...

dmΦj
kp

dxm
(x) = 0.

These equations have different solution in terms of x, depending on the j we choose.

A natural question arises:

Do the solutions in the parameter space depend on the particular choice
of Φj

p?

This question was posed in [30, 4] and, was positively solved for p = 2, and degen-
eracy conditions of order m = 2, 3, that is, for pitchfork and swallowtail, respectively.
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We now present the following lemma that is useful for solving general problems
of the symmetry of the bifurcation equations.

Lemma 20 Let m ≥ 1 and let ϕ and ψ be real maps satisfying the conditions:

1. there exists a such that ψ(a) = a and ψ is a Lipschitz homeomorphism in some
open interval I 3 a.

2. ϕ is a Lipschitz homeomorphism with Lipschitz constant L in a open neighbor-
hood Iϕ of a point a such that ψ(a) = a and ψ is a Lipschitz homeomorphism
in some open interval I 3 a.a such that ϕ (a) = b. Let ϕ−1 be its inverse in
another open neighborhood of b, ϕ−1 is also Lipschitz continuous with constant
M .

3.

lim
x→a

|ψ (x)− x|
|x− a|m = 0.

Then the conjugate ψ̃ of ψ by the homeomorphism ϕ

ψ̃ = ϕψϕ−1

satisfies

lim
y→b

∣∣∣ψ̃ (y)− y
∣∣∣

|y − b|m = 0. (20)

Using lemma 20 one can prove the following theorem.

Theorem 21 [5] Let f0,f1 . . . , fp−1 be p functions with a sufficient number of deriva-
tives satisfying the conditions:

1. There exists x0, x1, . . . , xp−1, fixed points of Φp, Φ1
p, . . . , Φp−1

p , respectively,
that is

Φj
p(xj) = xj

2. The first bifurcation condition holds

dΦp (x)

dx

∣∣∣∣
x=x0

=

p−1∏
j=0

dfj

dx
(xj) = 1.
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3. Higher degeneracy conditions hold for Φp

m ≥ 2 :
dnΦp

dxn
(x)

∣∣∣∣
x=x0

= 0, 2 ≤ n ≤ m.

Then the composition operator Φj
p ,0 ≤ j ≤ p− 1 satisfies

dnΦj
p

dxn
(x)

∣∣∣∣
x=xj

= 0, for 2 ≤ n ≤ m.

In the case of periodic systems with period two the result is a particular case of
the previous theorem.

Corollary 22 [5] Let f0 and f1 be maps with a sufficient number of derivatives sat-
isfying the conditions:

1. (f1 ◦ f0) (x0) = x0 and (f0 ◦ f1) (x1) = x1.

2. d(f1◦f0)
dx

(x)
∣∣∣
x=x0

= f ′1 (x1) f ′0 (x0) = 1.

3. Fixed m ≥ 2: dn(f1◦f0)
dxn (x)

∣∣∣
x=x0

= 0 for 2 ≤ n ≤ m.

Then the reverse composition f0 ◦ f1 satisfies

dn(f0 ◦ f1)

dxn
(x)

∣∣∣∣
x=x1

= 0, for 2 ≤ n ≤ m.

Example 23 [5] We will prove directly that the second and third derivatives of alter-
nating maps are both zero, regardless of the order of composition. We do this directly
using the higher order chain rule, or Faà di Bruno formula [25] fist proved in [28].

Let f0 and f1 be C3 functions satisfying the conditions:

1. (f0 ◦ f0) (x0) = x0 and (f0 ◦ f1) (x1) = x1 which is f0 (x0) = x1 and f1 (x1) = x0.

2. d(f1◦f0)
dx

(x)
∣∣∣
x=x0

= f ′1 (x1) f ′0 (x0) = 1.

3. dm(f1◦f0)
dxm (x)

∣∣∣
x=x0

= 0 for m = 2, 3.
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Let us recall the formula of Faà di Bruno for the derivatives of the composition

dm (f1 ◦ f0)

dxm
(x) = m!

m∑
n=1

f
(n)
1 (f0 (x))

m∏
j=1

1

bj!

(
f

(j)
0 (x)

j!

)bj

, (21)

where the sum is over all different solutions bj in nonnegative integers of the equation

m∑
j=1

jbj = m, and n :=
m∑

j=1

bj.

To avoid to overload this example with indexes we use the notation

dm(f1 ◦ f0)

dxm
(x)

∣∣∣∣
x=x0

= (f1f0)m ,
dm(f0 ◦ f1)

dxm
(x)

∣∣∣∣
x=x1

= (f0f1)m .

With this notation the Faà di Bruno Formula computed at the conditions of the
problem is

(f1f0)m = m!
m∑

n=1

f
(n)
1 (x1)

m∏
j=1

1

bj!

(
f

(j)
0 (x0)

j!

)bj

(22)

and

(f0f1)m = m!
m∑

n=1

f
(n)
0 (x0)

m∏
j=1

1

bj!

(
f

(j)
1 (x1)

j!

)bj

(23)

Condition 2 in this notation is now

f ′0(x0)f
′
1(x1) = 1. (24)

Let us consider the first cases. Let m = 2, we will use the formula 21, so we have
to solve the equation

b1 + 2b2 = 2,

for all possible values of the vector (b1, b2) with nonnegative integers. The only solu-
tions are b1 = 0, b2 = 1 which gives n = 1 and b1 = 2, b2 = 0 with n = 2, so we
have

(f1f0)2 = 2!

(
f ′1(x1)

1

0!

(
f ′0(x0)

1!

)0
1

1!

(
f ′′0 (x0)

2!

)1

+ f ′′1 (x1)
1

2!

(
f ′0(x0)

1!

)2
1

0!

(
f ′′0 (x0)

2!

)0
)

= 0

(25)

= f ′1(x1)f
′′
0 (x0) + f ′′1 (x1)(f

′
0(x0))

2 = f ′1(x1)f
′′
0 (x0) +

f ′′1 (x1)

f ′1(x1)
= 0
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and

(fg)2 = 2!

(
f ′0(x0)

1

0!

(
f ′1(x1)

1!

)0
1

1!

(
f ′′1 (x1)

2!

)1

+ f ′′0 (x0)
1

2!

(
f ′1(x1)

1!

)2
1

0!

(
f ′′1 (x1)

2!

)0
)

(26)

= f ′0(x0)f
′′
1 (x1) + f ′′0 (x0)(f

′
1(x1))

2 =
f ′′1 (x1)

f ′1(x1)
+ f ′′0 (x0)(f

′
1(x1))

2.

Using Cramer’s rule we solve the system with equations (24) and (25) for f ′′1 (x1), we
get

f ′′1 (x1) =
1

(f ′0(x0))3

∣∣∣∣
0 f ′′0 (x0)
1 f ′0(x0)

∣∣∣∣ = − f ′′0 (x0)

(f ′0(x0))3
,

substituting f ′1(x1) and f ′′1 (x1) in Eq. (26) we get

(f0f1)2 = −f ′0(x0)
f ′′0 (x0)

(f ′0(x0))3
+ f ′′0 (x0)

1

(f ′0(x0))2
= 0.

Now we consider the case m = 3

(f1f0)3 = f ′1(x1)f
′′′
0 (x0) + 3f ′′1 (x1)f

′
0(x0)f

′′
0 (x0) + f ′′′1 (x1)(f

′
0(x0))

3 (27)

= f ′1(x1)f
′′′
0 (x0) +

3f ′′1 (x1)f
′′
0 (x0)

f ′1(x1)
+

f ′′′1 (x1)

(f ′1(x1))3
= 0.

We use Cramer’s rule to solve the system consisting of equations (24), (25) and (27)
for f ′′′1 (x1)

f ′′′1 (x1) =
1

(f ′0(x0))6

∣∣∣∣∣∣

0 3f ′0(x0)f
′′
0 (x0) f ′′′0 (x0)

0 (f ′0(x0))
2 f ′′0 (x0)

1 0 f ′0(x0)

∣∣∣∣∣∣

= − f ′′′0 (x0)

(f ′0(x0))4
−

3
(
− f ′′0 (x0)

(f ′0(x0))3

)
f ′′0 (x0)

(f ′0(x0))2

=
3(f ′′0 (x0))

2

(f ′0(x0))5
− f ′′′0 (x0)

(f ′0(x0))4
.

In the case of the reverse order composition the third derivative (substituting f ′1(x1),
f ′′1 (x1) and f ′′′1 (x1) by the solutions obtained previously) is given by

(f0f1)3 = f ′0(x0)f
′′′
1 (x1) + 3f ′′0 (x0)f

′
1(x1)f

′′
1 (x1) + f ′′′0 (x0)(f

′
1(x1))

3 (28)

= f ′0(x0)

(
3(f ′′0 (x0))

2

(f ′0(x0))5
− f ′′′0 (x0)

(f ′0(x0))4

)
+ 3f ′′0 (x0)

1

f ′0(x0)

(
− f ′′0 (x0)

(f ′0(x0))3

)
+

f ′′′0 (x0)

(f ′0(x0))3

= 0.
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Finally we end this section presenting the extension of theorem 21 to the periodic
case that answers the question posed in the beginning of this section.

Theorem 24 [5] Let f0, f1, . . ., fp−1 be maps with a sufficient number of derivatives
satisfying the conditions:

1. There are periodic orbits with period k for the compositions (kp for the iterates)

Φkp (x0) = x0,

Φ1
kp (x1) = x1

...

Φp−1
kp (xp−1) = xp−1

2. The first bifurcation condition holds

dΦkp

dx
(x)

∣∣∣∣
x=x0

= 1.

3. Higher degeneracy conditions hold.
Fixed m ≥ 2:

dnΦkp

dxn
(x)

∣∣∣∣
x=x0

= 0, 2 ≤ n ≤ m.

Then Φj
kp, with j = 1, . . . , p− 1, satisfies

dnΦj
kp

dxn
(x)

∣∣∣∣∣
x=xj

= 0, for 2 ≤ n ≤ m.

Now we give an example for a 2−periodic system where the maps do not arise
from a family of maps, one is unimodal and the other is bimodal.

Example 25 [30]
Let us now consider the maps

f0 : [−1, 1]× [1, 4] −→ R
(x, λ0) −→ λ0x

3 + (1− λ0)x

and
f1 : [−1, 1]× [0, 2] −→ R

(x, λ0, λ1) −→ −λ1x
2 − 1 + λ1

.
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The composition operator Φ2 is now defined Φ : [−1, 1]× [1, 4]× [0, 2] −→ R such that

Φ2(x, λ0, λ1) = f1(f0(x, λ0), λ1)

= −λ1(λ0x
3 + (1− λ0)x)2 − 1 + λ1

We consider the pitchfork bifurcation problem. In this case we have m = 2. The
bifurcation equations are

Φ2k (x, λ0, λ1) = x, (29)

dΦ2k

dx
(x, λ0, λ1) = 1,

d2Φ2k

dx2
(x, λ0, λ1) = 0,

where we assume that there are no more degeneracy conditions. This problem has two
solutions, respectively

x0=̃− 0.247674

(λ0, λ1)=̃(2.85032, 0.90883)

and

y0=̃0.620345

(λ0, λ1)=̃(2.20004, 1.70216).

Hence there are two pitchfork bifurcation points.

Example 26 [30] We can also study Φ̃2 = f0 ◦ f1, with the same families of example
25, the composition appearing now in the reverse order. It is possible to show, with
much more cumbersome computations if treated directly, that this problem has two
pitchfork bifurcation points. As in the previous example, exactly at the same values
of the parameters

x0=̃0.414971

(λ0, λ1)=̃ (2.85032, 0.90883)

and

y1=̃− 0.219234

(λ0, λ1, x)=̃ (2.20004, 1.70216) .
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9 Attenuance and resonance

9.1 The Beverton-Holt equation

In [8] Cushing and Henson conjectured that a nonautonomous p−periodic Beverton-
Holt equation with periodically varying carrying capacity must be attenuant. This
means that if Cp = {x0, x1, ..., xp−1} is its p−periodic cycle, and Ki, 0 ≤ i ≤ p − 1
are the carrying capacities, then

1

p

p−1∑
i=0

xi <
1

p

p−1∑
i=0

Ki. (30)

Since the periodic cycle Cp is globally asymptotically stable on (0,∞), it follows
that for any initial population density x0, the time average of the population density
xn is eventually less than the average of the carrying capacities, i.e.,

lim
n→∞

1

n

n−1∑
i=0

xi <
1

p

p−1∑
i=0

Ki. (31)

Eq. (31) gives a justification for the use of the word “attenuance” to describe the
phenomenon in which a periodically fluctuation carrying capacity of the Beverton-
Holt equation has a deleterious effect on the population. This conjecture was first
proved by Elaydi and Sacker in [14, 13, 13] and independently by Kocic [26] and Kon
[27]. The following theorem summarizes our findings.

Theorem 27 [14] Consider the p−periodic Beverton-Holt equation

xn+1 =
µKnxn

Kn + (µ− 1)xn

, n ∈ Z+, (32)

where µ > 1, Kn+p = Kn, and Kn > 0. Then Eq. (32) has a globally asymptotically
stable p−periodic cycle. Moreover, Eq. (32) is attenuant.

Kocic [26], however gave the most elegant proof for the presence of attenuance.
Utilizing effectively the Jensen’s inequality, he was able to give the following more
general result.

Theorem 28 [26] Assume that µ > 1 and {Kn} is a bounded sequence of positive
numbers

0 < α < Kn < β < ∞.

Then for every positive solution {xn} of Eq. (32) we have

lim sup
n→∞

1

n

n−1∑
i=0

xi ≤ lim sup
n→∞

1

n

n−1∑
i=0

Ki. (33)
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9.2 Neither attenuance nor resonance

By a simple trick, Sacker [31] showed that neither attenuance nor resonance occurs
when periodically forcing the Ricker maps

R(x) = xep−x.

So consider the k−periodic system

xn+1 = xne
pn−xn , pn+k = pn, n ∈ Z+. (34)

If 0 < pn < 2, Eq. (34) has a globally asymptotically stable k−periodic cycle [31].
Let Ck = {x0, x1, ..., xk−1} be this unique k−periodic cycle. Then

x0 = xk = xk−1e
pk−1−xk−1

= xk−2e
pk−2−xk−2epk−1−xk−1 ,

and by iteration we get

x0 = x0e
∑k−1

i=0 pi−
∑k−1

i=0 xi .

Hence

1
k

∑k−1
i=0 pi = 1

k

∑k−1
i=0 xi,

i.e., neither attenuance nor resonance.

9.3 An extension: monotone maps

Using an extension to monotone maps, Kon [27] considered a p−periodic difference
equation of the form

xn+1 = g (xn/Kn) xn, n ∈ Z+, (35)

where Kn+p = Kn, Kn > 0, x0 ∈ [0,∞) and g : R+ → R+ is a continuous function
which satisfies the following properties

• g(1) = 1,

• g(x) > 1 for all x ∈ (0, 1),

• g(x) < 1 for all x ∈ (1,∞).

Theorem 29 [27] Let Cr = {x0, x1, ..., xr−1} be a positive r−periodic cycle of Eq.
(35) such that Ki 6= Ki+1 for some 0 ≤ i ≤ p − 1. Assume that zg(z) is strictly
concave on an interval (a, b), 0 < a < b containing all points xi

Ki
∈ (a, b), 1 ≤ i ≤ rp.

Then the cycle Cr is attenuant.
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This theorem provides an alternative proof of the attenuance of the periodic
Bevertob-Holt equation (32).

Consider the equation [27]

xn+1 =

(
xn

Kn

)a−1

, 0 < a < 1, (36)

where Kn+p = Kn, n ∈ Z+, and Ki 6= Ki+1 for some i ∈ Z+. The maps belong to
the class K and satisfy the assumption of the preceding theorem. Consequently, Eq.
(36) has a globally asymptotically stable p−periodic cycle that is attenuant.

9.4 The loss of attenuance: resonance.

Consider the periodic Beverton-Holt equation (32) in which both parameters µn and
Kn are periodic of common period p. This equation may be attenuant or resonant.
In fact, when p = 2, Elaydi and Sacker [14] showed that

x = K + σ
K0 −K1

2
−∆

(µ0 − 1)(µ1 − 1)

2(µ0µ1 − 1)
(K0 −K1)

2 (37)

where

x =
x0 + x1

2
and K =

K0 + K1

2
,

σ =
µ1 − µ0

µ0µ1 − 1
, 0 ≤ |σ| < 1,

and

∆ =
µ0(µ

2
1 − 1)K0 + µ1(µ

2
0 − 1)K1

µ0(µ1 − 1)2K2
0 + (µ0 − 1)(µ1 − 1)(µ0µ1 + 1)K0K1 + µ1(µ0 − 1)2K2

1

> 0.

It follows that attenuance is present if either (µ1−µ0)(K0−K1) < 0 (out of phase)
or the algebraic sum of the last two terms in Eq. (37) is negative. On the other hand,
resonance is present if the algebraic sum of the last two terms in Eq. (37) is positive.

Notice that if µ0 = µ1 = µ with p = 2, then we have

1

p

p−1∑
i=0

xi =
1

p

p−1∑
i=0

Ki − µ(K0 + K1)(K1 −K0)
2

2 [µK2
0 + (µ2 + 1)K0K1 + µK2

1 ]
,

which gives an exact expression for the difference in the averages.

Remark 30 Now for µ0 = 4, µ1 = 2, K0 = 11, and K1 = 7, we have resonance
as 1

2

∑1
i=0 xi ≈ 9.23 and 1

2

∑1
i=0 Ki = 9. On the other hand, one can show that for

µ0 = 2, µ1 = 4, K0 = 11, and K1 = 7, we have attenuance as may be seen from (37).
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9.5 The signature functions of Franke and Yakubu

In [19], the authors gave a criteria to determine attenuance or resonance for the
2−periodic difference equation

xn+1 = xng(Kn, µn, xn), n ∈ Z+, (38)

where Kn = K(1 + α(−1)n), µn = µ(1 + β(−1)n), and α, β ∈ (−1, 1).
Define the following

ω1 =

(
k ∂2g

∂x2 + 2 ∂g
∂x

)(
K2 ∂g

∂K

2+K ∂g
∂x

)2

+
(
2K ∂g

∂K
+ 2K2 ∂2g

∂x∂K

)
+ K3 ∂2g

∂K2

−2K ∂g
∂x

, (39)

ω2 =
−

(
µ ∂g

∂µ
+ Kµ ∂2g

∂x∂µ

)(−K2 ∂g
∂K

2+K ∂g
∂x

)
+ K2µ ∂2g

∂K∂µ

K ∂g
∂x

, (40)

and
Rd = sign(α(ω1α + ω2β)). (41)

Theorem 31 [19] If for α = 0, β = 0, K is hyperbolic fixed point of equation (38),
then for all sufficiently small |α| and |β|, the equation (38), with α, β ∈ (−1, 1), has
an attenuant 2−periodic cycle if Rd < 0 and a resonant 2−periodic cycle if Rd > 0.

To illustrate the effectiveness of this theorem, let us to consider the logistic equa-
tion

xn+1 = xn

[
1 + µ(1 + β(−1)n)

(
1− xn

K(1 + α(−1)n)

)]
. (42)

For 0 < µ < 2 Eq. (42) has an asymptotically stable 2−periodic cycle. Using
formulas (39) and (40), one obtains

ω1 =
−8K

(µ− 2)2
and ω2 =

−4K

µ− 2
.

Assume that α > 0 and 0 < µ < 2. Using (41) yields

Rd = sign

(
2

µ− 2
α + β

)
= sign

(
β − 2

2− µ
α

)
.

Hence we have attenuance if β < 2
2−µ

α, i.e., if the relative strength of the fluctu-

ation of the demographic characteristic of the species is weaker than 2
2−µ

times the
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relative strength of the fluctuation of the carrying capacity. On the other hand if
β > 2

2−µ
α we obtain resonance.

Notice that if α = 0 (the carrying capacity is fixed), then we have resonance if
β > 0 and we have attenuance if β < 0. For the case that β = 0 (the intrinsic growth
rate is fixed), we have attenuance.

Finally, we note that Franke and Yakubu extended their study to periodically
forced Leslie model with density-dependent fecundity functions [18]. The model is of
the form

x1
n+1 =

s∑
i=1

xi
ng

i
n(xi

n) =
s∑

i=1

f i
n(xi

n)

x2
n+1 = λ1x

1
n

...

xs
n+1 = λs−1x

s−1
n ,

where f i
n is of the Beverton-Holt type. Results similar to the one-dimensional case

where each f i
n is under compensatory, i.e.,

∂f i
n(xi)

∂xi

> 0,
∂2f i

n(xi)

∂x2
i

< 0,

and lim
xi→∞

f i
n (xi) exists for all n ∈ Z+.

10 Almost periodic difference equations

In this section we extend our study to the almost periodic case. This is particularly
important in applications to biology in which habitat’s fluctuations are not quite
periodic.

But in order to embark on this endeavor, one needs to almost reinvent the wheel.
The problem that we encounter here is that the existing literature deals exclusively
with almost periodic fluctuations (sequences) on the real line R (on the integers
Z). To have meaningful applications to biology, we need to study almost periodic
fluctuations or sequence on Z+ (the set of nonnegative integers). Such a program has
been successfully implemented in [10]. Our main objective here is to report to the
reader a brief but through exposition of these results.

We start with the following definitions from [17, 21].

Definition 32 An Rk−valued sequence x = {xn}n∈Z+ is called Bohr almost periodic
if for each ε > 0, there exists a positive integer T0(ε) such that among any T0(ε)
consecutive integers, there exists at least one integer τ with the following property:
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‖ xn+τ − xn ‖< ε, ∀n ∈ Z+.

The integer τ is then called an ε−period of the sequence x = {xn}n∈Z+.

Definition 33 An Rk−value sequence x = {xn}n∈Z+ is called Bochner almost peri-
odic if for every sequence {h(n)}n∈Z+ of positive integers there exists a subsequence
{hni

} such that {xn+ni
}ni∈Z+ converges uniformly in n ∈ Z+.

In [10] it was shown that the notions of Bohr almost periodicity and Bochner
almost periodicity are equivalent.

Now a sequence f : Z+ × Rk → Rk is called almost periodic in n ∈ Z+ uniformly
in x ∈ Rk if for each ε > 0, there exists T0(ε) ∈ Z+ such that among T0(ε) consecutive
integers there exists at least one integer s with

‖ f(n + s, x)− f(n, x) ‖< ε

for all x ∈ Rk, and s ∈ Z+.
Now consider the almost periodic difference equations

xn+1 = Anxn (43)

yn+1 = Anyn + f(n, yn), (44)

where An is a k × k almost periodic matrix on Z+, and f : Z+ × Rk → Rk is almost
periodic.

Let Φ(n, s) =
∏n−1

r=s Ar be the state transition matrix of equation (43). Then
equation (43) is said to posses a regular exponential dichotomy [23] if there exist a
k × k projection matrix Pn, n ∈ Z+, and positive constants M and β ∈ (0, 1) such
that the following properties hold:

1. AnPn = Pn+1An;

2. ‖ X(n, r)Prx ‖≤ Mβn−r ‖ x ‖, 0 ≤ r ≤ n, x ∈ Rk;

3. ‖ X(r, n) (I − Pn) x ‖≤ Mβn−r ‖ x ‖, 0 ≤ r ≤ n, x ∈ Rk;

4. The matrix An is an isomorphism from R (I − Pn) onto R (I − Pn+1), where
R(B) denotes the range of the matrix B.

We are now in a position to state the main stability result for almost periodic
systems.
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Theorem 34 Suppose that Eq. (43) possesses a regular exponential dichotomy with
constant M and β and f is a Lipschitz with a constant Lipschitz L. Then Eq. (44)
has a unique globally asymptotically stable almost periodic solution provided

MβL

1− β
< 1.

Proof. Let AP (Z+) be the space of almost periodic sequences on Z+ equipped with
the topology of the supremum norm. Define the operator Γ on AP (Z+) by letting

(Γϕ)n =
n−1∑
r=0

(
n−1∏
s=r

)
Asf(r, ϕr).

Then Γ : AP (Z+) → AP (Z+) is well defined. Moreover Γ is a contraction. Using the
Banach fixed point theorem, we obtain the desired conclusion.

The preceding result may be applied to many populations models. However, we
will restrict our treatment here on the almost periodic Beverton-Holt equation with
overlapping generations

xn+1 = γnxn +
(1− γn)µKnxn

(1− γn)Kn + (µ− 1γn)xn

(45)

with Kn > 0 and γn ∈ (0, 1) are almost periodic sequences, and µ > 1. As before µ
and K denote the intrinsic growth rate and the carrying capacity of the population,
respectively, while γ is the survival rate of the population from one generation to ne
next.

The following result follows from theorem 34

Theorem 35 Eq. (45) has a unique globally asymptotically stable almost periodic
solution provided that

sup
{
γn : n ∈ Z+

}
<

1

1 + µ

To this end, we have addressed the question of stability and existence of almost
periodic solution of almost periodic difference equation. We now embark on the task
of the determination of whether a system is attenuant or resonant.

Let {µn}n∈Z+ be an almost periodic sequence on Z+. Then we define its mean
value as

M(µn) = lim
n→∞

1

m

m∑
r=1

µn+r (46)
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It may be shown that M(µn) exists [10].
Let {xn} be the almost periodic solution of a given almost periodic system. Then

we say that the system is

1. attenuant if M(xn) < M(Kn),

2. resonant if M(xn) > M(Kn).

Theorem 36 [10] Suppose that {Kn}n∈Z+ is almost periodic, Kn > 0, µ > 1, and
γn = γ ∈ (0, 1). Then

1. lim sup
n→∞

1
n

∑n−1
m=0 xm ≤ lim sup

n→∞
1
n

∑n−1
m=0 Km for any solution xn of Eq. (45),

2. M(xn) ≤ M(Kn) if xn is the unique almost periodic solution of Eq. (45).

11 Stochastic difference equations

In [22] the authors investigated the stochastic Beverton-Holt equation and introduced
new notions of attenuance and resonance in the mean.

Following on the same lines [6] the authors investigated the stochastic Beverton-
Holt equation with overlapping generations.

In this section, we will consider the latter study and consider the equation

xn+1 = γnxn +
(1− γn)µKnxn

(1− γn)Kn + (µ− 1 + γn)xn

. (47)

Let L1(Ω, υ) be the space of integrable functions on a measurable space (Ω,F , υ)
equipped with its natural norm given by

‖ f ‖1=

∫

Ω

f(x)dυ.

Let

D(E) := {f ∈ L1(E, υ) : f ≥ 0 and
∫
Ω

fdυ}
be the space of all densities on Ω.

Definition 37 Let Q : L1(Ω, υ) → L1(Ω, υ) be a Markov operator. Then {Qn} is
said to be asymptotically stable if there exists f ∗ ∈ D for which

Qf ∗ = f ∗

and for all f ∈ D,
lim

n→∞
‖ Qnf − f ∗ ‖1= 0.
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We assume that both the carrying capacity Kn and the survival rate γn are ran-
dom and for all n, (Kn, γn) is chosen independently of (x0, K0, γ0), (x1, K1, γ1), ...,
(xn−1, Kn−1, γn−1) from a distribution with density Φ(K, γ).

The joint density of xn, Kn, γn is fn(x)Φ(K, γ), where fn is the density of xn.
Furthermore, we assume that

E|Kn| < ∞, E|x0| < ∞

and K2Φ(K, γ) is bounded above independently of γ and that Φ is supported on the
product interval

[Kmin,∞)× [γmin,∞),

for some Kmin > 0 and γmin > 0.
Moreover, we assume there exists an interval (Kl, Ku) ⊂ R+ on which Φ is positive

everywhere for all γ.
Let h be an arbitrary bounded and measurable function on R+ and define b(Kn, γn, xn)

to be equal to the right-hand side of equation (47). The expected value of h at time
n + 1 is then given by

E[h(xn+1)] =

∫ ∞

0

h(x)fn+1(x)dx. (48)

Furthermore, because of (47) and the fact that the joint density of xn, and γn is just
fn(x)Φ(K, γ), we also have

E[h(xn+1)] = E[h(b(Kn, γn, xn))]

=

∫ ∞

0

∫ 1

0

∫ ∞

0

h(b(K, γ, y))fn(y)Φ(K, γ)dydγdy.

Let us define K = K(x, γ, y) by the equation

x =
(1− γ)µKy

(1− γ)K + (µ− 1 + γ)y
+ γy. (49)

Solving explicitly this equation for K yields

K =
(µ− 1 + γ)y(x− γy)

(1− γ)[µy − (x− γy)]
. (50)

By a change of variables, this can be written as

E[h(xn+1)] =

∫∫∫

{(x,γ,y):0<x−γy<µy}
h(x)fn(y)Φ(K, γ)

dk

db(K, γ, y)
dxdγdy.
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A simple calculation yields

E[h(xn+1)] = µ

∫ ∞

0

{∫∫

A

1− γ

(µ− 1 + γ)

1

(x− γy)2
fn(y)K2Φ(K, γ)dγdy

}
dx,

where
A = {(γ, y) : 0 < x− γy < µy}. (51)

Equating the above equations, and using the fact that h was an arbitrary, bounded,
measurable function, we immediately obtain

fn+1(x) = µ

∫∫

A

1− γ

(µ− 1 + γ)

1

(x− γy)2
fn(y)K2Φ(K, γ)dγdy.

Let P : L1(R+) → L1(R+) be defined by

Pf(x) = µ

∫∫

A

1− γ

(µ− 1 + γ)

1

(x− γy)2
f(y)K2Φ(K, γ)dγdy, (52)

where k = K(x, γ, y) is defined by (50) and A in (51).
We can now state the main theorem of this section

Theorem 38 [6] The Markov operator P : L1(R+) → L1(R+) defined by equation
(52) is asymptotically stable.

For the case when γn = γ is a constant and Kn is a random sequence, the following
attenuance result was obtain.

For almost every w ∈ Ω and x ∈ R+

lim
n→∞

1

n

n−1∑
i=0

xi(w, x) < lim
n→∞

1

n

n−1∑
i=0

Ki(w),

that is we have attenuance in the mean.
It is still an open problem to determine the attenuance or resonance when both

γn and Kn are random sequences on Z+.
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