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Abstract

A general branching process model is proposed to describe the short-
ening of telomeres in eukariotic chromosomes. The model is flexible
and incorporates many special cases to be found in the literature. In
particular, we show how telomere shortening can give rise to sigmoidal
growth curves, an idea first expressed by Portugal et al. (2008). We
also demonstrate how other types of growth curves arise if telomere
shortening is mitigated by other cellular processes. We compare our
results to published data sets from the biological literature.

Keywords: Gompertz function, telomere shortening, branching pro-
cess, AMS 2000 Mathematics Subject Classification Codes: 60G99,
60K99, 62P10, 92D25.

1 Introduction

Shortening of chromosome ends, known as telomeres, is one of the supposed
mechanisms of cellular aging and death, and an explanation for the finite
proliferative capacity of cell lines, see Harley (1991) and Greider (1996). In-
complete replication of DNA at the ends of linear chromosomes is predicted
from the known biochemical characteristics of DNA replication, the so-called
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end replication problem, but there is also evidence that oxidative stress plays
a role, see Proctor and Kirkwood (2002). Loss of telomeres is counteracted
by a mechanism to restore telomeres by the enzyme telomerase. In the ab-
sence of telomerase, cells experience progressive shortening of telomeres and
eventually stop dividing, entering a senescent state.

The role of chromosomal telomere loss is a fundamental problem in cell bi-
ology and medicine and has been studied extensively for many different types
of cells, for example human marrow stromal cells [Baxter et al. (2004)], goat’s
skin fibroblast cells [Gupta et al. (2007)], human mesenchymal stem cells
[Bonab et al. (2006)], and the yeast Saccharomyces cerevisiae [Bertuch and
Lundblad (2004)], just to mention a few. The biological process of telomere
loss has also attracted interest from the mathematical modeling community
and several variants of both deterministic and stochastic models have been
proposed. Without claiming to produce an exhaustive list, previous math-
ematical models of the process of telomere loss include Levy et al. (1992),
Arino et al. (1995, 1997), Olofsson and Kimmel (1999, 2005), Rubelj et al.
(1999), Tan (1999), Olofsson (2000), Sozou and Kirkwood (2001), op den
Buijs et al. (2004), Dyson et al. (2007), and Portugal et al. (2008).

Sigmoidal growth curves are typical for many cell populations, see for
example Baxter et al. (2004). In Portugal et al. (2008), telomere shortening
was suggested as an explanation for such growth curves. More specifically,
under certain assumptions, the growth curve was shown to be very closely ap-
proximated by the so-called Gompertz function which is one of several classes
of functions whose graphs exhibit sigmoidal shape. The assumptions of Por-
tugal et al. can probably be considered unrealistic as they rely on cell cycle
times being geometric (or, in the continuous case, exponential) thus having
the memoryless property. Also, they make the very specific (and biologically
questionable) assumption that mean cell cycle time increases linearly with
telomere loss. Nevertheless, their results are mathematically elegant and
they seem to be the first to make the connection between sigmoidal growth
and telomere loss.

We will show that sigmoidal growth curves arise under much less restric-
tive conditions than those of Portugal et al. Such curves are typically not of
the Gompertz type but, on the other hand, data such as those in Baxter et
al. (2004) are far to crude to assign to any one particular type of sigmoid.
Moreover, it turns out that the sigmoidal shape is only approximate as we
will show below.

Our model is stochastic, in particular it is developed within the framework
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of general (or Crump-Mode-Jagers) multitype branching processes. This
class of processes provides a model for population dynamics where an in-
dividual may give birth many times during its life, and in the next section
we provide some of the basics. The exposé is selective and focuses on the def-
initions and results we will need, leaving out some of the central theory that
is not of immediate relevance to our current endeavors. For a comprehensive
treatment of general branching processes, see Jagers (1989, 1992).

2 General branching processes

In a general multitype branching process, each individual has a type that
determines the probability distribution according to which it reproduces.
The type is chosen from the type space S which can be quite general; in
our applications, type will correspond to telomere length which is discrete
(measured in base pairs, bp, or nucleotides, nt) and we take the type space
to be the nonnegative integers N0. One central mathematical object in a
general branching process is the mean reproduction measure, µ(i, j × [0, t]),
giving the expected number of children of type j born in the age interval
[0, t] of a mother of type i. To view µ as a measure, we use the notation
µ(i, j× dt). In order to describe the expected population dynamics, we need
the convolution powers of µ. More precisely, the operator ∗ is defined to
denote convolution in time and Markov transition on S, so that

µ∗2(i, j × [0, t]) = µ ∗ µ(s, j × [0, t]) =
∑

k∈N0

∫ t

0
µ(k, j × [t− u])µ(i, k × du)

and higher convolutions powers defined recursively as

µ∗n = µ∗(n−1) ∗ µ

The 0th convolution power is defined as µ∗0(i, j× dt) = δ(i,0)(j× dt), a point
mass at (i, 0). The renewal measure ν is defined as

ν(i, j × dt) =
∞∑

n=0

µ∗n(i, j × dt)

where ν(i, j× [0, t]) is the total number of type-j individuals born up to time
t if the ancestor is of type i, from now on denoted by Mij(t). The total
number of individuals born up to time t is then
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ν(i, N0 × [0, t]) =
∑

j∈N0

ν(i, j × [0, t])

from now on denoted by Mi(t). If there is no death, ν(i, N0 × [0, t]) also
gives the number of individuals alive at time t. If there is death, denote the
lifetime of an individual by L and convolve the survival function of L with
the renewal measure ν to get

Mij(t) =
∫ t

0
Pj(L > t− u)ν(i, j × du) (2.1)

and for the total number of individual alive

Mi(t) =
∑

j∈N0

Mij(t) (2.2)

The convolution in (2.1) is a special case of the elegant technique of using
random characteristics; see Jagers (1989, 1992) or Jagers and Nerman (1984)
for details.

3 The branching process model

Cell populations are often modeled by the so-called Bellman-Harris process,
where an individual reproduces by splitting at the end of its (random) life-
time. Thus, each mother cell has two daughter cells at the end of her life
which is reasonable when modeling cells that reproduce by binary fission.
For cells that reproduce by budding, such as S. cerevisiae, there is, however,
a clear distinction between mother and daughter cell, which is why a gen-
eral branching process is more adequate in that it lets individuals reproduce
several times. We can incorporate binary fission into the general branching
process by considering one of the two daughter cells as the surviving mother
an the other as the single daughter. If the cells need time to grow or if the
mother has experienced any changes (for example in telomere length), these
factors can be accounted for by the mean reproduction process as we shall
see below.

In our branching process model, we let the type of an individual be its
telomere length. It is not clear exactly how telomere length triggers senes-
cence, but there is some evidence that it is the length of the shortest telomere
that matters, see Hemann et al. (2001). However, it has also been claimed
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that the onset of senescence correlates better with average telomere length
than with the length of the shortest telomere, see Martens et al. (2000).
Our model does not hinge upon any one particular theory of the onset of
senescence. We denote the type of a cell by an integer i which may represent
the length of the shortest telomere, or average telomere length. A daughter
cell thus inherits a type j where j ≤ i. The distribution of j for given i will
not be the same under each of the two hypotheses “shortest” and “average,”
but qualitative results regarding the shape of the growth curve will not differ.
We will often assume for simplicity that telomere loss is constant so that one
“telomere unit” is lost per replication event. We let 0 denote the critical
level; thus, a cell of type 0 is senescent and reproduces no more.

In yeast it is well known that cells do not keep dividing indefinitely even
if they have sufficient telomeres, see Sinclair et al. (1998). Thus, there is an
aging process due to telomere loss and another aging process due to other
factors. The number of cell divisions a mother cell goes through is called her
(replicative) lifespan, not to be confused with her lifetime which is the total
(chronological) time she is present in the population. Consider and arbitrary
cell and let N be its lifespan, that is, the total possible number of daughter
cells. Then N has range {0, 1, 2, ...} and probability mass function Pi(N = n)
where i denotes telomere length. Note that the probability Pi(N = n) needs
to take into account both telomere shortening and individual cell aging.

To arrive at an expression for µ, let the consecutive cell cycle times be
L1, L2, ....LN where the Lj are independent and Lj has cdf Fj. In many
applications it might be reasonable to let all the Fj be the same which we
shall assume from now on. There is some evidence, however, that cell cycle
times tend to increase with aging [Sinclair et al. (1998)] which we could thus
easily incorporate, if needed. Next, let τk be the time of birth (= the age
of the mother) of the kth daughter cell and let σk denote the type of that
daughter cell. Then

τk =
k∑

j=1

Lj

and we let

pij(k) = Pi(σk = j)

for all k and j ≤ i. If a mother cell maintains telomere length, the pij(k)
does not depend on k but if telomeres are lost in both mother and daughter,
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there is dependence upon k. The mean reproduction process is

µ(i, j × dt) =
∞∑

n=0

n∑
k=1

Pi(σk = j)Pi(τk ∈ dt)Pi(N = n)

=
∞∑

n=0

n∑
k=1

pij(k)F ∗k(dt)Pi(N = n) (3.1)

from which the renewal measure ν and the expected number of cells M(t)
can be obtained. If there is reason to believe that the Lj have different
distributions, F ∗k(t) is simply replaced by F1 ∗ · · · ∗ Fk(t).

4 Special cases

In this section we examine four special cases of telomere loss, depending on
whether a mother cell has finite or infinite lifespan, and whether a mother cell
retains telomere length or loses telomeres. The relevance of such assumptions
depends on the particular situation at hand and we will point out where they
are applicable and have been used in the literature.

4.1 Example 1: Infinite lifespan, mother retains telom-
ere length

Let us first assume that N ≡ ∞, that is, cells keep reproducing indefinitely.
Assume further that a mother cell retains telomere length whereas the daugh-
ter cell loses one telomere unit. This is the model used in Levy et al. (1992),
Arino et al. (1995, 1997), Olofsson and Kimmel (1999), and a special case
of the model in Olofsson (2000). The model may be realistic if a single chro-
mosome is followed due to the semiconservative nature of DNA replication,
see Levy et al. (1992). This assumption means that we have pi,i−1(k) = 1
for all i > 1 and all k ≥ 1 which gives

µ(i, i− 1× dt) =
∞∑

n=1

F ∗n(dt)

and the convolution powers become

µ∗k(i, i− k × dt) =
∞∑

n=k

(
n− 1

k − 1

)
F ∗n(dt)

6



for k ≤ i.
The expression for µ∗k can be obtained directly by convolving µ with itself,

but it also follows from combinatorial considerations. Any cell of type i− k
must be in the kth generation and if it is the result of the nth reproduction
event (thus preceded by n − 1 reproduction events), the cdf of the time is

F ∗n and there are
(

n−1
k−1

)
places to “step up” one generation. For more details

regarding this idea of proof, see Olofsson and Kimmel (1999).
The polynomial asymptotics established in Olofsson and Kimmel (1999)

and Olofsson (2000) follow from the form of the µ∗k. For example, k = 1
gives

µ(i, i− 1× [0, t]) =
∞∑

n=1

F ∗n(t) ∼ t

E[L]

by the elementary renewal theorem, see Grimmett and Stirzaker (2001).
Hence, in this case we do not get a sigmoidal growth curve.

4.2 Example 2: Finite lifespan, mother retains telom-
ere length

Assume now that a mother retains telomere length but is not able to repro-
duce indefinitely. We still have pi,i−1(k) = 1 and get the mean reproduction
measure

µ(i, i− 1× dt) =
∞∑

n=0

n∑
k=1

F ∗k(dt)Pi(N = n)

=
∞∑

k=1

Pi(N ≥ k)F ∗k(dt)

by changing the order of summation. In particular, if we make the simplifying
assumption that N ≡ n0 for some n0, we get

µ(i, i− 1× dt) =
n0∑

k=1

F ∗k(dt)

that is, the same as in the previous example with ∞ replaced by n0. The
convolution powers are easily found to be
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µ∗j(i, i− j × dt) =
n0∑

k1,...kj=1

F ∗(k1+...+kj)(dt)

which gives M(t) by summing over j and adding 1 for the ancestor. Note
that

µ(i, i− 1× [0, t]) =
n0∑

k=1

F ∗k(t) → n0

as t → ∞ since F ∗k(t) → 1 for all k. This in turn implies that µ(i, i − 2 ×
[0, t]) → n2

0 and so on, and it is easy to realize that final population size
equals

lim
t→∞

M(t) = 1 +
i∑

k=1

nk
0 =

ni+1
0 − 1

n0 − 1

for n0 > 1, and limt→∞M(t) = 1 + i for n0 = 1. The growth curve has a
sigmoidal shape as can be seen in Figure 1. We used i = 3 and n0 = 3 to get
the final size 40.

Figure 1: Growth curve for a cell population where mother cells retain telom-
ere length and have a lifespan of n0 = 3.

8



Another version of this example is to let pi,i(k) = 1 for all k, which
means that neither mother nor daughter loses telomeres. This assumption
is realistic for example to model populations of telomerase proficient yeast
cells where telomere length is maintained, see Bertuch and Lundblad (2004).
Such populations grow exponentially with a growth rate that is determined
by n0 and cell cycle parameters.

4.3 Example 3: Infinite lifespan, mother loses telom-
eres

Now instead assume that a telomere unit is lost in both mother and daughter,
which is the assumption of, for example, Portugal et al (2008). By “infinite
lifespan” we really mean that the replicative lifespan of a cell is affected only
by telomere loss which means that we now get Pi(N = i) = 1 for all i. The
first daughter of a type-i mother then has type i − 1, the second daughter
has type i − 2, and so on. In this way we can account for the fact that the
mother’s telomere length changes with each reproduction event. We thus
have pi,i−j(j) = 1 for j = 1, ..., i and get

µ(i, i− j × dt) = F ∗j(dt)

and, similarly to Example 1, the convolution powers become

µ∗k(i, i− j × dt) =

(
j − 1

k − 1

)
F ∗j(dt)

for k ≤ j ≤ i. The renewal measure becomes

ν(i, i− j × dt) =
j∑

k=1

(
j − 1

k − 1

)
F ∗j(dt)

= 2j−1F ∗j(dt)

which gives the expected total population size at time t as

Mi(t) = 1 +
i∑

j=1

2j−1F ∗j(t)

where the initial “1” is the 0th convolution power corresponding to the an-
cestor. As t →∞, F ∗j(t) → 1 for all j which gives the final population size
2i.
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The population growth curve now exhibits a sigmoidal shape as can be
seen in Figure 2, left graph. Here i = 10 which gives final population size
1024. Cell cycle times were taken to follow a gamma distribution with mean
1 and variance 1/2. The growth curves obtained in Baxter et al. (2004) may
fit into this example.

Growth curves are not always quite as smooth as they may appear, due to
synchronization effects. To illustrate these effects we instead used a gamma
distribution with mean 1 and variance 1/1000, that is, the coefficient of vari-
ation is only about 3%. With such small variation in cell cycle times, the
population experiences regular growth spurts followed by periods of slow
growth, depicted in Figure 2, right graph. It is well known that cell popula-
tions desynchronize so these effects disappear over time but here the final size
of 1024 is reached well before any desynchronization effects can be observed.
For more on cell cycle desynchronization, see Chiorino et al. (2001), Milotti
et al. (2008), and Olofsson and McDonald (2009).

Figure 2: Growth curves for cell populations where mother cells lose telom-
eres. The variance in cell cycle times is large in the left plot and small in the
right plot.
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4.4 Example 4: Finite lifespan, mother loses telomeres

We finish with the most realistic and most interesting case. Assume that a
mother loses telomeres and is also limited in reproduction due to her lifespan
n0 (again assumed constant for simplicity). This scenario is realistic for many
cell populations, applying for example to S. cerevisiae where a mother cell
is known to have both limited lifespan and lose telomeres, see Sinclair et al.
(1998), and Bertuch and Lundblad (2004). The mean reproduction measure
is easily obtained as

µ(i, i− k × dt) = F ∗k(dt)

for k ≤ min(i, n0). The convolution powers are complicated to deal with
because reproduction is limited by both telomere length and lifespan. A cell
with telomere length j can produce min(j, n0) daughter cells so if the ancestor
has telomere length i > n0, cells in the first i − n0 generations will be able
to reproduce n0 times and thereafter reproduction is limited by telomere
length. Rather than computing convolution powers explicitly, we will arrive
at an expression for Mi(t) through an alternative way of reasoning.

The population starts from a single cell of type i and upon completion of
the cell cycle, this cell has produced one daughter cell and then both mother
and daughter has telomere length i − 1. For simplicity, we refer to the two
cells as the first “generation.” Let m(k) denote the expected number of cells
in the kth generation. Now note that each cell in the kth generation is present
in the population if the sum of k cell cycle times is less than t but the sum
of k + 1 cell cycle times is greater than t. As the probability of this event
is F ∗k(t)− F ∗(k+1)(t), the expected number of cells from the kth generation
that are present at t equals

m(k)
(
F ∗k(t)− F ∗(k+1)(t)

)
and thus the expected total number of cells at time t equals

Mi(t) = 1− F (t) +
i−1∑
k=1

m(k)
(
F ∗k(t)− F ∗(k+1)(t)

)
+ m(i)F ∗i(t) (4.1)

Note that we have m(k) = 2k as long as k ≤ n0. For k > n0 we describe a
recursive scheme that enables us to compute m(k). To that end, in any given
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generation, let kj be the number of cells that are able to reproduce j times
for j = 0, 1, ..., n0. Each cell with j ≥ 1 produces a daughter cell that is
able to reproduce n0 times and is then itself able to reproduce another j − 1
times. Cells with j = 0 remain unchanged. For n0 ≤ k ≤ n, the transition
from generation k − 1 to generation k is therefore as follows:

Generation k − 1 : (k0, k1, ..., kn0−1, kn0)

Generation k : (k0 + k1, k2, ..., kn0 ,
n0∑
i=1

ki)

and after relabeling in generation k to (k0, k1, ..., kn0) again, we have m(k) =
n0∑

j=0

kj.
1 The initial configuration in generation 0 is (0, 0, ..., 0, 1) since there

is one cell that is able to divide n0 times. Note that if there are k0 + N cells
in generation k, there are k0 + 2N cells in generation k + 1, as expected. For
k ≥ i, all cells are senescent so m(k) stays constant and we have m(k) = m(i)
for k ≥ i, m(i) thus being the final population size.

Figure 3 illustrates the difference between infinite lifespan (Example 3,
dashed curve) and finite lifespan (solid curve) when both mother and daugh-
ter lose telomeres. The parameters are i = 10 and n0 = 3 which give the
final population sizes 210 = 1024 for the dashed curve and m(10) = 600 for
the solid curve.

5 Cell death

In the examples above we have assumed that cells do not die but stay in
the population as senescent. This assumption may be reasonable in many
experimental situations if cells do not die during the course of the experiment.
Realistically, however, realistically senescent cells will eventually start dying
and we can model such cell death simply by letting a senescent cell have a
lifetime Ls with cdf Fs. The lifetime L of a cell equals the total time spent
going through cell cycles plus its additional life: L = L1 + ... + LN + Ls.
The population size at time t is obtained by convolving the survival function
Pi(L > t) with the renewal measure ν according to (2.1) and (2.2).

1Note that the numbers kj for j ≥ 1 constitute an “n0-nacci” sequence, that is, a
generalized Fibonacci sequence where each new number is obtained by adding the previous
n0 numbers, starting from (0, 0, ..., 0, 1), see Flores (1967).
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Figure 3: Growth curves for cell populations where mother cells lose telom-
eres. The lifespan is infinite for the dashed curve and finite for the solid
curve.

The growth curve now exhibits the typical phases of exponential growth,
stationarity, and death, see Figure 4. By adding an initial quantity to the
lifetime of the ancestor, we can also incorporate the initial lag phase present
in many observed cell populations such as bacteria, see for example Baranyi
(2002).

6 Survivors

An interesting phenomenon observed in both yeast cells and human cells
is that cell populations whose growth rates slow down due to telomere loss
have the potential to regain growth rate, presumably due to a recombination
mechanism that enables maintenance of short telomeres, see Dunham et al.
(2000) and Bertuch and Lundblad (2004). It is believed that the onset of this
mechanism does not necessarily occur in all cells, rather, it is a stochastic
event that creates “survivors” that will later dominate the population.

We thus assume that cells that have reached 0 telomere length have the
possibility to become survivors with some probability p and consider the
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Figure 4: Growth curve for a cell population where senescent cells eventually
die.

two different scenarios (1): Survivorship is inherited so each survivor starts
a population where telomere length is maintained, and (2): Survivorship is
random so each cell becomes a survivor with probability p at each reproduc-
tion event, independently of other cells. To treat the most realistic case, we
stay within Example 4 above where a mother cell loses telomeres and has a
finite lifespan n0.

In Case 1, the population evolves as before until the nth generation when
the proportion p turn into survivors. The survivors are unrestricted by telom-
ere length but still restricted by the lifespan n0. The expected number of
cells at time t is now given by the expression

Mi(t) = 1 +
∞∑

k=1

m(k)
(
F ∗k(t)− F ∗(k+1)(t)

)
(6.1)

where the only difference from (4.1) is that the sum over k goes to ∞ rather
than i. The typical growth curve displays initial sigmoidal shape but after
leveling off for a while, exponential growth is eventually restored as survivors
take over the population. For further details we refer to Olofsson and Bertuch
(2009).
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In Case 2, survivorship is not inherited but occurs independently with
probability p in each newborn cell. Again, the expected number of cells is
given by (6.1) where the population evolves as before until the nth generation.
Thereafter, the expression for m(k) changes because a survivor undergoing a
reproduction event may result in 0,1, or 2 survivors, depending on whether its
daughter gets survivor status and whether it retains its own survivor status.
This scenario leads to a recursive relation that is a modified version of the
one above in Example 4. As before, let kj be the number of cells that are
able to reproduce j times for j = 0, 1, ..., n0 to obtain the transition from
generation k − 1 to generation k as follows:


Generation k − 1 : (k0, k1, ..., kn0−1, kn0)

Generation k : (k0 + (2− p)k1 + 2(1− p)
n0∑
i=2

ki, pk2, ..., pkn0 , p
n0∑
i=1

ki)

The expression above reveals that cells in the n0 category are created from
all other cells, each time with probability p. For category j with 0 < j < n0,
cells are created from cells in category j + 1, again with probability p. Cells
that fail to become survivors are added to the senescent category 0. Again,
note that if there are k0 + N cells in generation k, there are k0 + 2N cells in
generation k + 1.

Figure 5, left graph, shows growth curves for Case 1 (solid curve, p = 0.01)
and Case 2 (dashed curve, p = 0.6). For easier comparison, the curves are
on a logarithmic scale and it is clear that the initial growth rate is restored
in Case 1 but not in Case 2. The explanation is of course that survivors in
Case 1 double their numbers after each generation whereas survivors in Case
2 increase their numbers by a factor 2p, on average (as long as they are able
to reproduce). Since p is large in Case 2, this population initially has many
more survivors but as survivorship is not inherited, the population growth
quickly falls behind that of Case 1. The right graph shows the average of
7 cell populations studied in Bertuch and Lundblad (2004), indicating that
Case 1 gives the better (qualitative) description in this case.
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Figure 5: Growth curves of cell populations where cells may regain telomere
maintenance (left). Data from S. cerevisiae (right).

7 Discussion

We have proposed a class of stochastic models for the loss of telomeres in
chromosomal DNA. The models are stated within the framework of general
branching processes where individuals are allowed to reproduce several times
during their lives, and where individuals of different types may reproduce
differently. In particular we address the issue of sigmoidal growth curves of
cell populations and how these can be explained by telomere loss. The first
paper making such a connection seems to be Portugal et al. (2008) whose
model is a special case of ours. We show that different types of growth
curves are obtained depending on assumptions about whether mother cells
maintain telomere length and whether the lifespan is finite or infinite, and
also depending on whether telomere maintenance can be restored after an
initial period of shortening.

The examples we provide are simplified for clarity and ease of compu-
tation. For example, telomeres are lost in units of a fixed size and both
telomere loss and cell cycle times are assumed to be independent of telomere
length. There is evidence that cell cycle times may slow down in older cells
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[Sinclair et al. (1998)] and that shortening depends on length [op den Buijs
et al. (2004)] and although we ignored such considerations in the examples,
they are easily incorporated in the general model by adjusting the quantities
in (3.1).

Although the present article is mostly concerned with establishing a gen-
eral framework to model the loss of telomeres, we have also considered data
sets that corroborate our models, for example data from human marrow
stromal cells [Baxter et al. (2004)] and from yeast [Bertuch and Lundblad
(2004)]. The data in the latter is under investigation for more detailed mod-
eling and analysis in Olofsson and Bertuch (2009).
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