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Abstract

A real-world application of branching processes to a problem in
cell biology where generalized k-nacci numbers play a crucial part is
described. The k-nacci sequence is used to obtain computational for-
mulas and to justify certain practical simplifications.
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1 Introduction

The Fibonacci sequence is famous for showing up in nature in a multitude
of ways, some of which are however idealized such as Fibonacci’s breeding
rabbits. In Olofsson and Bertuch (2010), a branching process model was
used to analyze experiments on growing yeast populations and it turned
out that generalized k-nacci numbers were crucial to practical results and
calculations. In this paper, we elaborate on some of the mathematics that
were not presented in detail in Olofsson and Bertuch, the focus of that paper
being on solving a problem in biology.

By the k-nacci sequence we shall in this paper mean the sequence {Fj, j ≥
0} defined by F0 = F1 = ... = Fk−1 = 0, Fk = 1, and Fn = Fn−1 + Fn−2 +
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... + Fn−k for n > k. We will utilize results from Flores (1967) regarding
the asymptotics of the sequence. Before we get to the main results, let us
present a brief overview of branching processes, followed by a quick look at
its application to yeast populations.

A branching process is a stochastic model for a proliferating population
where assumptions are made on individual reproduction to draw conclusions
about population behavior. One of the simplest cases is to consider a popula-
tion of cells or bacteria that reproduce by binary splitting after going through
the cell cycle. Thus, an individual always gives rise to two daughters and
randomness enters via the cell cycle times (or “lifetimes”) which are assumed
to be independent random variables with common cumulative distribution
function (cdf) F . Start such a population from on individual and let M(t)
denote the expected number of individuals at time t.

To arrive at an expression for M(t), first note that there are 2n cells in
the nth generation. Such a cell is present at time t if the sum of n cell cycle
times is less than t and the sum of n + 1 cell cycle times if greater than t.
The sum of j cell cycle times has a cdf that is the j-fold convolution of F
with itself, denoted F ∗j. Thus, the probability that an nth-generation cell is
present at time t equals F ∗n(t)− F ∗(n+1)(t) and we get the expression

M(t) = 1− F (t) +
∞∑

n=1

2n
(
F ∗n(t)− F ∗(n+1)(t)

)
(1.1)

where the first term 1− F (t) accounts for the original cell.
In Olofsson and Bertuch (2010) a population of the budding yeast Sac-

charomyces cerevisiae was studied, focusing on describing growth rates in
response to the attrition and maintenance of telomeres (chromosomal ends).
For yeast, the situation is more complicated than above since a yeast cell re-
produces not by splitting but by budding. Thus, there is a clear distinction
between mother and daughter, and it is known that a mother cannot give
birth to an unlimited number of daughters. Thus, rather than 2n cells in the
nth generation, we get a number m(n) and the expression

M(t) = 1− F (t) +
∞∑

n=1

m(n)
(
F ∗n(t)− F ∗(n+1)(t)

)
(1.2)

Growth rate and other asymptotic properties of M(t) are closely related to
those of m(n). Also, for applications, we need to compute M(t) for finite t
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which requires getting a handle on the number m(n). We shall devote the
rest of this paper to this task.

Denote the number of daughter cells by k, termed the proliferative lifes-
pan. In any given generation n, cells can be divided into classes describing
how many more daughter cells they can have. Thus, let nj be the num-
ber of cells in generation n that can have an additional j daughter cells for
j = 0, 1, ..., k. The class with j = 0 are the non-proliferating cells and we
assume that they stay in the population indefinitely (although it is easy to
model a scenario where they eventually die and disappear). The class with
j = k are the newborn cells that have yet to reproduce.

As it turns out, the numbers of cells in these classes are precisely described
by the k-nacci sequence.

Proposition 1.1 Consider the vector (n0, n1, ..., nk) in the nth generation
of the branching process above. Let Fi denote the ith k-nacci number and let
Sn = F0 + F1 + ... + Fn. Then (n0, n1, ..., nk) equals

(Sn, Fn+1, Fn+2, ..., Fn+k)

Proof. Let ni be the number of cells that are able to reproduce another i
times for i = 0, 1, ..., k. Each cell with i > 1 produces a daughter cell that is
able to reproduce k times and is then itself able to reproduce another i − 1
times. Cells with i = 0 remain unchanged. In generation 0 there is one cell
that is able to divide k more times which gives the vector (0, 0, ..., 0, 1) for
generation 0. The transition from generation n − 1 to generation n is as
follows: 

Generation n− 1 : (n0, n1, ..., nk−1, nk)

Generation n : (n0 + n1, n2, ..., nk,
k∑

i=1

ni)

and the proposition follows.

Proposition 1.1 provides a recursive scheme that enables us to compute the
number of cells n0+n1+ ...+nk in each generation and by (1.2), the expected
number of cells at each time t. To establish the long-term composition of
cells in the different classes, we rely on the fact that k-nacci numbers have
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asymptotic geometric growth. Following Flores (1967), there exists a number
r such that

Fj ∼ rj−k

for j large enough. The number r is the largest root to the equation

xk − xk−1 − ...− x− 1 = 0

which is known to be real and lie between the golden ratio φ and 2. In fact,
for k = 2, r = φ and r ↑ 2 as k →∞. The asymptotic proportions are given
next.

Proposition 1.2 Let r be as above. The asymptotic proportions of cells in
the classes (0, 1, ..., k) equal

(r−k, (r − 1)r−k, (r − 1)r−(k−1), ..., (r − 1)r−2, (r − 1)r−1)

Proof. By Proposition 1.1, the proportions equal(
Sn

Sn+k

,
Fn+1

Sn+k

, ...,
Fn+k

Sn+k

)

and by Flores (1967), we have the asymptotic behavior Fj ∼ rj−k. Hence,

Sn =
n∑

j=0

Fj ∼
r−k

k − 1
rn+1

which also gives

Sn+k ∼
r−k

k − 1
rn+k+1 =

rn+1

k − 1

and hence

Sn

Sn+k

∼ r−k

and

Fn+j

Sn+k

∼ (r − 1)rj−(k+1)
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for j = 1, ..., k which proves the proposition.

As a corollary we also obtain the growth rate of M(t). To that end, let F̂
denote Laplace transform, that is,

F̂ (s) =
∫ ∞
0

e−stF (dt)

to obtain the following result.

Corollary 1.3 As t → ∞, M(t) ∼ Ceαt where α > 0 is the solution to the
equation rF̂ (α) = 1 and C is a constant that depends on r, k, and the cdf F .

Proof. From the proof of Proposition 1.2, we get

m(n) = Sn+k ∼
rn+1

k − 1

If we substitute this expression for m(n) in (1.2), we get

M(t) ∼ r

k − 1

∑
n

rn
(
F ∗n(t)− F ∗(n+1)(t)

)
for large t. The asymptotics of the sum are obtained by standard branching
process methods for a binary splitting process with mean number of offspring
equal to r and can be shown to equal beαt where α > 0 is the solution to the
equation rF̂ (α) = 1 (note that r > 1 which implies that α > 0). For details,
see Harris (1963) or Jagers and Nerman (1984). The constant b equals

b =
(
4α
∫ ∞
0

te−αtF (dt)
)−1

and hence C = br/(k − 1).

Proposition 1.2 is not just a theoretical limit result, it has important practical
implications for the yeast cell population studies. Certain computational
expressions become greatly simplified if the finite proliferative lifespan can be
neglected, instead assuming that each cell can produce an unlimited number
of daughter cells. Since the fraction of non-proliferating cells in a given
generation n is roughly r−k, this number can be used to justify such an
approximation. For example, for the regular Fibonacci sequence with k = 2,
we have r = φ and since φ−2 ≈ 0.38, as many as 38% of cells have reached the
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end of their proliferative lifespan and are no longer able to produce daughter
cells. In this case, the approximation would not work very well. Note that,
since r ↑ 2 as k →∞, the “∞-nacci” sequence has r = 2 and corresponds to
a binary splitting branching process where each individual can produce an
unlimited number of offspring.

For yeast cells, the proliferative lifespan k has been estimated to be on
average 25, Sinclair et al. (1998), which gives a value of k that for all practical
purposes equals 2 and the fraction of non-proliferating cells is less than one
in 10 million. For any reasonable duration of a yeast cell experiment, this
fraction is negligible although it does of course matter to the theoretical
asymptotic limits. The number 25 is an experimentally determined average
and the true range may well go lower. However, calculations show that r
exceeds 1.99 already for k = 7 in which case less than 1% of cells are non-
proliferating. For the yeast experiments considered in Olofsson and Bertuch
(2010), k is likely to largely exceed 7 and the approximation works well.
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