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In this paper we study a new logistic competition model. We will investigate stability and
bifurcation of the model. In particular, we compute the invariant manifolds, including the
important center manifolds, and study their bifurcation. Saddle-node and period doubling
bifurcation route to chaos is exhibited via numerical simulations.
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1. Introduction

There are many discrete competition models applied to biology and economics in
the literature, and we cite a few here [3, 4, 6–9, 13–15, 17, 19, 20]. However, we are
going to develop a new competition model based on sound biological assumptions
of intra-specific and inter-specific competitions.
In developing this model, it is assumed that, without interspecific competition,

each species is modeled by the logistic map. The logistic map is used to model
species with non overlapping generations under the assumption that the fitness
function decreases when the population density (size) increases. Let zn be the den-
sity of species z at time period n. Then the fitness function is defined as u(z) = zn+1

zn
.

When the population is sufficiently small (close to zero), the intraspecific compe-
tition (competition among individuals of species z) is negligible and consequently,
u(z) = zn+1

zn
= R, where R > 1 is a constant, commonly called, the intrinsic growth

rate of the population. When the population grows, the fitness function decreases
due to significant intraspecific competition and reaches the value 1 when the pop-
ulation density reaches the carrying capacity K.
Figure 1 depicts a typical fitness function. Assuming that the decrease in the

fitness function is linear, then the model is obtained by finding the equation of the
line connecting the points (0, R) and (K, 1). The equation of this line is given by

zn+1

zn
= −R− 1

K
zn +R,
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Figure 1. The fitness function

where R > 1. Using the change of variables, xn = R−1
RK zn we obtain the celebrated

logistic difference equation xn+1 = Rxn(1− xn).
Introducing a new species y to compete with species x, interspecific competition

(competition between two different species) would negatively affect the growth of
species x and vice-versa. We propose the following new competition model

{
xn+1 =

axn(1−xn)
1+cyn

yn+1 =
byn(1−yn)
1+dxn

, (1)

where a, b > 0 and c, d ∈ (0, 1). The map associated with equation (1) is given by

F (x, y) =

(
ax(1− x)

1 + cy
,
by(1− y)

1 + dx

)
.

To insure that the range of this map lies in the first quadrant, we make the following
two assumptions:

(1) x and y are in [0, 1],
(2) a and b are in (0, 4]1.

These two assumptions guarantee that nonnegative points are mapped to nonnega-
tive points and specifically the map F maps [0, 1]× [0, 1] into [0, 1]× [0, 1]. To show
this we note that the maximum of the x−component of the image of the point (x, y)
is a/4 and occurs at x = 1/2 and y = 0 and the maximum of the y−component of
the image of the point (x, y) is b/4 and occurs at x = 0 and y = 1/2.
In model (1) the parameters a and b are known as the intrinsic growth rates

of species x and y, respectively, and the parameters c and d are known as the
competition parameters of species y and x, respectively.
The map F has one extinction fixed point (0, 0), two exclusion fixed points

(a−1
a , 0), (0, b−1

b ), and one coexistence fixed point

(x∗, y∗) =
(−cb+ ab− b+ c

ab− cd
,
−da+ ab− a+ d

ab− cd

)
.

In the next result we give sufficient conditions for the stability of the extinction
fixed point.

1In section 5 we will indicate how this restriction on the values of a and b may be slightly relaxed
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Lemma 1.1 . Let (xn, yn) denote the solution of the Logistic competition model (1)
with an initial condition (x0, y0) ∈ (0, 1) × (0, 1). If a ∈ (0, 1] then lim

n→∞xn = 0. If

b ∈ (0, 1] then lim
n→∞yn = 0. Moreover, if a, b ∈ (0, 1], then lim

n→∞(xn, yn) = (0, 0).

Proof . The inequality xn+1 ≤ axn, ∀n ∈ ℤ+ holds since

0 ≤ xn+1 =
axn(1− xn)

1 + cyn
≤ axn − ax2n ≤ axn.

Let a ∈ (0, 1). Then an induction shows that xn ≤ x0a
n for all n ∈ ℤ+. Thus

lim
n→∞xn = 0.

When a = 1 one has xn+1 < xn, ∀n ∈ ℤ+. Thus xn is a decreasing sequence of
numbers that is bounded above by 1 and bounded bellow by 0 which implies the
convergence of xn as n goes to infinity. Let L be this limit. Then 0 ≤ L ≤ xn < 1,
∀n ∈ ℤ+. Note that from xn+1 ≤ xn(1− xn), ∀n ∈ ℤ+ it follows that

xn ≤ x0

n−1∏

i=0

(1− xi), ∀n ≥ 1.

By the fact that 1− xi ≤ 1− xi+1, i ∈ ℤ+, induction shows that

n−1∏

i=0

(1− xi) ≤ (1− xn−1)
n, ∀n ≥ 1.

Using this last relation yields

xn ≤ x0
1− xn

n∏

i=0

(1− xi) ≤ x0
1− xn

(1− xn)
n+1 = (1− xn)

n.

But the relation L ≤ xn < 1 implies that 0 < 1 − xn ≤ 1 − L, ∀n ∈ ℤ+ and
consequently one has

xn ≤ (1− xn)
n ≤ (1− L)n −→

n→∞ 0.

A similar argument proves the assertion when b ∈ (0, 1]. □

2. Invariant Manifolds

Let F : ℝk → ℝk be a map such that F ∈ C2 and F (0) = 0. Then one may write
F as a perturbation of a linear map L,

F (X) = LX +R(X) (2)

where L is a k × k matrix defined by L = D(F (0)), R(0) = 0 and DR(0) = 0,
where D denotes the derivative. Now we will introduce special subspaces of ℝk,
called invariant manifolds [22], that will play a central role in our study of stability
and bifurcation.
An invariant manifolds is a manifold embedded in its phase space with the prop-

erty that it is invariant under the dynamical system generated by F . A subspace
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M of ℝk is an invariant manifold if whenever X ∈ M , then Fn(X) ∈ M , for all
n ∈ ℤ+. For the linear map L, one may split its spectrum ¾(L) into three sets ¾s,
¾u, and ¾c, for which ¸ ∈ ¾s if ∣¸∣ < 1, ¸ ∈ ¾u if ∣¸∣ > 1, and ¸ ∈ ¾c if ∣¸∣ = 1.
Corresponding to these sets, we have three invariant manifolds (linear subspaces)

Es, Eu, and Ec which are the generalized eigenspaces corresponding to ¾s, ¾u, and
¾c, respectively. It should be noted that some of this subspaces may be trivial
subspaces.
The main question here is how to extend this linear theory to nonlinear maps.

Corresponding to the linear subspaces Es, Eu, and Ec, we will have the invari-
ant manifolds the stable manifold W s, the unstable manifold W u, and the center
manifolds W c.
The center manifolds theory [1, 2, 12, 16, 21, 22] is interesting only if W u = {0}.

For in this case, the dynamics on the center manifold W c determines the dynamics
of the system. The other interesting case is when W c = {0} and we have a saddle.
Let Es ⊂ ℝs, Eu ⊂ ℝu, and Ec ⊂ ℝt, with s+u+ t = k. Then one may formally

define the above mentioned invariant manifolds as follows:

W s = {x ∈ ℝk∣Fn(x) → 0 as n → ∞} and
W u = {x ∈ ℝk∣Fn(x) → 0 as n → −∞}.

Since the stability on the center manifold is not apriori known, we will define
it as a manifold of dimension t whose graph is tangent to Ec at the origin. It is
noteworthy to mention that the center manifold is not unique, while the stable and
unstable manifolds are unique.
The next result summarize the basic invariant manifolds theory

Theorem 2.1 Invariant manifolds theorem. [11, 16] Suppose that F ∈ C2. Then
there exist C2 stable W s and unstable W u manifolds tangent to Es and Eu, respec-
tively, at X = 0 and C1 center manifold W c tangent to Ec at X = 0. Moreover,
the manifolds W c, W s and W u are all invariant.

2.1 Center manifolds

In this section, we focus on the case when ¾u = ∅. Hence the eigenvalues of L are
either inside the unit disk or on the unit disk. By suitable change of variables, one
may represent the map F as a system of difference equation such as

{
xn+1 = Axn + f(xn, yn)
yn+1 = Byn + g(xn, yn)

. (3)

First we assume that all eigenvalues of At×t are on the unit circle and all the
eigenvalues of Bs×s are inside the unit circle, with t+ s = k. Moreover,

f(0, 0) = 0, g(0, 0) = 0, Df(0, 0) = 0 and Dg(0, 0) = 0.

Since W c is tangent to Ec = {(x, y) ∈ ℝt×ℝs∣y = 0}, it may be represented locally
as the graph of a function ℎ : ℝt → ℝt such that

W c = {(x, y) ∈ ℝt × ℝs∣y = ℎ(x), ℎ(0) = 0, Dℎ(0) = 0, ∣x∣ <
± for a sufficiently small ±}.

Furthermore, the dynamics restricted to W c is given locally by the equations

xn+1 = Axn + f(xn, ℎ(xn)), x ∈ Rt (4)
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Figure 2. Stable and center manifolds. In Figure A one has ¾(A) = ¾c and ¾(B) = ¾s while in Figure B
one has ¾(A) = ¾s and ¾(B) = ¾c.

The main feature of equation (4) is that its dynamics determine the dynamics
of Equation (3). So if x∗ = 0 is a stable, asymptotically stable, or unstable fixed
point of Eq. (4), then the fixed point (x∗, y∗) = (0, 0) of Equation (3) possesses the
corresponding property.
To find the map y = ℎ(x), we substitute for y in Eq. (3) and obtain

{
xn+1 = Axn + f(xn, ℎ(xn))
yn+1 = ℎ(xn+1) = ℎ(Axn + f(xn, ℎ(xn)))

. (5)

But

yn+1 = Byn + g(xn, yn)

= Bℎ(xn) + g(xn, ℎ(xn)). (6)

Equating (5) and (6) yields the center manifold equation

ℎ[Axn + f(xn, ℎ(xn))] = Bℎ(xn) + g(xn, ℎ(xn)) (7)

Analogously if ¾(A) = ¾s and ¾(B) = ¾c, one may define the center manifold
W c, and obtain the equation

yn+1 = Byn + g(ℎ(yn), yn),

where x = ℎ(y).

2.2 An upper (lower) triangular System

In working with concrete maps, it is beneficial in certain cases to deal with the
system without diagonalization.
Let us now consider the case when L is a block upper triangular matrix

(
xn+1

yn+1

)
=

(
A C
0 B

)(
xn
yn

)
+

(
f(xn, yn)
g(xn, yn)

)
, (8)
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There are two cases to consider:

(1) Assume that ¾(A) = ¾s, ¾(B) = ¾c, and ¾u = ∅.
The matrix L can be block diagonalizable. Hence there exists, a nonsin-

gular matrix P of the form

P =

[
P1 P3

0 P2

]

such that

[
A B
0 C

]
= P

[
A 0
0 B

]
P−1.

Let

(
x
y

)
= P

(
u
v

)
. (9)

Then x = P1u+ P3v, and y = P2v. Thus one has

(
un+1

vn+1

)
=

(
A 0
0 B

)(
un
vn

)
+ P−1

(
f(P1u+ P3v, P2v)
g(P1u+ P3v, P2v)

)
. (10)

Applying the center manifold theorem to Equation (10) yields a map
u = ℎ̃(v) with ℎ̃(0) = 0 = ℎ̃′(0). Moreover, the dynamics of Equations (10)
is completely determined by the dynamics of the equation

vn+1 = Bvn + P̃2g(P1ℎ̃(vn) + P3vn, P2vn),

where P̃1 and P̃3 are elements of the matrix

P−1 =

[
P̃1 P̃3

0 P̃2

]
.

We now have the relation

u = P̃1x− P̃2P3P̃2y = ℎ̃(P̃2y).

Hence x = ℎ(y), where ℎ is given by

ℎ(y) = P3P̃2y + P̃−1
1 ℎ̃2(P̃2y).

Notice that Dℎ(0) = P3P̃2I, where I is the identity matrix.
(2) Assume that ¾(A) = ¾c, ¾(B) = ¾s, and ¾u = ∅. We start from equation

(10) and apply the center manifold theorem to obtain a map v = ℎ̃(u) with
ℎ̃(0) = 0 = ℎ̃′(0). The dynamics of equation (10) is completely determined
by the dynamics of the equation

un+1 = Aun + P̃1f(P1un + P3ℎ̃(u), P2ℎ̃(u)) + P̃3g(P1un + P3ℎ̃(u), P2ℎ̃(u)),
(11)

where P̃1, P̃2, and P̃3 are entries of the matrix

P−1 =

(
P̃1 P̃3

0 P̃2

)
.
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Figure 3. Stable and unstable manifolds

From (9) we have u = P̃1x− P̃1P3P̃2y and v = P̃2y. Then v = ℎ̃(u) and
thus

P̃2y = ℎ̃(P̃1x− P̃1P3P̃2y).

Let Q(x, y) = P̃2y − ℎ̃(P̃1x − P̃1P3P̃2y). Then Q(0, 0) = 0, DQ(0, 0) is of
rank t. Hence by the implicit function theorem [18] there exits an open
neighborhood Ω ⊂ ℝk of 0 and a unique function ℎ ∈ C1(Ω) such that
ℎ(0) = 0 = Dℎ(0) and Q(x, ℎ(x)) = 0, for all x ∈ Ω.
Hence the curve y = ℎ(x) is the implicit solution of Equation (11) and is

the equation of the center manifold. To find the map ℎ we use the center
manifold equation

ℎ[Ax+ Cℎ(x) + f(x, ℎ(x))] = Bℎ(x) + g(x, ℎ(x)).

A final remark is in order. If we let y = ℎ(x) in (11) we obtain

ℎ(x) = P2ℎ̃(P̃1x− P̃1P3P̃2ℎ(x)).

Note that Dℎ(0) = 0 = Dℎ̃(0).

2.3 Stable and Unstable Manifolds

Suppose now that the map F is hyperbolic, that is ¾c = ∅. Then by theorem 2.1,
there are two unique invariant manifolds W s and W u tangents to Es and Eu at
X = 0, which are graphs of the maps

'1 : E1 → E2 and '2 : E2 → E1,

such that

'1(0) = '2(0) = 0 and D('1(0)) = D('2(0)) = 0.

Letting yn = '1(xn) yields

yn+1 = '1(xn+1) = '1(Axn + f(xn, '1(xn))).



June 11, 2010 22:16 Journal of Difference Equations and Applications MG˙RL˙SE˙LCM

8 Malgorzata Guzowska, Rafael Lúıs and Saber Elaydi

But

yn+1 = B'1(xn) + g(xn, '1(xn)).

Equating these two equations yields

'1(Axn + C'1(xn) + f(xn, '1(x))) = B'1(xn) + g(xn, '1(xn)) (12)

where we can take, without loss of generality, '1(x) = ®1x
2 + ¯1x

3 +O(∣x∣4).
Similarly, letting xn = '2(yn) yields

xn+1 = '2(yn+1) = '2(Byn + g('2(yn), yn)),

where we can take, without loss of generality, '2(x) = ®2x+ ¯2x
2 +O(∣x∣4)

But

xn+1 = A'2(yn) + Cyn + f('2(yn), yn),

and hence

'2(Byn + g('2(yn), yn)) = A'2(yn) + Cyn + f('2(yn), yn) (13)

Using equations (12) and (13), one can find the stable manifold

W s = {(x, y) ∈ ℝt × ℝs∣y = Á1(x)},

and the unstable manifold

W u = {(x, y) ∈ ℝt × ℝs∣x = Á2(y)}.

3. Stability of the exclusion fixed points

In this section we investigate the local stability of the exclusion fixed points of the
logistic competition model using standard linearization techniques.
The Jacobian of the map F given in (1) is given by

JF (x, y) =

[
a(1−x)−ax

1+cy
−acx(1−x)
(1+cy)2

−bdy(1−y)
(1+dx)2

b(1−y)−by
1+dx

]
.

The Jacobian evaluated at the fixed point (0, 0) is given by

J0 = JF (0, 0) =

[
a 0
0 b

]
.

If a ≤ 1 and b ≤ 1, then by lemma 1.1 the exclusion fixed point (0, 0) is globally
asymptotically stable. Clearly, when a > 1 or b > 1, the fixed point (0, 0) becomes
unstable.
Note that if yn = 0, then xn follows the dynamics of the standard logistic map

in which xn → 0 as n → ∞ whenever a ≤ 1. Analogously, yn → 0 as n → ∞ if
xn = 0 and b ≤ 1.
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The Jacobian evaluated at the fixed point (a−1
a , 0) is given by

Ja = JF

(
a− 1

a
, 0

)
=

[
2− a −c(a−1)

a
0 ab

ad+a−d

]
.

The eigenvalues of Ja are ¸1 = 2 − a and ¸2 = ab
ad+a−d . Hence the fixed point

(a−1
a , 0) is asymptotically stable if 1 < a < 3 and 1 < b < 1 + da−1

a . If 1 < a < 3

and b = 1, then ∣¸1∣ < 1 and ¸2 = a
a+d(a−1) < 1 and consequently (a−1

a , 0) is

asymptotically stable. If a = 1 we have only the extinction fixed point (0, 0). In
conclusion, the fixed point (a−1

a , 0) is asymptotically stable if 1 < a < 3 and

1 < b < 1 + d(a−1
a ).

Two issues remain unresolved. The first is the case when a = 3 and b < 1+ d(a−1)
a ,

in which the eigenvalue ¸1 = −1 and ¸2 < 1. The second case is when 1 < a < 3
and b = 1 + d

(
da−1

a

)
in which ∣¸1∣ < 1and ¸2 = 1. To investigate these cases, we

need to use the theory developed in the previous section.
Let us now consider the first case. In order to apply the center manifold theorem,

we make a change of variables in system (1) so we can have a shift from the point
(a−1

a , 0) to (0, 0).

Let u = x− a−1
a and v = y. Then the new system is given by

⎧
⎨
⎩

un+1 =
a(un+

a−1

a
)(1−(un+

a−1

a
))

1+cvn
− a−1

a

vn+1 =
bvn(1−vn)

1+d(un+
a−1

a
)

. (14)

The Jacobian of the planar map given in (14) is

J̃F (u, v) =

[ −(2au−2+a)
1+cv

c(au+a−1)(au−1)
a(1+cv)2

a2bdv(v−1)
(a+adu+ad−d)2

−ab(2v−1)
a+adu+ad−d

]
.

At (0, 0), J̃F has the form

J̃0 = J̃F (0, 0) =

[
2− a −c(a−1)

a
0 ab

a+ad−d

]
.

When a = 3 we have

J̃0 = J̃F (0, 0) =

[−1 −2c
3

0 3b
3+2d

]
.

Now we can write the equations in system (14) as

{
un+1 = −un − 2

3cvn + f̃(un, vn)

vn+1 =
3b

3+2dvn + g̃(un, vn)
,

where
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f̃(un, vn) =
1

3

3cunvn + 2c2v2n − 9u2n
1 + cvn

and

g̃(un, vn) = −3bvn
3dun + 3vn + 2dvn

9 + 9dun + 12d+ 6d2un + 4d2
.

Let us assume that the map ℎ takes the form

ℎ(u) = ®u2 + ¯u3 +O(u4), ®, ¯ ∈ ℝ.

Now we are going to compute the constants ® and ¯. The function ℎ must satisfy
the center manifold equation

ℎ(−u− 2

3
cℎ(u) + f̃(u, ℎ(u)))− 3b

3 + 2d
ℎ(u)− g̃(u, ℎ(u)) = 0

This leads to the following polynomial equation

p1u
2 + p2u

3 + ...+ p14u
15 = 0

where the coefficients pi, i = 1, . . . , 14 are in appendix A.
Solving the system p1 = 0 and p2 = 0 yields the unique solution ® = 0 and ¯ = 0.

P3 = 0 yields the coefficient of the fourth degree after substituting for ® = 0 and
¯ = 0. Similarly one may show that all the coefficients of the polynomial are equal
to zero. Hence ℎ(u) = 0. Thus on the center manifold v = 0 we have the following
map

Q(u) = −u− 3u2.

Simple computations show that the Schwarzian derivative of the map Q at the
origin is −54. Hence, by [5] the exclusion fixed point (2/3, 0) is asymptotically
stable.

Remark 1 . One may reach the same conclusion by making few observation based
on the well known dynamics of the one-dimensional logistic map [5]. First notice
that the positive u−axis is invariant under the map F . Moreover, the positive
u−axis is in the same direction as the eigenspace Ec. Hence the positive u−axis is
a center manifold W c. Second, the fixed point 2/3 is asymptotically stable under
the one-dimensional logistic map and thus on the center manifold W c the fixed
point (2/3, 0) is asymptotically stable.

Finally, we investigate the case when 1 < a < 3 and b = 1+ d(a−1
a ). In this case

we have ∣¸1∣ < 1 and ¸2 = 1. When b = 1 + d(a−1
a ) we have

J̃0 = J̃F (0, 0) =

[
2− a −(a−1)c

a
0 1

]
.

Now we can write the equations in system (14) as
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(
un+1

vn+1

)
=

(
2− a −(a−1)c

a
0 1

)(
un
vn

)
+

(
f̂(un, vn)
ĝ(un, vn)

)
(15)

where

f̂(u, v) =
−a2u2 − 2acuv + a2cuv − c2v2 + ac2v2

a(1 + cv)

and

ĝ(u, v) = −v(−dv + a(v + d(u+ v)))

−d+ a(1 + d+ du)
.

The eigenvalues of the linear part are ¸1 = 2−a and ¸2 = 1, with corresponding
eigenvectors V1 = (1, 0) and V2 = (− c

a , 1). Let us assume that

u = ℎ(v) = − c
av + ®v2 + ¯v3.

The map ℎ must satisfy the equation

ℎ(v + ĝ(ℎ(v), v))− (2− a)ℎ(v) +
c(a− 1)

a
v − f̂(ℎ(v), v) = 0.

After some computer manipulations we get the equation

p1v
2 + p2v

3 + ...+ p14v
15 = 0

where

p1 = a3c− 3a2cd+ 3a3cd− a2c2d+ 3acd2 − 6a2cd2 + 3a3cd2 + 2ac2d2 − 2a2c2d2 −
cd3 + 3acd3 − 3a2cd3 + a3cd3 − c2d3 + 2ac2d3 − a2c2d3 − a4®+ a5®+ 3a3d®−
6a4d®+ 3a5d®− 3a2d2®+ 9a3d2®− 9a4d2®+ 3a5d2®+ ad3®− 4a2d3®+

6a3d3®− 4a4d3®+ a5d3®

and

p2 = a3c2 − 5a2c2d+ 3a3c2d− a2c3d+ 7ac2d2 − 10a2c2d2 + 3a3c2d2 + 4ac3d2 −
2a2c3d2 − 3c2d3 + 7ac2d3 − 5a2c2d3 + a3c2d3 − 3c3d3 + 4ac3d3 − a2c3d3 −
2a4®− a4c®+ 6a3d®− 6a4d®+ 9a3cd®− 6a4cd®− 6a2d2®+ 12a3d2®−
6a4d2®− 15a2cd2®+ 24a3cd2®− 9a4cd2®+ 2ad3®− 6a2d3®+ 6a3d3®− 2a4d3®+

7acd3®− 18a2cd3®+ 15a3cd3®− 4a4cd3®− a4¯ + a5¯ + 3a3d¯ − 6a4d¯ + 3a5d¯ −
3a2d2¯ + 9a3d2¯ − 9a4d2¯ + 3a5d2¯ + ad3¯ − 4a2d3¯ + 6a3d3¯ − 4a4d3¯ + a5d3¯.

Solving the system p1 = 0 and p2 = 0 we obtain the values

¯ = −2a2c+ a3c2 − 4acd+ 4a2cd− 6ac2d− a2c2d+ 2a3c2d− a2c3d+ 2cd2 − 4acd2

(−1 + a)2a(a− d+ ad)2

+
2a2cd2 + 6c2d2 − 6ac2d2 − a2c2d2 + a3c2d2 + 4c3d2 − a2c3d2

(−1 + a)2a(a− d+ ad)2
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and

® = − ac− cd+ acd− c2d

(−a+ a2) (a− d+ ad)
,

and consequently, the map P on the center manifolds is given by

P (v) = − (a− d+ ad)(−1 + v)v

−d(1 + cv) + a (1 + d+ dv2®+ dv3¯)
.

Computations show that P ′(0) = 1, and P ′′(0) = 2((1+c)d−a(1+d))
a−d+ad ∕= 0 and thus the

exclusion fixed point (a−1
a , 0) on the center manifold u = ℎ(v) is unstable.

Analogous results may be obtained for the exclusion fixed point (0, b−1
b ).

W s

Ha-1L�ax

y

A

W s
W u

Ha-1L�ax

y

B

W c

Ha-1L�ax

y

C

W c

Ha-1L�ax

y

D

Figure 4. The phase-space diagram for the exclusion fixed point (a−1
a

, 0). A - The exclusion fixed point
is asymptotically stable: a = 2.5, b = 1.01, c = 0.3, d = 0.1. B - The exclusion fixed point is a saddle:
a = 2, b = 1.1, c = 0.3, d = 0.1. C - The exclusion fixed point is a saddle a = 3, b = 1.01, c = 0.3, d = 0.1,
where the center manifold is stable on the x−axis. D - The exclusion fixed point is a saddle a = 2.5,
b = 1.06, c = 0.3, d = 0.1 where the center manifold is unstable on the x−axis and in the interior of the
first quadrant

In Figures 4 and 5 we present the phase-space diagram for this exclusion fixed
point. In Figure 4A both eigenvalues are inside the unit circle, i.e., 1 < a < 3
and 1 < b < 1 + d

(
a−1
a

)
and the stable manifold is on the x−axis. Figure 4B
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shows the unstable and stable manifolds when 1 < a < 3 and b > 1 + d
(
a−1
a

)
,

i.e., the first eigenvalue is inside the unit circle and the second is outside the unit
circle. In Figure 4C the stable center manifold is on the x−axis when a = 3 and
1 < b < 1+d

(
a−1
a

)
. In this case the first eigenvalue is −1 and the second eigenvalue

is inside the unit circle. Figure 4D shows the unstable center manifold when the
first eigenvalue is inside the unit circle and the second is on the unit circle. This
happens when 1 < a < 3 and b = 1 + d

(
a−1
a

)
.

When a > 3 and 1 < b < 1 + d
(
a−1
a

)
the exclusion fixed point (a−1

a , 0) becomes
unstable and 2−periodic orbit is created (Figure 5).

x0 x1

x

y

Figure 5. The existence of an exclusion asymptotically stable 2−periodic cycle on the x−axis when one
eigenvalue is outside the unit circle and the second eigenvalue is inside the unit circle

Before end this section we note that the exclusion principle in Biology is valid
for both species. In Figure 6 is presented the two possible scenarios. In Figure 6A
species y goes extinct while in Figure 6B species x goes extinct.

4. Stability of the coexistence fixed point

In this section we study the stability of the coexistence fixed point

(x∗, y∗) =
(−cb+ ab− b+ c

ab− cd
,
−da+ ab− a+ d

ab− cd

)
,

which is the solution of the system

{
ax+ cy = a− 1
dx+ by = b− 1

. (16)

These two lines are called the isoclines of Eq. (1). On the first line s1 : ax+ cy =
a−1, the x−coordinate of each point is fixed while on the second line s2 : dx+by =
b− 1, the y−coordinate of each point is fixed (Figure 7)
In the literature these line segments are known as isoclines. It helps in the ex-

istence and in the stability of the equilibria for the species. A specie’s isocline in-
dicates the combination of x∗ and y∗ for which the population has no net growth,
i.e, xn+1/xn = 1 and yn+1/yn = 1.
The existence of the coexistence fixed point (x∗, y∗) is insured by the following

conditions

a− 1

c
>

b− 1

b
and

b− 1

d
>

a− 1

a
, (17)
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Figure 6. The stability of the exclusion fixed points and the validity of the exclusion principle. A - If

1 < a ≤ 3 and b < 1 + d
(
a−1
a

)
(or b−1

d
< a−1

a
), then (a−1

a
, 0) is asymptotically stable and species y

goes extinct. B - If 1 < b ≤ 3 and b > c
1+c−a

(or b−1
b

> a−1
c

), then (0, b−1
b

) is asymptotically stable and

species x goes extinct. 
 
 

   �  

 

Figure 7. Isoclines: a positive fixed point exists if a−1
c

> b−1
b

and b−1
d

> a−1
a

, a, b > 1 and c, d ∈ (0, 1).

with a > 1 and b > 1.
The Jacobian evaluated at the coexistence fixed point (x∗, y∗) is given by

J∗ = JF (x∗, y∗) =

[
1−2x∗

1−x∗
−cx∗

a(1−x∗)
−dy∗

b(1−y∗)
1−2y∗

1−y∗

]
.

Let P (¸) be the characteristic polynomial of J∗. According to the Jury test the
eigenvalues of J∗ lie inside the unit disk iff
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(i) P (1) > 0, (ii) P (−1) > 0 and (iii) ∣P (0)∣ < 1.

Note that the existence of the coexistence fixed point is assured by relation (17).
Here a > 1 and b > 1 which implies that ab− cd > 0. We assume that both, a and
b have an upper boundary, i.e.,

1 < a < 3 and 1 < b < 3. (18)

Assumption (18) implies that x∗ < 2
3 and y∗ < 2

3 .
After some computation one obtains

P (1) =
[a(b− 1)− d(a− 1)] ⋅ (ab− cd)

ab

b(a− 1)− c(b− 1)

[a(1 + d)− d(1 + c)](b(1 + c)− c(1 + d))

=
[b− (1 + d(a−1

a ))](ab− cd)[a− (1 + c( b−1
b ))]

[a(1 + d)− d(1 + c)][b(1 + c)− c(1 + c)]

witch is a positive number by (17). Thus P (1) > 0.
We also obtain

P (−1) =

(
1− 2x∗

1− x∗
+ 1

)(
1− 2y∗

1− y∗
+ 1

)
− cd

ab

x∗y∗

(1− x∗)(1− y∗)

=
(2− 3x∗)(2− 3y∗)− cd

abx
∗y∗

(1− x∗)(1− y∗)

By the fact that (1 − x∗)(1 − y∗) > 0 it follows that P (−1) > 0 if only if
(2− 3x∗)(2− 3y∗)− cd

abx
∗y∗ > 0. But

(2− 3x∗)(2− 3y∗)− cd

ab
x∗y∗ > 0

is equivalent to

(x∗ + y∗)− 4

3
< (3− cd

3ab
)x∗y∗

which is true under hypothesis (18). Thus one has P (−1) > 0.
Finally, we investigate the third relation ∣P (0)∣ < 1 or equivalently P (0) > −1

and P (0) < 1.
Computations shows that

P (0) =
a(2x∗ − 1)

1 + cy∗
b(2y∗ − 1)

1 + dy∗
− abcdx∗(x∗ − 1)y(y∗ − 1)

(1 + cy∗)2(1 + dx∗)2

=
2x∗ − 1

1− x∗
2y∗ − 1

1− y∗
− cdx∗y∗

(1 + cy∗)(1 + dx∗)

=
(2x∗ − 1)(2y∗ − 1)

(1− x∗)(1− y∗)
−

cd
abx

∗y∗

(1− x∗)(1− y∗)
=

(2x∗ − 1)(2y∗ − 1)− cd
abx

∗y∗

(1− x∗)(1− y∗)

Thus one has the following two inequalities

−1 <
(2x∗ − 1)(2y∗ − 1)− cd

abx
∗y∗

(1− x∗)(1− y∗)
< 1.
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Figure 8. Phase-space diagram for the coexistence fixed point of the competition logistic model

The relation

(2x∗ − 1)(2y∗ − 1)− cd
abx

∗y∗

(1− x∗)(1− y∗)
+ 1 > 0

is equivalent to

(x∗ + y∗)− 2

3
< (5− cd

ab
)x∗y∗

which is true under assumption (18).
The second inequality

(2x∗ − 1)(2y∗ − 1)− cd
abx

∗y∗

(1− x∗)(1− y∗)
− 1 < 0

is equivalent to

1

x∗
+

1

y∗
> 3− cd

ab

which is a true under hypothesis (18). Consequently, under hypothesis (18) the
relation ∣P (0)∣ < 1 is verified.
In conclusion, the coexistence fixed point (x∗, y∗) is asymptotically stable if 1 <

a < 3 and 1 < b < 3. In Figure 8 we present the phase-space diagram when this
coexistence fixed point is asymptotically stable.
In the next section we will show, through simulations, that the region of stability

of the coexistence fixed point is indeed much larger than the square 1 < a < 3 and
1 < b < 3.
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5. A bifurcation scenario

The main objective in this section is to find, in the parameter space, the bifurcation
scenario of the fixed point of the competition logistic map.
The region where the coexistence fixed point is asymptotically stable is given by

the following relations [5, pp 200]

∣tr(J∗)∣ − 1 < det(J∗) < 1, (19)

where tr and det denote the trace and the determinant of the matrix, respectively.
If at least one of these three inequalities is reversed, then the fixed point is unstable.
Our calculations show that

det(J∗) =
−c(b− c+ bc)d2 + a3b2(2− b+ 2d)− ad

(
3bc− b2

(
4 + 5c+ c2

)
+ c2(1 + d)

)

(ab(−(1 + c)d+ a(1 + d))(−b(1 + c) + c(1 + d)))

+
a2b

(
2b2(1 + c)− b(4 + 6c+ 6d+ 5cd) + c

(
4 + 5d+ d2

))

(ab(−(1 + c)d+ a(1 + d))(−b(1 + c) + c(1 + d)))

and

tr(J∗) =
a2b(1 + d) + d

(
b
(
4 + 7c+ 3c2

)− c(4 + 3c+ 3d+ 2cd)
)

((1 + c)d− a(1 + d))(b(1 + c)− c(1 + d))

+
a
(
b2(1 + c)− b(4 + 5c+ 5d+ 6cd) + c

(
4 + 7d+ 3d2

))

((1 + c)d− a(1 + d))(b(1 + c)− c(1 + d))
.

Thus, the inequality det(J∗) < 1 leads to

−c(b− c+ bc)d2 + a3b2(2− b+ 2d) + a(b− c+ bc)d(3b+ c+ cd)

ab(−(1 + c)d+ a(1 + d))(−b(1 + c) + c(1 + d))

+
a2b

(
2b2(1 + c) + 3c(1 + d)− b(3 + 5d+ c(5 + 4d))

)

ab(−(1 + c)d+ a(1 + d))(−b(1 + c) + c(1 + d))
< 0, (20)

the inequality det(J∗) > tr(J∗)− 1 is equivalent to

(b(−1 + a− c) + c)(a(−1 + b− d) + d)(ab− cd)

ab(−(1 + c)d+ a(1 + d))(−b(1 + c) + c(1 + d))
< 0, (21)

and the inequality det(J∗) > −tr(J∗)− 1 is equivalent to

−c(b− c+ bc)d2 + a3b2(3− b+ 3d)− ad
(−b2

(
9 + 14c+ 5c2

)
+ c2(1 + d) + bc(8 + 4c+ 4d+ 3cd)

)

ab(−(1 + c)d+ a(1 + d))(−b(1 + c) + c(1 + d))

+
a2b

(
3b2(1 + c) + c

(
9 + 14d+ 5d2

)− 3b(3 + 4d+ 4c(1 + d))
)

ab(−(1 + c)d+ a(1 + d))(−b(1 + c) + c(1 + d))
> 0. (22)

Let S1 be the set of points in the (a, b)−plane such that relations (20), (21)
and (22) are satisfied. This is precisely the region in the parameter space where
the coexistence fixed point is asymptotically stable. Zone S1 is shown in Figure 9.
Note that the parameters c and d are fixed.
In [5] the author presents a complete study of the three main types of bifurca-

tion, for two-dimensional systems. The saddle-node bifurcation occurs when the
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Figure 9. The bifurcation scenario of a fixed point of the competition logistic model in the parameter
space (a, b)

-2 2
tr J

-1

1

det J

Stability

region

Neimark-Sacker bifurcation

Sa
dd
le
-

No
de

bi
fu
rc
at
io
n

Period
-doubling

bifurcation

Figure 10. The occurrence of the three main types of bifurcation in the Trace-Determinant plane T-D

Jacobian has an eigenvalue equal to one. In the Trace-Determinant plane (T-D),
this is equivalent to saying that we cross the line det(J∗) = tr(J∗) − 1 from the
stability region (see Figure 10). The period-doubling bifurcation occurs when the
Jacobian has an eigenvalue equal to -1. In the T-D plane this occurs as we cross
the line det(J∗) = −tr(J∗)− 1 from the stability region. When the Jacobian has a
pair of complex conjugate eigenvalues of modulus 1, we have the Neimark-Sacker
bifurcation. This happens in the T-D plane when det(J∗) = 1 and −2 < tr(J∗) < 2.
Eq. (1) has a saddle-node bifurcation when relation (21) is an equality. This leads
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to the equations b = 1 + d
(
a−1
a

)
and a = 1 + c

(
b−1
b

)
. Let

°1 = {(a, b) ∈ ℝ2
+ : b = 1 + d

(
a−1
a

)} and °2 = {(a, b) ∈ ℝ2
+ : a = 1 + c

(
b−1
b

)}.
See Figure 9. Hence, when a and b changes from region S1 to region R1 in Figure 9,
the coexistence fixed point undergoes a saddle-node bifurcation into another fixed
point. Computations show that this is an exclusion fixed point on the x−axis. Thus
if we take a and b in region R1, then Eq. (1) possesses an exclusion fixed point on
the x−axis. Similarly, if a and b are in region Q1.
Eq. (1) has a period-doubling bifurcation when we have equality in relation (22).

This is represented by the curve ¿1 in Figure 9. Consequently, as a and b pass the
curve ¿1 the coexistence fixed point undergoes a period-doubling bifurcation into
a coexistence 2−periodic cycle. Thus in region S2 Eq. (1) has one unstable fixed
point and one asymptotically stable coexistence 2−periodic cycle.
When a and b pass the curve ° from region S2 to region R2, the coexistence

2−periodic cycle bifurcates (saddle-node). Computations shows that this new
2−periodic cycle is an exclusion cycle on the x−axis. Another period-doubling
bifurcation appears in the exclusion fixed point if we move the parameters a and
b from region R1 to region R2. Thus if the parameters a and b are in region R2,
Eq. (1) has an asymptotically stable exclusion 2−periodic cycle on the x−axis.
Analogous results may be obtained if the parameters are in region Q2.
The coexistence 2−periodic cycle undergoes a period-doubling bifurcation when

the parameters pass the curve ¿2. Thus in region R3 this 2−periodic cycle becomes
unstable and a new asymptotically stable 4−periodic cycle is born. This new cy-
cle undergoes a saddle-node bifurcation into an asymptotically stable exclusion
4−periodic cycle on the x−axis whenever the parameters change from region R3

to region S3. We also have a period-doubling bifurcation of the exclusion 2−periodic
cycle if we move the parameters from region R2 to region R3. Thus in region R3,
Eq. (1) has an asymptotically stable exclusion 4−periodic cycle (the same happens
on the y−axis if the parameters changes from region R3 to the region Q3).
Note that the sequence of bifurcation points on the axes agree with the sequence

of period doubling bifurcation parameters of the logistic map in one dimension.
This scenario of bifurcation continues in its route to chaos. Thus there exists a

curve ¿∞ in the parameter space after which we enter a chaotic region. Moreover,
there exists a curve after which all the iterations of Eq. (1) go to (−∞,−∞). Note
that on the axes a and b this corresponds to the value a = 4 and b = 4.
As a consequence of the scenario described above, one may conclude that, for

fixed parameters c and d, if the parameters a and b belong to the region Ri,
i = 1, 2, . . ., then species y will go extinct. A similar behavior is exhibited by
species x if the parameters a and b are in region Qi, i = 1, 2, . . .. The coexistence
of both species is possible whenever the parameters a and b are in the stability
region Si, i = 1, 2, . . ..
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Appendix A. Values of the coefficients pi, i = 1, ..., 14 (stability of the
exclusion fixed point when a = 3)

p1 = 81®− 81b®+ 54d®,

p2 = 486®+ 405d®+ 108c®2 + 72cd®2 − 81¯ − 81b¯ − 54d¯,

p3 = 729®+ 972d®+ 81b®2 + 405c®2 − 243bc®2 + 378cd®2 + 36c2®3 + 24c2d®3 −
729¯ − 567d¯ − 54c®¯ − 36cd®¯,

p4 = 729d®+ 486c®2 + 729cd®2 + 108c2®3 + 108c2d®3 − 2187¯ − 2187d¯ + 162b®¯ −
567c®¯ − 486bc®¯ − 432cd®¯ − 36c2®2¯ − 24c2d®2¯ − 162c¯2 − 108cd¯2,

p5 = 729c®2 + 972cd®2 + 243bc®3 + 324c2®3 − 243bc2®3 + 324c2d®3 + 36c3®4 +

24c3d®4 − 2187¯ − 3645d¯ − 972c®¯ − 1215cd®¯ − 108c2®2¯ − 108c2d®2¯ −
24c3®3¯ − 16c3d®3¯ + 81b¯2 − 972c¯2 − 243bc¯2 − 810cd¯2 − 180c2®¯2 −
120c2d®¯2,
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p6 = 729cd®2 + 324c2d®3 + 36c3d®4 − 2187d¯ + 729c®¯ − 486cd®¯ + 729bc®2¯ +

648c2®2¯ − 729bc2®2¯ + 324c2d®2¯ + 108c3®3¯ + 48c3d®3¯ − 1458c¯2 −
1944cd¯2 − 540c2®¯2 − 540c2d®¯2 − 72c3®2¯2 − 48c3d®2¯2 − 108c2¯3 − 72c2d¯3,

p7 = 243bc2®4 − 81bc3®4 + 729cd®¯ + 648c2d®2¯ + 108c3d®3¯ − 1458cd¯2 +

729bc®¯2 + 324c2®¯2 − 729bc2®¯2 − 324c2d®¯2 + 108c3®2¯2 − 324c2¯3 −
324c2d¯3 − 72c3®¯3 − 48c3d®¯3,

p8 = 972bc2®3¯ − 324bc3®3¯ + 324c2d®¯2 + 108c3d®2¯2 + 243bc¯3 − 243bc2¯3 −
324c2d¯3 + 36c3®¯3 − 48c3d®¯3 − 24c3¯4 − 16c3d¯4,

p9 = 81bc3®5 + 1458bc2®2¯2 − 486bc3®2¯2 + 36c3d®¯3 − 24c3d¯4,

p10 = 405bc3®4¯ + 972bc2®¯3 − 324bc3®¯3,

p11 = 810bc3®3¯2 + 243bc2¯4 − 81bc3¯4,

p12 = 810bc3®2¯3,

p13 = 405bc3®¯4,

and

p14 = 81bc3¯5.


