
Budding yeast, branching processes, and
generalized Fibonacci numbers

Peter Olofsson∗ and Ryan C. Daileda†

September 14, 2010

Abstract

A real-world application of branching processes to a problem in
cell biology where the generalized Fibonacci numbers known as k-
nacci numbers play a crucial role is described. The k-nacci sequence
is used to obtain asymptotics, computational formulas, and to justify
certain practical simplifications. Along the way, an explicit formula
for the sum of k-nacci numbers is established.

Keywords: Branching process, yeast, k-nacci sequence, Fibonacci num-
bers, linear recurrence AMS 2000 Mathematics Subject Classification
Codes: 11B39, 60J80, 62P10, 92D25

1 Introduction

The Fibonacci sequence is famous for showing up in nature in a multitude
of ways, many of which are however idealized such as Fibonacci’s famous
medieval breeding rabbits. In Olofsson and Bertuch (2010), a branching
process model was used to analyze experiments on growing yeast populations
and it turned out that the generalized Fibonacci numbers known as “k-nacci
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numbers” were crucial to practical results and calculations. In this paper,
we elaborate on some of the mathematics that were not fully developed in
Olofsson and Bertuch, the focus of that paper being to model and analyze a
problem in biology. The aim of the present paper is to give a nice example of
how k-nacci numbers may quite unexpectedly show up in a practical problem
and how number theoretical results may be of significant practical use.

2 Budding yeast

The yeast Saccharomyces cerevisiae is not only of great commercial value for
its use in baking and brewing, it is also one of the most important model
organisms in biology. It is a unicellular organism that reproduces through
budding, meaning that a yeast cell reproduces by a new yeast cell starting
to grow on its surface, eventually separating from its mother as a newborn
daughter cell. This reproduction scheme is different from that of binary
fission, common in many bacteria such as E. Coli, where the cell grows
to divide into two new cells of equal size. Although both reproductions
schemes give rise to clones, that is, cells that are genetically identical (save for
mutations), there are differences that matter to the mathematical modeling
as we shall see in the next section.

Since yeast has linear chromosomes just like human beings, its genetics
can be studied for greater insight into human genetics. One example thereof
is the study of the shortening of chromosomal ends known as telomeres that
is known to take place in many of our cells. With each cell division, telom-
eres become progressively shorter until they reach a point at which the cell
stops dividing, to avoid damage to the coding DNA in the interior of the
chromosome. Such a nondividing cell is said to be senescent. To counteract
telomere shortening, some cells, for example embryonic stem cells, contain
the enzyme telomerase which adds telomere sequences so that the chromo-
somes can maintain a stable telomere length. As it turns out, some cells
manage to keep replicating even without telomerase; such populations were
studied in Olofsson and Bertuch (2010), using branching processes to model
populations of yeast cells and to estimate cell population parameters from
laboratory data on such cells.
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3 Branching processes

A branching process is a stochastic model for a proliferating population where
assumptions are made on individual reproduction to draw conclusions about
population behavior. One of the simplest cases is to consider a population
of cells that reproduce by binary splitting after going through the cell cycle.
Thus, an individual always gives rise to two daughters and randomness enters
via the cell cycle times (or “lifetimes”) which are assumed to be independent
random variables with common cumulative distribution function (cdf) F .
Start such a population from one individual and let M(t) denote the expected
number of individuals at time t.

To arrive at an expression for M(t), first note that there are 2n cells in
the nth generation. Such a cell is present at time t if the sum of n cell cycle
times is less than t and the sum of n + 1 cell cycle times is greater than t.
The sum of j cell cycle times has a cdf that is the j-fold convolution of F
with itself, denoted F ∗j. Thus, the probability that an nth-generation cell is
present at time t equals F ∗n(t)−F ∗(n+1)(t) and the expected number of cells
in generation n that are present at time t equals

2n
(
F ∗n(t)− F ∗(n+1)(t)

)
and summing over all generations gives the expression

M(t) = 1− F (t) +
∞∑

n=1

2n
(
F ∗n(t)− F ∗(n+1)(t)

)
(3.1)

where the first term 1−F (t) accounts for the ancestral cell which by definition
is in generation n = 0. By convention, a 0-fold convolution is defined as a
unit point mass at 0 so that F ∗0(t) ≡ 1, and since 20 = 1 we can write M(t)
more compactly as

M(t) =
∞∑

n=0

2n
(
F ∗n(t)− F ∗(n+1)(t)

)
(3.2)

Note that we assume that all cells survive to reproduce. If we instead
assume that each cell survives to reproduce with probability p, otherwise
dies without reproducing, the mean number of offspring per cell is m = 2p
where we assume that p > 1/2 so that m > 1 which gives a population that,
on average, increases in size. We get instead the expression
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M(t) =
∞∑

n=0

mn
(
F ∗n(t)− F ∗(n+1)(t)

)
(3.3)

Adopt the standard notation x(t) ∼ y(t) if x(t)/y(t) → 1 as t → ∞. The
asymptotic growth rate of M(t) is then given by

M(t) ∼ beαt as t →∞ (3.4)

where the constants α and b are determined by the lifetime cdf F and the
mean number of offspring per individual m. Specifically, let

F̂ (s) =
∫ ∞
0

e−stF (dt)

the Laplace transform of the probability measure associated with F . The
growth rate α, called the Malthusian parameter, is defined through the rela-
tion

mF̂ (α) = 1

where m > 1 implies that α > 0 (in our model, m = 2). The constant b can
be shown to equal

b =
(
4α
∫ ∞
0

te−αtF (dt)
)−1

and we refer to Harris (1963) or Jagers and Nerman (1984) for proofs and
further details.

However, as pointed out earlier, yeast does not reproduce by binary split-
ting but rather by budding. Starting from one cell, after the first budding
event there are two cells and although one is the mother and the other is the
daughter, we can still refer to the pair as the “first generation.” In this sense
there is no difference from binary splitting but it is known that a mother
cannot give birth to an unlimited number of daughters. Thus, rather than
2n cells in the nth generation, we get a number m(n) and the expression

M(t) =
∞∑

n=0

m(n)
(
F ∗n(t)− F ∗(n+1)(t)

)
(3.5)

Growth rate and other asymptotic properties of M(t) are now determined by
F together with m(n). For applications, we need to compute M(t) for finite
t which requires getting a handle on the number m(n). We address this task
in the next section.
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4 Generalized Fibonacci numbers

By the k-nacci sequence we mean the sequence {Fj, j ≥ 0} defined by F0 =
F1 = . . . = Fk−2 = 0, Fk−1 = 1, and Fn = Fn−1 +Fn−2 + . . .+Fn−k for n ≥ k.
For example, when k = 3, each term is the sum of the three previous terms:

0, 0, 1, 1, 2, 4, 7, 13, 24, . . .

In the yeast population, suppose that a mother cell can have k daughter cells
before she stops reproducing (in biology, k is known as the proliferative lifes-
pan). In any given generation n, cells can be divided into classes describing

how many more daughter cells they can have. Thus, let N
(n)
j be the num-

ber of cells in generation n that can have an additional j daughter cells for
j = 0, 1, . . . , k. The class with j = 0 is the class of senescent cells, and we
assume that they stay in the population indefinitely (although it is easy to
model a scenario where they eventually die and disappear). The class with
j = k are the newborn cells that have yet to reproduce. As it turns out,
the numbers of cells in these classes are precisely described by the k-nacci
sequence.

Proposition 4.1 Consider the vector (N
(n)
0 , N

(n)
1 , . . . , N

(n)
k ) in the nth gen-

eration of the branching process above. Let Fi denote the ith k-nacci number
and let Sn = F0 + F1 + . . . + Fn. Then (N

(n)
0 , N

(n)
1 , . . . , N

(n)
k ) equals

(Sn−1, Fn, Fn+1, . . . , Fn+k−1)

Proof. In generation 0 there is one cell that is able to divide k more times
which gives the vector (0, 0, . . . , 0, 1) for generation 0. Each cell with j ≥ 1
produces a daughter cell that is able to reproduce k times and is then itself
able to reproduce another j − 1 times. Cells with j = 0 remain unchanged.
Thus, each class with j ≥ 1 feeds into the class j − 1 immediately below it,
and also into the highest class k. The transition from generation n − 1 to
generation n can be described as follows:
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N
(n)
0 = N

(n−1)
0 + N

(n−1)
1

N
(n)
j−1 = N

(n−1)
j for 2 ≤ j ≤ k

N
(n)
k =

k∑
j=1

N
(n−1)
j

and the proposition follows.

The total number of cells in the nth generation, m(n), equals

m(n) = Sn−1 + Fn + . . . + Fn+k−1

= Sn+k−1

and Proposition 4.1 provides a recursive scheme that enables us to compute
m(n). For example, if k = 4, the first terms in the sequence {m(n), n ≥ 0}
are

1, 2, 4, 8, 16, 31, 60, 116, 224, . . .

where we recognize the powers of 2 until the 4th generation (n = 4) after
which the effect of the proliferative lifespan k = 4 becomes noticeable and
slows down the growth. By (3.5), we can also compute the expected number
M(t) of cells at each time t which enables us to compare the model with
laboratory data and estimate unknown parameters. As it turns out, we
can even get an explicit expression for m(n), expressed in terms of k-nacci
numbers which is crucial to establish asymptotics of the branching process.
In the next section, we study the k-nacci numbers as a special case of linear
recurrence.

5 Linear recurrences

Given a positive integer k, and complex numbers a0 6= 0, a1, . . . , ak−1 consider
the k-term linear recurrence

Rn = ak−1Rn−1 + ak−2Rn−2 + · · ·+ a0Rn−k. (5.1)
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By a solution to the recurrence (5.1) we mean a sequence {Rn}∞n=0 whose
values satisfy (5.1) for all n ≥ k. Define the characteristic polynomial of
(5.1) to be

p(x) = xk − ak−1x
k−1 − ak−2x

k−1 − · · · − a0. (5.2)

It is well known that the set of solutions to (5.1) forms a complex vector
space. In fact, if (5.2) has distinct roots r1, r2, . . . , rk, the sequences {rn

j }∞n=0,
j = 1, 2, . . . , k form a basis for this solution space. Put more concretely, if
we are given initial values R0, R1, . . . , Rk−1 and define {Rn}∞n=0 recursively
through (5.1), then there are unique complex coefficients b1, b2, . . . , bk so that

Rn = b1r
n
1 + b2r

n
2 + · · ·+ bkr

n
k (5.3)

for all n ≥ 0, for details see Elaydi, 2005.
Given a solution {Rn}∞n=0 to (5.1), we let Sn = R0 +R1 + · · ·Rn for n ≥ 0.

The following proposition establishes a closed form expression for Sn.

Proposition 5.1 Consider the linear recurrence in (5.1). Assume that the
characteristic polynomial has k distinct roots, none of which equals 1. Then
there exist constants c0, . . . , ck−1 such that

Sn =
k−1∑
l=0

clRn+l+1 −
k−1∑
l=0

clRl

Proof. Express Rn as a linear combination of the roots of (5.2), as in (5.3).
Then we have

Sn =
n∑

i=0

Ri

=
n∑

i=0

k∑
j=1

bjr
i
j

=
k∑

j=1

bj

n∑
i=0

ri
j

=
k∑

j=1

bj

rn+1
j − 1

rj − 1

Since the characteristic polynomial p(x) does not have 1 as a root, p(x)
and x− 1 are relatively prime so that we can find polynomials u(x) and v(x)
which satisfy

v(x)p(x) + u(x)(x− 1) = 1 (5.4)
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Moreover, by using the division algorithm if necessary, we can assume that
deg u(x) < k. Substituting any of the roots rj of p(x) into (5.4) immediately
yields

1

rj − 1
= u(rj)

It now follows from our work above that

Sn =
k∑

j=1

bj(r
n+1
j − 1)u(rj)

If we write u(x) = ck−1x
k−1 + · · ·+ c0 this becomes

Sn =
k−1∑
l=0

cl

k∑
j=1

bj(r
n+l+1
j − rl

j)

=
k−1∑
l=0

cl(Rn+l+1 −Rl)

=
k−1∑
l=0

clRn+l+1 −
k−1∑
l=0

clRl. (5.5)

which concludes the proof.

In the expression for Sn, note that the first sum includes at most k terms
of the sequence {Rn}∞n=0, while the second sum depends only on the initial
conditions R0, R1, . . . , Rk−1.

As an example, we apply this result to the Fibonacci numbers, which are
simply the k = 2 case of the k-nacci numbers. The characteristic polynomial
in this case is p(x) = x2 − x − 1, which satisfies −p(x) + x(x − 1) = 1.
Hence, u(x) = x so that Proposition 5.1 becomes the familiar result Sn =
Fn+2 − F1 = Fn+2 − 1.

As a corollary we obtain the corresponding result for the k-nacci numbers.

Corollary 5.2 For the k-nacci sequence {Fj, j ≥ 0}, let Sn = F0 + F1 +
· · ·+ Fn. Then

Sn =
1

k − 1

(
Fn+k −

k−3∑
l=0

(k − l − 2)Fn+l+1 − 1

)
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Proof. To get an expression for the polynomial u(x) which determines the
coefficients cl in Proposition 5.1, note that for k ≥ 2 we have

1 =
−1

k − 1

(
xk − xk−1 − · · · − 1

)

+
1

k − 1

(
xk−1 − xk−3 − 2xk−4 − · · · − (k − 2)

)
(x− 1)

which identifies u(x) as

u(x) =
1

k − 1

(
xk−1 −

k−3∑
l=0

(k − l − 2)xl

)
,

provided we treat the sum as empty when k = 2. Clearly the characteristic
polynomial p(x) does not have 1 as a root. Regarding the distinctness of the
roots of p(x) observe that

p(x) = xk − (xk−1 + xk−2 + · · ·+ 1)

= xk − xk − 1

x− 1

=
xk+1 − 2xk + 1

x− 1
(5.6)

and the polynomial in the numerator has no repeated roots, as it does
not share any roots with its derivative (see Gallian, 2010). Finally, since
F0 = F1 = · · · = Fk−2 = 0 and Fk−1 = 1, the result follows from Proposition
5.1.

6 Asymptotics of the branching process

The asymptotic results in this section rely on the fact that k-nacci num-
bers have asymptotic geometric growth. Following Flores (1967), there exist
numbers r and A such that
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Fj ∼ Arj (6.1)

as j → ∞, meaning that Fj/r
j → A as j → ∞. The number r is the

dominant root of the characteristic equation

xk − xk−1 − · · · − x− 1 = 0

and it is known to be real and to lie between the golden ratio φ ≈ 1.618 and
2. In fact, for k = 2, r = φ and as k →∞, r ↑ 2. The constant A equals

A =
r − 1

(k + 1)rk − 2krk−1
(6.2)

Next, we establish the long-term composition of cells in the different classes,
recalling that class j contains cells that can have an additional j daughter
cells, j = 0, 1, . . . , k.

Proposition 6.1 Let r be as above. The asymptotic proportions of cells in
the classes (0, 1, . . . , k) equal(

r−k, (k − 1)r−2k+1, (k − 1)r−2k+2, . . . , (k − 1)r−2k+j+1
)

Proof. By Proposition 4.1, the proportions equal(
Sn−1

Sn+k−1

,
Fn

Sn+k−1

, . . . ,
Fn+k−1

Sn+k−1

)
for j = 1, . . . , k and the proposition follows from Corollary 5.2 and (6.1).

Proposition 6.1 is not just a theoretical limit result, it has important practical
implications for the yeast cell population studies. Certain computational
expressions become greatly simplified if the finite proliferative lifespan can be
neglected, instead assuming that each cell can produce an unlimited number
of daughter cells. Since the fraction of senescent cells in a given generation
n is roughly r−k, this number can be used to justify such an approximation.
For example, for the regular Fibonacci sequence with k = 2, we have r = φ
and since φ−2 ≈ 0.38, as many as 38% of cells have reached the end of
their proliferative lifespan and are no longer able to produce daughter cells
(notice that also the fraction of newborns equals 38%). In this case, the
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approximation would not work very well. Note that, since r ↑ 2 as k → ∞,
the “∞-nacci” sequence has r = 2 and corresponds to a binary splitting
branching process where each individual can produce an unlimited number
of offspring.

For yeast cells, the proliferative lifespan k has been estimated to be on
average 25, Sinclair et al. (1998), which gives a value of r that for all practical
purposes equals 2 and the fraction of senescent cells is less than one in 10
million. For any reasonable duration of a yeast cell experiment, this fraction
is negligible although it does of course matter to the theoretical asymptotic
limits. The number 25 is an experimentally determined average and the true
range may well go lower. However, calculations show that r exceeds 1.99
already for k = 7 in which case less than 1% of cells are senescent. For the
yeast experiments considered in Olofsson and Bertuch (2010), k is likely to
largely exceed 7 and the approximation works well.

Finally, we obtain the asymptotic growth rate of M(t). As we have seen
above, m(n) grows asymptotically as rn, that is, like a branching process with
mean number of offspring equal to r. Since r = 2p, the latter process is a
binary splitting process where each cell survives to reproduce with probability
r/2, and dies without reproducing with probability 1− r/2. The next result
shows that the Malthusian parameter is the same for the budding process
with generation sizes m(n) and the binary splitting process with mean r, but
that the former process always has a larger expected value.

Corollary 6.2 As t →∞, M(t) ∼ Cbeαt where α and b are as in (3.3) with
mean number of offspring m = r. The constant C depends on k and satisfies
C > 1 and C → 1 as k →∞.

Proof. Since m(n) = Sn+k−1, Corollary 5.2 and (6.1) yield

m(n) ∼ Crn

where

C =
A

k − 1

(
r2k−1 −

k−3∑
l=0

(k − l − 2)rk+l

)
(6.3)

A being the constant defined in (6.2). If we, informally, substitute this
expression for m(n) in (3.5), we get
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M(t) ∼ C
∑
n

rn
(
F ∗n(t)− F ∗(n+1)(t)

)
(6.4)

as t →∞. By (3.3) and (3.4), we get

M(t) ∼ Cbeαt

as t →∞, as desired.
To prove that the substitution leading to (6.4) is indeed legitimate, let us

formally prove that

e−αtM(t) → Cb

as t → ∞. recall that m(n) ∼ Crn, that is, m(n)/rn → C as n → ∞.
Choose N such that

C − ε ≤ m(n)

rn
≤ C + ε

for n > N . For ease of notation, let

P (n, t) = F ∗n(t)− F ∗(n+1)(t)

for n = 0, 1, 2, . . . and note that 0 ≤ P (n, t) ≤ 1 for all n and t. We now get

e−αtM(t) = e−αt
∞∑

n=0

m(n)P (n, t)

= e−αt
N∑

n=0

m(n)P (n, t) + e−αt
∞∑

n=N+1

m(n)P (n, t)

where the first term goes to 0 as t → ∞ and hence the limit of e−αtM(t) is
the same as that of the second term, for which we have

(C − ε)e−αt
∞∑

n=N+1

rnP (n, t) ≤ e−αt
∞∑

n=N+1

m(n)P (n, t) ≤ (C + ε)e−αt
∞∑

n=N+1

rnP (n, t)

Let t →∞ and use (3.4) to obtain

(C − ε)b ≤ lim
t→∞

e−αtM(t) ≤ (C + ε)b
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Since ε was arbitrary, we conclude that

lim
t→∞

e−αtM(t) = Cb

To prove that C > 1, note that by (6.2) and (6.3), the constant C equals

C =
A

k − 1

(
r2k−1 −

k−3∑
l=0

(k − l − 2)rk+l

)
which, after some algebra, simplifies to

C =
r(rk+1 − 2rk + kr − k − r + 2)

(r − 1)(kr + r − 2k)(k − 1)

From (5.6) we conclude that

rk+1 − 2rk − 1 = 0

which simplifies C further, to

C =
r(kr − k − r + 1)

(r − 1)(kr + r − 2k)(k − 1)

Simple but tedious calculations yield that C > 1 if and only if

(3r − r2 − 2)(k − 1) > 0

where the first factor is positive for 1 < r < 2 and since our r is in this
range, we conclude that C > 1. Analyzing the numerator in (5.6) yields the
inequalities

2− 1

2k−1
< r < 2− 1

2k

and more simple but tedious calculations reveal that C → 1 as k →∞.

Corollary 6.2 shows that the branching process for budding yeast with prolif-
erative lifespan k, asymptotically grows similarly to a binary splitting process
with mean number of daughter cells equals to r, in the sense of having the
same Malthusian parameter α. However, since the binary splitting popula-
tion grows as beαt and the budding population as Cbeαt where C > 1, the
budding process tends to be, on average, larger than the splitting process.
Also note that the binary splitting population can go extinct which is not
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possible for the budding population. As k → ∞, C → 1 and r ↑ 2 so in
the limit, budding and binary splitting are equivalent which makes intuitive
sense.
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