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Our main objective is to study a Ricker-type competition model of two species. We give a
complete analysis of stability and bifurcation and determine the center manifolds as well as
stable and unstable manifolds. It is shown that the autonomous Ricker competition model
exhibits subcritical bifurcation, bubbles, period-doubling bifurcation, but no Neimark-Sacker
bifurcations. We exhibit the region in the parameter space where the competition exclusion
principle applies
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1. Introduction

Discrete models of single species were popularized by the influential paper of Robert
May [36] which was published in Nature more than thirty years ago. Twenty years
earlier, two significant papers, that marked the beginning of discrete modeling,
were published, one by Beverton and Holt [3] and the other by Ricker [39].
Let xt be the population density of species x at time t. Then the ratio f(xt) =

xt+1/xt is called the fitness function of population x. The intraspecific competition
among individuals of species x is classified as either scramble or contest competi-
tion [21]. For scramble competition f increases until it reaches a maximum after
which f decreases monotonically. This scenario is caused by a phenomenon of over-
compensatory in which a large population decreases due to fierce competition on
resources and habitat. The Ricker model is an example of a scramble intraspe-
cific competition. For contest competition f is non-decreasing due to increasing
utilization of resources [7]. The Beverton-Holt model is an example of contest com-
petition.
In the seventies, Hassell [21] and Maynard-Smith and Slatkin [35] integrated both

scramble and contest competitions in their models. A readable account on discrete
modeling of single species may be found in the paper by Brannstrom and Sumpter
[7] where the authors presented the development of several models.
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The simplest and the most popular competition model was proposed by Lotka
[30] and Volterra [44] in the twenties. Though many consider the model of lim-
ited practical utility in many complex organisms, it is generally accepted among
researchers that the model gave the impetus to theoretical ecology. By now we
have a plothera of continuous (differential equations) competition models that have
spawned in the twentieth century. However, the discrete counterpart is still lagging
behind. Lindstrom [29] has discussed the advantages and disadvantages of utiliza-
tion discrete models in population dynamics. Though they are simpler than their
continuous counterpart to derive, discrete models are much more intractable and
less studied.
There are two methods of developing discrete models. The first method is based

on a discretization of differential equations using either a classical numerical scheme
such as Euler and Runga-Kutta methods or a nonstandard method such as Mickens
scheme [38]. In the latter method one would derive discrete models from scratch us-
ing the underlying biological properties of species. The Leslie-Gower model [28] may
be considered as the discrete analogue of the Lotka- Volterra model. A variation
of this model was also obtained by Liu and Elaydi [31] via Micken’s nonstandard
discretization scheme.
Numerous papers on discrete competition models have appeared recently and we

will mention few of them here, Cushing et al [12–14], Edmunds et al [16], Franke and
Yakubu [19], Guzowska, Lúıs and Elaydi [20], McGehee and Armstrong [37], Clark
et al [10], Kulenovic and Nurkanovic [33], Blayneh et al [6], Desharnais et al [15],
Jang [25], Roeger [40], Elaydi and Yakubu [18], Blayneh [5], Allen, Kirupaharan,
and Wilson [1], Smith [42], Jang and Cushing [26], Yakubu [46], Hirsch [22], Iwata
and Takeuchi [24], and AlSharawi and Rhouma [2].
It is noteworthy to mention that in a recent paper Hone et al [23] utilized a

Ricker-type model in the study of a predator-prey system.
In this paper we adopt the latter approach and focus on an autonomous Ricker-

type competition model. In section 2 we present the theory associated with the
invariant manifolds, namely the center manifolds, the stable manifolds and the
unstable manifolds.
In section 3 we focus on the study of the stability of the exclusion fixed points

and the coexistence fixed point of the autonomous Ricker-type competition model.
In section 4 we study the properties of the stable and the unstable manifolds of
the fixed points of this model.
In section 5 a bifurcation scenario is presented in which we develop a bifurcation

diagram in the parameter space. We show the presence of both, period-doubling bi-
furcation and transcritical bifurcation. Moreover, we found bubbles and subcritical
bifurcation. Furthermore, the model under analysis does not have a Neimark-Sacker
bifurcation.

2. Invariant Manifolds

Let F : Rk → Rk be a map such that F ∈ C2 and F (0) = 0. Then one may write
F as a perturbation of a linear map L,

F (X) = LX +R(X) (1)

where L is a k × k matrix defined by L = D(F (0)), R(0) = 0 and DR(0) = 0,
where D denotes the Jacobian matrix. Now we will introduce special subspaces
of Rk, called invariant manifolds [45], that will play a central role in our study of
stability and bifurcation.
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An invariant manifold is a manifold embedded in its phase space with the prop-
erty that it is invariant under the dynamical system generated by F . A subspace
M of Rk is an invariant manifold if whenever X ∈ M , then Fn(X) ∈ M , for all
n ∈ Z+. For the linear map L, one may split its spectrum σ(L) into three sets σs,
σu, and σc, for which λ ∈ σs if |λ| < 1, λ ∈ σu if |λ| > 1, and λ ∈ σc if |λ| = 1.
Corresponding to these sets, we have three invariant manifolds (linear subspaces)

Es, Eu, and Ec which are the generalized eigenspaces corresponding to σs, σu, and
σc, respectively. It should be noted that some of these subspaces may be trivial.
The main question here is how to extend this linear theory to nonlinear maps.

Corresponding to the linear subspaces Es, Eu, and Ec, we will have the invari-
ant manifolds the stable manifold W s, the unstable manifold W u, and the center
manifolds W c.
The center manifold theory [8, 9, 27, 34, 43, 45] is interesting only if W u = {0}.

For in this case, the dynamics on the center manifold W c determines the dynamics
of the system. The other interesting case is when W c = {0} and we have a saddle.
Let Es ⊂ Rs, Eu ⊂ Ru, and Ec ⊂ Rt, with s+u+ t = k. Then one may formally

define the above mentioned invariant manifolds as follows:

W s(0) = {x ∈ Rk|Fn(x) → 0, n → ∞}

and

W u(0) = {x ∈ Rk|∃{qn}∞n=0, q0 = x, andF (qk+1) = qk, qn → 0, n → ∞}.

It is noteworthy to mention that the center manifold is not unique, while the
stable and unstable manifolds are unique.
The next result summarizes the basic invariant manifolds theory

Theorem 2.1 Invariant manifold theorem: [32, 34] Suppose that F ∈ C2. Then
there exist C2 stable W s and unstable W u manifolds tangent to Es and Eu, respec-
tively, at X = 0 and C1 center manifold W c tangent to Ec at X = 0. Moreover,
the manifolds W c, W s and W u are all invariant.

In appendix A we present the necessary techniques to compute the center man-
ifolds and the stable and unstable manifolds for non-linear maps. We apply these
techniques throughout the paper to a Ricker-type competition model.

3. The Ricker competition model

The classical Ricker competition model is given by{
un+1 = un exp(K − c11un − c12vn)
vn+1 = vn exp(L− c21un − c22vn)

,

where the parameters K and L are assumed to be positive real numbers and cij ∈
(0, 1), 1 ≤ i, j ≤ 2.
Letting c11un = xn and c22vn = yn yields the system{

xn+1 = xn exp(K − xn − ayn)
yn+1 = yn exp(L− y − bxn)

, (2)

where a = c12/c22 and b = c21/c11. Thus a, b > 0. In the language of population
dynamics the parameters K and L are known as the carrying capacities of species
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Figure 1. The stability of the exclusion fixed point and the validity of the competition exclusion principle.
(i) If 0 < K ≤ 2 and L < bK, then (K, 0) is locally asymptotically stable and species y goes extinct. (ii)
If 0 < L ≤ 2 and L > K/a, then (0, L) is locally asymptotically stable and species x goes extinct.

x and y, respectively, while the parameters a and b are the competition parameters.
Equation (2) may represented by the map

F (x, y) = (xeK−x−ay, yeL−y−bx).

Equation (2) has three fixed points, one extinction fixed point (0, 0), and two
exclusion fixed points on the axes (K, 0) and (0, L). A possible fourth positive
coexistence fixed point (x∗, y∗) may be present.
Let us write the map F = (f, g). Then the isoclines are defined as f(x, y) = x

and g(x, y) = y. These are the lines ay + x = K denoted by s1 and y + bx = L
denoted by s2 (see Figure 1 A,B). Moreover, the map F takes a point (x, y) ∈ R2

+

lying above (below) s1 to a point with a smaller (larger) x−coordinate. Similarly,
the map F takes a point (x, y) ∈ R2

+ lying above (below) s2 to a point with smaller
(larger) y−coordinate.
Note that on the isocline s1, the population x has no growth, that is xn+1 = xn

and on the isocline s2 the population y has no growth, that is yn+1 = yn.
If the two isoclines s1 and s2 intersect in the positive quadrant, we will have the

positive fixed point

(x∗, y∗) =

(
K − aL

1− ab
,
L− bK

1− ab

)
.

There are two cases to consider here: (i) ab < 1 and (ii) ab > 1 (see Figure 2 A,B).
The case ab = 1 will be discarded since in this case the two isoclines are parallel
and no coexistence fixed point is present.
The Jacobian of Equation (2) is given by

JF (x, y) =

[
(1− x)eK−x−ay −axeK−x−ay

−byeL−y−bx (1− y)eL−y−bx

]
.

The Jacobians evaluated at the fixed points are

J0 = JF (0, 0) =

[
eK 0
0 eL

]
,
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Figure 2. Isoclines: (A) The coexistence fixed point of Equation (2) exists if bK < L < K/a and ab < 1.

(B) The coexistence fixed point of Equation (2) exists if K
a

< L < bK and ab > 1. In this scenario this
equilibrium is a saddle.

JK = JF (K, 0) =

[
1−K −aK

0 eL−bK

]
,

JL = JF (0, L) =

[
eK−aL 0
−bL 1− L

]
and

J∗ = JF (x∗, y∗) =

[
1− x∗ −ax∗

−by∗ 1− y∗

]
.

Before present the stability of these fixed points we should mention that H. Smith
in [42] have been used monotonicity to prove the global stability of the fixed points
of the system {

un+1 = un exp(r(1− un −Bvn))
vn+1 = vn exp(s(1− Cun − vn))

, (3)

when r, s ≤ 1 in which the invariant set is [0, r−1] × [0, s−1]. Notice that by the
changes of variables ru = x and sv = y system (3) is equivalent to{

xn+1 = xn exp(r − xn − Br
s yn)

yn+1 = yn exp(s− yn − Cs
r xn)

.

Consequently, K = r, L = s, a = Br
s and b = Cs

r . Hence, his global results cover
our local analysis when we take the carrying capacities in the unit interval.
In the sequel we study the stability of these fixed points.

3.1. Stability of the extinction and exclusion equilibria

The eigenvalues of J0 are e
K > 1 and eL > 1 since K,L > 0. Thus (0, 0) is unstable

for all K,L > 0.
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The eigenvalues of JK are 1 − K and eL−bK . Thus ρ (JK) < 11 if and only if
0 < K < 2 and L < bK. Thus (K, 0) is locally asymptotically stable if 0 < K < 2
and L < bK. In the parameter space we call this region R1 (see Figure 3). Below
we will prove that when K = 2 this exclusion fixed point is locally asymptotically
stable and when L = bK it is unstable. Thus one may define the region R1 as

R1 = {(K,L) ∈ R2 : 0 < K ≤ 2 ∧ L < bK}

Note that from the inequality K > L/b we obtain K/a > L/ab and consequently
L < L/ab < K/a. In Figure 1A we represent the orientation of the isoclines in the
phase-space diagram. Similarly, (0, L) is locally asymptotically stable if 0 < L ≤ 2
and L > K/a. The region of stability of (0, L) in the parameter space K − L is
denoted by Q1 (see Figure 3) and is given by

Q1 = {(K,L) ∈ R2 : 0 < L ≤ 2 ∧ L > K/a}

Note that from the inequality K/a < L it follows that K < K/ab < L/b. In Figure
1B we show the orientation of the isoclines in the phase-space diagram.
We now study the stability of the fixed point (K, 0) when |ρ (JK) | = 1. This

occurs in two cases, the first is when K = 2 and L < bK, in which the eigenvalues
are λ1 = −1 and λ2 < 1. The second case is when 0 < K < 2 and L = bK, in
which |λ1| < 1 and λ2 = 1. (The case when K = 2 and L = bK at which λ1 = −1
and λ2 = 1 will not be investigated in this paper due to the lack of the required
techniques). To investigate these cases, we need to use the center manifold theory
developed in appendix A.
Making the changes of variable u = x −K and v = y in Equation (2) we shift

the fixed point (K, 0) to (0, 0). Then the new system is given by{
un+1 = (un +K)e−un−avn −K

vn+1 = vne
L−vn−b(un+K) . (4)

Let us now consider the first case, i.e. K = 2 and L < bK. The Jacobian at (0, 0)
is now given by

J̃0 =

[
−1 −2a
0 −eL−2b

]
.

Consequently, one may write Equation (4) as[
un+1

vn+1

]
=

[
−1 −2a
0 −eL−2b

] [
un
vn

]
+

[
f̃(un, vn)
g̃(un, vn)

]
, (5)

where

f̃(u, v) = (u+ 2)e−u−av − 2 + u+ 2av

and

g̃(u, v) = veL−v−b(u+2) + eL−2bv.

1ρ denotes the spectral radius
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Let v = h(u) with h(u) = αu2 + βu3 + O(|u4|), α, β ∈ R. The map h must satisfy
the center manifold equation

h(−u− 2ah(u) + f̃(u, h(u))) + eL−2bh(u)− g̃(u, h(u)) = 0.

By Taylor’s series this equation is equivalent to(
α− e−2b+Lα

)
u2 +

(
be−2b+Lα+ 4aα2 − β − e−2b+Lβ

)
u3 +O[u]4 = 0

Solving the system α−e−2b+Lα = 0 and be−2b+Lα+4aα2−β−e−2b+Lβ = 0 yields
the unique solution α = 0 and β = 0. Hence h(u) = 0. Consequently, on the center

manifold v = 0, the new map f̂ is given by

f̂(u) = −u− 2ah(u) + f̃(u, h(u)) = −2 + e−u(2 + u).

Simple computations show that the Schwarzian derivative of this map at u = 0 is
-1. Hence, by [17] the exclusion fixed point (2, 0) is asymptotically stable.
We now consider the second case, i.e, 0 < K < 2 and L = bK. After computing

the new Jacobian at (0, 0), Equation (4) may be written as

[
un+1

vn+1

]
=

[
1−K −aK

0 1

] [
un
vn

]
+

[
˜̃
f(un, vn)
˜̃g(un, vn)

]
, (6)

where

˜̃
f(u, v) = (u+K)e−u−av − (1−K)u+ (av − 1)K

and

˜̃g(u, v) = ve−v−bu − v.

In this case computations show that the center manifold is given by

h(v) = −av − (1− ab) av2

K
+

(
a(−1 + ab)(4 + a(2 + b(−6 +K))−K)

2K2

)
v3. (7)

Thus the new map on the center manifold is now

̂̂
f(v) = ve−v−bh(v). (8)

Computations show that

(̂̂
f(v)

)′

v=0

= 1 and

(̂̂
f(v)

)′′

v=0

= 2(−1 + ab). Thus by

[17] the exclusion fixed point on the center manifold u = h(v) is unstable. More
precisely, it is a semi-stable fixed point from the right since 2(−1 + ab) < 0 (see
[17, page 31]).
We now summarize these remarks in the following result.

Theorem 3.1 : For the autonomous Ricker equation (2), the following statements
hold true:

(1) (0, 0) is unstable.
(2) (K, 0) is asymptotically stable if 0 < K ≤ 2 and L < bK,
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(3) (0, L) is asymptotically stable if 0 < L ≤ 2 and L > K/a.

3.2. Stability of the coexistence fixed point: The case ab < 1

Recall that (x∗, y∗) =
(
K−aL
1−ab ,

L−bK
1−ab

)
is a coexistence fixed point if

bK < L < K/a and ab < 1. (9)

In this situation the lines segments s1 and s2 intersect as is shown in Figure 2A.
In order to find the stability region of (x∗, y∗) we need to find the region where

|tr(J∗)| − 1 < det(J∗) < 1.

(Fore more details about this point see [17, page 200]). This is equivalent to

det(J∗) < 1 ∧ det(J∗) > tr(J∗)− 1 ∧ det(J∗) > −tr(J∗)− 1.

If at least one of these inequalities is reversed, then (x∗, y∗) is unstable. Now

det(J∗) =
ab− 1 + (1− a)L+ (1− b)K − (aL−K)(bK − L)

ab− 1

and

tr(J∗) =
2(ab− 1) + (1− a)L+ (1− b)K

ab− 1
.

Consequently, det(J∗) < 1 iff

(aL−K)(bK − L) < (1− a)L+ (1− b)K, (10)

det(J∗) > tr(J∗)− 1 iff

(aL−K)(bK − L) > 0, (11)

and finally det(J∗) > −tr(J∗)− 1 iff

(aL−K)(bK − L) > 4(ab− 1) + 2(1− a)L+ 2(1− b)K. (12)

Notice that inequality (11) is automatically satisfied by (9).
Thus, (x∗, y∗) is locally asymptotically stable if for any fixed a > 0 and b > 0

with ab < 1 the following inequalities hold{
(aL−K)(bK − L) < (1− a)L+ (1− b)K
(aL−K)(bK − L) > 4(ab− 1) + 2(1− a)L+ 2(1− b)K

. (13)

The solution of this system leads to the interior of the region identified by the
letter S1 in the (K,L)−plane (see Figure 3). The region S1 is bounded by the lines
L = K/a and L = bK and the curve γ1 (Points on this curve may be include as it
is shown bellow). In Appendix B we will show that γ1 is part of the left branch of
the hyperbola defined by the equation

(aL−K)(bK − L) = 4(ab− 1) + 2(1− a)L+ 2(1− b)K.
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Figure 3. The stability regions in the parameter space of the solution of the Ricker competition equation
(2) when a > 0 and b > 0 such that ab < 1. In plot on the left the values of the competition parameters
are a = b = 0.5 while in plot on the right a = 0.2 and b = 2.

In the sequel, we will show that when K and L are on γ1 the coexistence fixed
point is asymptotically stable. This happens when |ρ(J∗)| = 1, i.e., λ1 = −1 and
λ2 < 1. Note that on the curve γ1 one has

L =
2(a− 1) + (1 + ab)K

2a
±√

(2(a− 1) + (1 + ab)K)2 + 4a(4(1− ab) + 2(b− 1)K − bK2)

2a
. (14)

Making the change of variables un = xn − x∗ and vn = yn − y∗ in Equation (2)
we shift the positive fixed point to the origin. Equation (2) is now equivalent to[

un+1

vn+1

]
=

[
J11 J12
J21 J22

] [
un
vn

]
+

[
f̃(un, vn)
g̃(un, vn)

]
. (15)

where

f̃(u, v) = (u+ x∗)eK−(u+x∗)−a(v+y∗) − x∗ − J11u− J12v,

g̃(u, v) = (v + y∗)eL−(v+y∗)−b(u+x∗) − y∗ − J21u− J22v,

and the Jacobian at (0, 0) is given by

[
J11 J12
J21 J22

]
=

[
−1+K−a(−b+L)

−1+ab −a(−K+aL)
−1+ab

− b(bK−L)
−1+ab

−1+ab−bK+L
−1+ab

]
.

Now we need to diagonalize this matrix. Let us write the diagonal matrix as[
J11 J12
J21 J22

]
=

[
S11 S12

1 1

] [
λ1 0
0 λ2

] [
S̃11 S̃12

S̃21 S̃22

]
,
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where

S11 =
−(1 + b)K + (1 + a)L+ ▽

2b(bK − L)
, S12 =

−(1 + b)K + (1 + a)L− ▽
2b(bK − L)

,

λ1 =
2(ab− 1) + (1− b)K + (1− a)L− ▽

2(ab− 1)
, λ2 =

2(ab− 1) + (1− b)K + (1− a)L+ ▽
2(ab− 1)

S̃11 =
b(bK − L)

▽ , S̃12 =
(1 + b)K − (1 + a)L+ ▽

2▽ ,

S̃21 =
b(−bK + L)

▽ , S̃22 =
−(1 + b)K + (1 + a)L+ ▽

2▽ ,

with

▽ =
√

(1 + 2b+ (1− 4a)b2)K2 + 2 (a(b− 1)− b− 1 + 2a2b2)KL+ (1 + 2a+ a2(1− 4b))L2.

Using again a new change of variables u = S11z + S12w and v = z + w, yields
the following system

[
zn+1

wn+1

]
=

[
λ1 0
0 λ2

] [
zn
wn

]
+

[
˜̃
f(zn, wn)
˜̃g(zn, wn)

]
, (16)

where [
˜̃
f(zn, wn)
˜̃g(zn, wn)

]
=

[
S̃11 S̃12

S̃21 S̃22

] [
f̃(un, vn)
g̃(un, vn)

]
.

Let z = h(w), where h(w) = αw2 + βw3 +O(w4). The function h must satisfy the
following equation

h(λ2w + ˜̃g(h(w), w))− λ1h(w)− ˜̃
f(h(w), w) = 0. (17)

After simplifying this equation, we write the Taylor expansion and then find the
values of the constant α and β. Since the computations here are long, we can not
find the exact values of α and β. However, we are able to find it numerically. Notice
that, the maximum value of the carrying capacity K is given by biggest value on
the left branch of hyperbola (B4), namely

Kmax =
2(1 + a− a

√
b)

1− ab
.

Notice that depending of the chosen of a and b, Kmax can be a very large number
namely when ab ≈ 1.
We reduce our analysis when the competition parameters belongs to the interval

(0, 2]. Taking randomly the values of a and b in the interval (0, 2] such that ab < 1
and using the value of carrying capacity L given in (14), we vary the carrying
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Figure 4. Part of the values of the Schwarzian derivative of the new map on the center manifold for the
coexistence fixed point. In this simulation we use values of the carrying capacity K in the interval (0, 3]
and the competition parameters are in the interval (0, 2] such that ab < 1.

capacity K in the interval (0, 3] and find numerically the values of α and β. After
to do this we compute the value of the Schwarzian derivative of map

H(w) = −w + ˜̃g(h(w), w).

From our simulations we conclude that the Schwarzian derivative SH(0) < 0, as
it is shown in Figure 4. Note that this simulations can be done for a much more
large values of a and b.
By numerical calculations, on may conclude that on the curve γ1 the coexistence

fixed point of Equation (2) must be asymptotically stable. Similar conclusions may
be made if we consider the center manifold w = h(z).
We now summarize these conclusions in the following theorem.

Theorem 3.2 : Suppose that ab < 1 and let Ŝ = Int(S1) ∪ γ1, where Int(S1)
denotes the interior of S1. Then the coexistence fixed point

(x∗, y∗) =

(
aL−K

ab− 1
,
bK − L

ab− 1

)

of the Ricker equation (2) is asymptotically stable if

4(ab− 1) + 2(1− a)L+ 2(1− b)K ≤ (aL−K)(bK − L) < (1− a)L+ (1− b)K.

Equivalently, the coexistence fixed point is asymptotically stable if (K,L) ∈ Ŝ.

4. The stable and unstable manifolds

In this section we study (via numerical computations) a celebrated scenario in
classic competition theory, the saddle exclusion case (or equivalently, a stable and
unstable manifolds).
A general two-dimensional map has a stable and an unstable manifolds when the
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following conditions, in the Trace-Determinant plane, are satisfied{
det(J∗) < tr(J∗)− 1
det(J∗) > −tr(J∗)− 1

∨
{
det(J∗) > tr(J∗)− 1
det(J∗) < −tr(J∗)− 1

∨det(J∗) < (tr(J∗))2

4
det(J∗) > 1
det(J∗) > −tr(J∗)− 1

∨

det(J∗) < (tr(J∗))2

4
det(J∗) > tr(J∗)− 1
det(J∗) > 1

. (18)

For more details about these conditions see [17, page 205]. Hence we have two
scenarios to consider: (i) ab > 1 in which the winner depends on initial conditions
and (ii) ab < 1 where we have the presence of both locally asymptotically stable
cycles and unstable fixed points.

4.1. Case (i): ab > 1

In model (2) the saddle scenario occurs when one has a coexistence equilibrium
such that

aL > K and bK > L, (19)

which implies that

ab > 1. (20)

We now determine, in the parameter space, the region where relation (18) is
satisfied. Direct computations show that det(J∗) > tr(J∗)− 1 is equivalent to

(aL−K)(bK − L) < 0,

which is impossible by (19). Hence there are two systems in (18) that leads to an
empty region. Analogously, det(J∗) < tr(J∗)− 1 is the region in the (K,L)−plane
between the two lines L = K/a and L = bK, i.e., assumption (19). Notice that by
(20) one has b > 1/a, and consequently bK > K/a.
The inequality det(J∗) > −tr(J∗)− 1 leads to

2(1− a)L+ 2(1− b)K − (aL−K)(bK − L) + 4(ab− 1) > 0

Notice that by (B4) the second degree equation

2(1− a)L+ 2(1− b)K − (aL−K)(bK − L) + 4(ab− 1) = 0 (21)

represents an hyperbola in (K,L)−plane (for more details about this hyperbola
see appendix B). Hence the system{

det(J∗) < tr(J∗)− 1
det(J∗) > −tr(J∗)− 1

(22)

is satisfied whenever K and L are between the lines L = K/a and L = bK and the
right branch of hyperbola (21).
Relation det(J∗) > 1 is equivalent to

(1− a)L+ (1− b)K − (aL−K)(bK − L) > 0.
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This is the region in the first quadrant outside the right branch of hyperbola

(1− a)L+ (1− b)K − (aL−K)(bK − L) = 0 (23)

which passes in the origin.

The inequality det(J∗) < (tr(J∗))2

4 leads to the following relation

(4a2b− (a+1)2)L2+2(1+ a+ b− ab− 2(ab)2)KL+(4ab2− (b+1)2)K2 < 0 (24)

Notice that the second degree equation

(4a2b− (a+ 1)2)L2 + 2(1 + a+ b− ab− 2(ab)2)KL+ (4ab2 − (b+ 1)2)K2 = 0

represents a conic, in the (K,L)−plane, known as a pair of imaginary lines in-
tersecting in a real point (see for instance [4]), provided that the test condition
are ∣∣∣∣∣∣

 4ab2 − (b+ 1)2 1 + a+ b− ab− 2(ab)2 0
1 + a+ b− ab− 2(ab)2 4a2b− (a+ 1)2 0

0 0 0

∣∣∣∣∣∣ = 0

and∣∣∣∣( 4ab2 − (b+ 1)2 1 + a+ b− ab− 2(ab)2

1 + a+ b− ab− 2(ab)2 4a2b− (a+ 1)2

)∣∣∣∣ = −4ab(−1 + ab)3 < 0

This point is precisely the origin because the equations of these two lines are
L = m±K where

m± =
1 + a+ b− ab− 2a2b2 ± 2

√
ab(−1 + ab)3

((1 + a)2 − 4a2b)
.

Hence, the system det(J∗) < (tr(J∗))2

4
det(J∗) > 1
det(J∗) > −tr(J∗)− 1

(25)

represents the region in the (K,L)−plane outside both hyperbolas (21) and (23)
and between the two lines L = m±K.
Numerical computations show that when a > 1 and b > 1 (which implies ab > 1)

one has

m+ > b > 1/a > m−.

So assuming this restriction on the competition parameters and under hypothesis
(19) system (25) has an empty solution. Consequently, if a > 1 and b > 1 relation
(18) is equivalent to system (22). Hence, the saddle region is enclosed by the two
lines L = K/a and L = bK and the right branch of hyperbola (21). In Figure 5 is
depicted in the parameter space (K,L) this region when a = 2 and b = 1.5.
Notice that if we assume that either a < 1 or b < 1 such that ab > 1, then the

saddle region is more involved, namely it contains the solution of both systems (22)
and (25).
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Z L = K �a

L = bK

detHJ*L = -trHJ*L-1

K

L

Figure 5. The saddle region Z, in the parameter space K and L, when a = 2 and b = 1.5.

Now let us take a > 1 and b > 1 such that (K,L) ∈ S. Following the same tech-
niques as in section (3.2) we find that, locally, the stable manifold of the coexistence
fixed point is given by

W s = {(z, w) ∈ R2 : w = α1z
2 + β1z

3, α1, β1 ∈ R},

and the unstable manifold is

W u = {(z, w) ∈ R2 : z = β2w
2, β2 ∈ R}.p

Due the big size of the formulas for the constants α1, β1 and β2 we omit them here.
In the original coordinates the values of z and w are given by

z = S22(x−x∗)−S12(y−y∗)
S11S22−S21S12

and w = S11(y−y∗)−S21(x−x∗)
S11S22−S21S12

,

where Sij are the entries of the matrix S determined in the previous section.

4.2. Case (ii): ab < 1

By (9) it follows that det(J∗) < tr(J∗)− 1 is impossible. Hence the first system in
(18) leads to an empty region. In previous subsection we determine the inequality

det(J∗) <
(tr(J∗))2

4
,

which leads to relation (24). We claim that when ab < 1 the first member of (24) is
negative. In order to show that, let us assume temporally that L = mK for some
m > 0. Hence, relation (24) is equivalent to K2u(m) < 0, where

u(m) = (4a2b− (a+ 1)2)m2 + 2(1 + a+ b− ab− 2(ab)2)m+ 4ab2 − (b+ 1)2.



March 30, 2011 11:25 Journal of Biological Dynamics RL˙SE˙HO˙CRM

Journal of Biological Dynamics 15

S1

Z

L=bK

L=K�a
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Figure 6. The saddle region Z, in the parameter space K and L, when a = b = 0.5.

Solving the equation u(m) = 0 one has the following two values

m =
(1 + a+ b− ab− 2(ab)2)± 2

√
ab(1− ab)3i

(1 + a)2 + 4a2b
, i =

√
−1.

Now we show that the coefficient of m2 is a negative number. So

4a2b− (a+ 1)2 = 4aab− (a+ 1)2 < 4a− (a+ 1)1 = −(a− 1)2 < 0

(since ab < 1). Hence, the function u is a parabola, concave down, with no real
zeros. Consequently, relation (24) is satisfied.
Because det(J∗) > tr(J∗) − 1 is automatically verified and by the fact that

det(J∗) < (tr(J∗))2

4 is always true, it follows that the systemdet(J∗) < (tr(J∗))2

4
det(J∗) > tr(J∗)− 1
det(J∗) > 1

leads to the same region in the parameter space thandet(J∗) < (tr(J∗))2

4
det(J∗) > −tr(J∗)− 1
det(J∗) > 1

.

Therefore, relation (18) leads to{
det(J∗) > tr(J∗)− 1
det(J∗) < −tr(J∗)− 1

∨
{
det(J∗) > −tr(J∗)− 1
det(J∗) > 1

.

This leads to the region Z identified in Figure 6. Note that Z = ∪i≥2Si (in section
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5 we will give more details about the regions Si, i ≥ 2).
Before end this subsection we remark that the determination of the saddle and

unstable manifolds follows the guidelines as above.

4.3. The exclusion fixed point

We now determine the region, in the parameter space, where the exclusion fixed
point (K, 0) of Equation (2) has stable and unstable manifolds. This set is given
by

ZK = {(K,L) ∈ R2 : K > 2 ∧ L < bK}.

Let (K,L) ∈ ZK . Then similar techniques as before lead us to find locally the
stable manifold

W s
K = {(x, y) ∈ R2 : y = 0}

and the unstable manifold

W u
K = {(x, y) ∈ R2 : x = K}

of the exclusion fixed point (K, 0).
Similarly, in the set

ZL = {(K,L) ∈ R2 : K > 0 ∧ L > 2 ∧ L > K/a}

the exclusion fixed point (0, L) has the stable manifold (locally)

W s
L = {(x, y) ∈ R2 : x = 0}

and the unstable manifold (locally)

W u
L = {(x, y) ∈ R2 : y = L}.

5. Bifurcation scenarios

In the absence of species “y” the dynamics of species “x” is governed by the one-
dimensional Ricker equation

xn+1 = xne
K−xn , n ∈ Z+. (26)

Equation (26) has a globally asymptotically stable fixed point when 0 < K < 2.
At K = k1 = 2, a period-doubling bifurcations occurs. At the bifurcation point
k1 = 2, an asymptotically stable 2−periodic cycle {x0, x1} is born. The two points
x0, x1 satisfy the equations x1 = x0e

K−x0 and x0 = x1e
K−x1 . By the linearization

principle the stability of this 2−periodic cycle can be seen from the product of the
derivatives of the map (26) evaluated at x0 and x1. This product is less than one in
absolute value, i.e.,

∏1
i=0 |1−xi| < 1 if k1 < K < k2, where k2 ≈ 2.5265. AtK = k2,

a new period-doubling bifurcation occurs. Then there exists k3 greater than but
near k2 such that a new 4−periodic cycle is asymptotically stable if k2 < K < k3.
This period-doubling scenario continues. So there exist two bifurcations points kj
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and kj+1 for a specific integer j such that the r−periodic cycle {x0, . . . , xr−1},
where r = 2j , satisfy the relation

r−1∏
i=0

|1− xi| < 1. (27)

The r−periodic cycle {x0, . . . , xr−1} yields an exclusion r−periodic cycle

Cx
r = {(x0, 0) , (x1, 0) , . . . , (xr−1, 0)} (28)

of the competition Ricker model (2).
The Jacobian of Cx

r evaluated along the periodic orbit is given by the following
2× 2 matrix

0∏
r−1

JF (xi, 0) =

(∏r−1
i=0 (1− xi) J12

0 erL−b
∑r−1

i=0 xi

)
.

Its eigenvalues are λ1 =
∏r−1

i=0 (1−xi) and λ2 = erL−b
∑r−1

i=0 xi = er(L−bK). Using the
hypothesis L < bK yields |λ2| = λ2 < 1 and from (27) it follows |λ1| < 1. Thus Cx

r

is asymptotically stable.
Note that if L = 0 one has λ2 < 1. This implies that the sequence of parameters

{kj} on the K−axis follows the one-dimensional case. That is k1 = 2, k2 ≈ 2.52647,
k3 ≈ 2.6562, etc.
We now summarize the above discussion

Theorem 5.1 : Let 0 < L < bK. Then the cycle Cx
r , defined in (28), of Equation

(2), is asymptotically stable.

In [17] the author presents a complete study of the main types of bifurcations,
for two-dimensional systems. When the Jacobian has an eigenvalue equal to one,
either the saddle-node bifurcation, the pitchfork bifurcation or the transcritical
bifurcation can occur. In the Trace-Determinant plane (T-D), this is equivalent to
saying that we cross the line det(J∗) = tr(J∗) − 1 from the stability region. The
period-doubling bifurcation occurs when the Jacobian has an eigenvalue equal to
-1. In the T-D plane this occurs as we cross the line det(J∗) = −tr(J∗)−1 from the
stability region. When the Jacobian has a pair of complex conjugate eigenvalues
of modulus 1, we have the Neimark-Sacker bifurcation. This happens in the T-D
plane when det(J∗) = 1 and −2 < tr(J∗) < 2. For details on bifurcation in higher
dimension see for example [45].
Now we are in a position to provide a deeper explanation of Figure 3. Note that

the coexistence fixed point (x∗, y∗) is asymptotically stable if (K,L) ∈ Ŝ. When
L = bK, the Jacobian of Equation (2) has an eigenvalue equal to one. For the map̂̂
f defined in (8) one has

∂
̂̂
f

∂x
(0) = 1,

∂
̂̂
f

∂K
(0) = 0 and

∂2̂̂f
∂x2

(0) ̸= 0.

Hence a transcritical bifurcation occurs when L = bK, where the coexistence fixed
point (x∗, y∗) = (K, 0), the exclusion fixed point on the x−axis. When (K,L)
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Figure 7. The presence of subcritical bifurcation in the autonomous Ricker type competition model (2)

crosses the line L = bK to region R1, the branch of equilibria (x∗, y∗) transcriti-
cally bifurcates with the branch of exclusion equilibria (K, 0), while (x∗, y∗) moves
from the first quadrant into the fourth (or second) quadrant, where it becomes
ecologically irrelevant. Moreover, stability exchanges from one branch to the other.
Similarly, if L = K/a, the coexistence fixed point undergoes a transcritical bifur-
cation.
Equation (2) has a period-doubling bifurcation when we have equality in relation

(12). This is represented by the curve γ1 in Figure 3. Consequently, as K and
L passes the curve γ1 the coexistence fixed point undergoes a period-doubling
bifurcation into a coexistence 2−periodic cycle. Thus in region S2 Equation (2)
has one unstable fixed point and one asymptotically stable coexistence 2−periodic
cycle.
When K and L passes the line L = bK from region S2 to region R2, the coex-

istence 2−periodic cycle bifurcates (transcritical). Computations shows that this
new 2−periodic cycle is an exclusion cycle on the x−axis. If, however, we move
K and L from R2 to S2, then the exclusion 2−periodic cycle undergoes a trans-
critical bifurcation into a coexistence 2−periodic cycle. Another period-doubling
bifurcation appears in the exclusion fixed point if the parameters K and L move
from region R1 to region R2. Thus if the parameters K and L are in region R2,
Equation (2) possesses an asymptotically stable exclusion 2−periodic cycle on the
x−axis. Similar analysis can be taken if the parameters are in region Q2.
The coexistence 2−periodic cycle undergoes a period-doubling bifurcation when

the parameters pass the curve γ2. Thus in region S3, this coexistence 2−periodic
cycle becomes unstable and a new asymptotically stable 4−periodic cycle is born.
This new cycle undergoes a transcritical bifurcation to an asymptotically stable
exclusion 4−periodic cycle on the x−axis whenever the parameters moves from
region S3 to region R3. We also have a period-doubling bifurcation in the exclusion
2−periodic cycle if we change the parameters from region R2 to region R3. Thus in
region R3, Equation (2) has an asymptotically stable exclusion 4−periodic cycle.
The same happens in the y−axis if the parameters change from region S3 to region
Q3. This period-doubling bifurcation route to chaos is reminiscent of the dynamics
exhibited by the one-dimensional Ricker-map.
A different scenario appears if the relation between L and K obey the rule
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L = α1K + α2, α2 > 0 and −ε < α1 < ε, for a small ε > 0. We call this scenario
the “bubble scenario”. This occurs if one passes from zone Si+1 to the stability
region Si and enter again in the stability region Si+1. In this scenario, if we draw
the bifurcation diagram in the (K,x)−plane we find bubbles. In Figure 7 we present
two scenarios. In cases A and B we vary K and fix L = 2.1, and let a = b = 0.5.
This results in the presence of one bubble in plot A. This phenomenon happens
because for values of K . 1.05, Equation (2) has one attracting 2−periodic cycle
on the y−axis (see plot B) . Thus xn = 0 and yn oscillates between 1.32152 and
2.87848 as n goes to infinity. At K ≈ 1.05, the exclusion cycle on the y−axis
bifurcates (transcritical) and the fixed point 0 bifurcates (period-doubling). This
implies that the coexistence 2−periodic cycle in the x−axis is born. Here we see
the bubble in plot A and a 2−periodic cycle in plot B. For values 1.45 . K . 1.78,
Equation (2) has a coexistence fixed point. This observation implies that at K ≈
1.45 the 2−periodic cycle in turn will undergo a bifurcation and return to a stable
equilibrium1. At K ≈ 1.78 a new period-doubling bifurcation occurs, and then
the coexistence fixed point bifurcates into a coexistence 2−periodic cycle. This is
clearly shown in plot A and plot B. In cases C and D we fix L = 2.6. For values
of K ≈ 1.3 the equation has an exclusion 4−periodic cycle on the y−axis. As K
increases we enter in the zone where we have a coexistence 4−periodic cycle. Here
we see two bubbles in plot C and a coexistence 4−periodic cycle in plot D. Both
cases lead to a 2−periodic cycle.
The Neimark-Sacker bifurcation starts when det(JF (x∗, y∗)) = 1 and −2 <

tr(JF (x∗, y∗)) < 2, i.e, when

(1− a)L+ (1− b)K = (aL−K)(bK − L) (29)

and

0 < (1− a)L+ (1− b)K < 4(1− ab). (30)

Inequalities (30) are satisfied whenever K and L belongs to the region enclosed by
the positive axes and the line (1−a)L = −(1−b)K+4(1−ab). Direct computations
show that this line does not intersect the hyperbola (29). On the other hand the

vertices (0, 0) and
(
2 1+a
1−ab , 2

1+b
1−ab

)
of hyperbola (29) are outside this triangle. Hence

Equation (2) has no Neimark-Sacker bifurcation.

6. Discussion

Competition models have been investigated by many authors and we listed few in
the references. Here we consider a mathematical model (2) in which the intraspe-
cific competition parameters are scaled to 1. This in effect reduces the number of
parameters by two and we only have four parameters.
The main contribution in this paper is to analyze in depth the bifurcation sce-

nario of the main parameters K and L, the carrying capacities of species x and y,
respectively. So Figure 3 shows that our model exhibits period-doubling bifurcation
of the coexistence equilibrium point in regions Si, i = 1, 2, 3, . . ..
The regions Si, i = 1, 2, 3, . . . are bounded by the lines L = bK, and L = K/a

and the curve γi. Each curve γi is a segment of a hyperbola, which we determine

1Actually this phenomenon is not a reverse period doubling bifurcation. It is a subcritical bifurcation. For
more details about this phenomenon in population models see [11]
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explicitly for i = 1. Hence we conclude that the coexistence of two species is
possible only iff (K,L) ∈ Si, i = 1, 2, 3, . . .. The two species may coexist in a
variety of forms: an equilibrium state, oscillatory periodic cycles of period 2n, and
eventually chaotic.
The regions Ri and Qi, i = 1, 2, 3, . . . in the parameter space K − L are regions

where the competition exclusion principle is valid. In regions Ri, species y goes to
extinction while species x tends to its carrying capacity K or oscillate periodically
with periods 2n and eventually enters a chaotic region. Similar conclusions may be
stated for regions Qi, in which species x goes to extinction while species y survives.
Finally, our analysis here of the period-doubling bifurcation scenario and identi-

fication of the regions in which the competition exclusion principle is valid may be
extended to other competition models. In particular, we believe that our analysis
here may be applied to many population models with rich dynamics such as the
logistic competition model in [20].
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Appendix A. Center manifolds and the stable and unstable manifolds

In this section we give the appropriate tools that allow us, to compute analytically,
the center manifolds and the stable and unstable manifolds for any non linear map.
We use the terminology and the notation present in section 2.

A.1. Center manifolds

Let us first focus on the case when σu = ∅. Hence the eigenvalues of L are either
inside the unit disk or on the unit disk. By suitable change of variables, one may
represent the map F as the following system of difference equations

{
xn+1 = Axn + f(xn, yn)
yn+1 = Byn + g(xn, yn)

. (A1)

First we assume that all eigenvalues of At×t are on the unit circle and all the
eigenvalues of Bs×s are inside the unit circle, with t+ s = k. Moreover,

f(0, 0) = 0, g(0, 0) = 0, Df(0, 0) = 0 and Dg(0, 0) = 0.
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Figure A1. Stable and center manifolds. In Figure (i) one has σ(A) = σc and σ(B) = σs while in Figure
(ii) one has σ(A) = σs and σ(B) = σc.

Since W c is tangent to Ec = {(x, y) ∈ Rt×Rs|y = 0}, it may be represented locally
as the graph of a function h : Rt → Rt such that

W c = {(x, y) ∈ Rt × Rs|y = h(x), h(0) = 0, Dh(0) = 0, |x| <
δ for a sufficiently small δ}.

Furthermore, the dynamics restricted to W c is given locally by the equation

xn+1 = Axn + f(xn, h(xn)), x ∈ Rt (A2)

The main feature of Equation (A2) is that its dynamics determine the dynamics
of Equation (A1). So if x∗ = 0 is a stable, asymptotically stable, or unstable fixed
point of Equation (A2), then the fixed point (x∗, y∗) = (0, 0) of Equation (A1)
possesses the corresponding property.
To find the map y = h(x), we substitute for y in Equation (A1) and obtain

{
xn+1 = Axn + f(xn, h(xn))
yn+1 = h(xn+1) = h(Axn + f(xn, h(xn)))

. (A3)

But

yn+1 = Byn + g(xn, yn)

= Bh(xn) + g(xn, h(xn)). (A4)

Equating (A3) and (A4) yields the center manifold equation

h[Axn + f(xn, h(xn))] = Bh(xn) + g(xn, h(xn)) (A5)

Analogously if σ(A) = σs and σ(B) = σc, one may define the center manifold
W c, and obtain the equation

yn+1 = Byn + g(h(yn), yn),

where x = h(y).
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A.2. An upper (lower) triangular System

In working with concrete maps, it is beneficial in certain cases to deal with the
system without diagonalization.
Let us now consider the case when L is a block upper triangular matrix(

xn+1

yn+1

)
=

(
A C
0 B

)(
xn
yn

)
+

(
f(xn, yn)
g(xn, yn)

)
, (A6)

There are two cases to consider:

(1) Assume that σ(A) = σs, σ(B) = σc, and σu = ∅.
The matrix L can be block diagonalizable. Hence there exists, a nonsin-

gular matrix P of the form

P =

[
P1 P3

0 P2

]
such that [

A B
0 C

]
= P

[
A 0
0 B

]
P−1.

Let (
x
y

)
= P

(
u
v

)
. (A7)

Then x = P1u+ P3v, and y = P2v. Thus one has(
un+1

vn+1

)
=

(
A 0
0 B

)(
un
vn

)
+ P−1

(
f(P1u+ P3v, P2v)
g(P1u+ P3v, P2v)

)
. (A8)

Applying the center manifold theorem to Equation (A8) yields a map
u = h̃(v) with h̃(0) = 0 = h̃′(0). Moreover, the dynamics of Equations (A8)
is completely determined by the dynamics of the equation

vn+1 = Bvn + P̃2g(P1h̃(vn) + P3vn, P2vn),

where P̃1 and P̃3 are elements of the matrix

P−1 =

[
P̃1 P̃3

0 P̃2

]
.

We now have the relation

u = P̃1x− P̃2P3P̃2y = h̃(P̃2y).

Hence x = h(y), where h is given by

h(y) = P3P̃2y + P̃−1
1 h̃2(P̃2y).

Notice that Dh(0) = P3P̃2I, where I is the identity matrix.
(2) Assume that σ(A) = σc, σ(B) = σs, and σu = ∅. We start from Equation

(A8) and apply the center manifold theorem to obtain a map v = h̃(u) with
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h̃(0) = 0 = h̃′(0). The dynamics of Equation (A8) is completely determined
by the dynamics of the equation

un+1 = Aun + P̃1f(P1un + P3h̃(u), P2h̃(u)) + P̃3g(P1un + P3h̃(u), P2h̃(u)),
(A9)

where P̃1, P̃2, and P̃3 are entries of the matrix

P−1 =

(
P̃1 P̃3

0 P̃2

)
.

From (A7) we have u = P̃1x− P̃1P3P̃2y and v = P̃2y. Then v = h̃(u) and
thus

P̃2y = h̃(P̃1x− P̃1P3P̃2y).

Let Q(x, y) = P̃2y − h̃(P̃1x − P̃1P3P̃2y). Then Q(0, 0) = 0, DQ(0, 0) is of
rank t. Hence by the implicit function theorem [41] there exits an open
neighborhood Ω ⊂ Rk of 0 and a unique function h ∈ C1(Ω) such that
h(0) = 0 = Dh(0) and Q(x, h(x)) = 0, for all x ∈ Ω.
Hence the curve y = h(x) is the implicit solution of Equation (A9) and

is the equation of the center manifold. To find the map h we use the center
manifold equation

h[Ax+ Ch(x) + f(x, h(x))] = Bh(x) + g(x, h(x)).

A final remark is in order. If we let y = h(x) in (A9) we obtain

h(x) = P2h̃(P̃1x− P̃1P3P̃2h(x)).

Note that Dh(0) = 0 = Dh̃(0).

A.3. Stable and Unstable Manifolds

Suppose now that the map F is hyperbolic, that is σc = ∅. Then by theorem 2.1,
there are two unique invariant manifolds W s and W u tangents to Es and Eu at
X = 0, which are graphs of the maps

φ1 : E1 → E2 and φ2 : E2 → E1,

such that

φ1(0) = φ2(0) = 0 and D(φ1(0)) = D(φ2(0)) = 0.

Letting yn = φ1(xn) yields

yn+1 = φ1(xn+1) = φ1(Axn + Cφ1(xn) + f(xn, φ1(xn))).

But

yn+1 = Bφ1(xn) + g(xn, φ1(xn)).

Equating these two equations yields

φ1(Axn + Cφ1(xn) + f(xn, φ1(x))) = Bφ1(xn) + g(xn, φ1(xn)) (A10)
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Figure A2. Stable and unstable manifolds

where we can take, without loss of generality, φ1(x) = α1x
2 + β1x

3 +O(|x|4).
Similarly, letting xn = φ2(yn) yields

xn+1 = φ2(yn+1) = φ2(Byn + g(φ2(yn), yn)),

where we can take, without loss of generality, φ2(x) = α2x+ β2x
2 +O(|x|4)

But

xn+1 = Aφ2(yn) + Cyn + f(φ2(yn), yn),

and hence

φ2(Byn + g(φ2(yn), yn)) = Aφ2(yn) + Cyn + f(φ2(yn), yn) (A11)

Using Equations (A10) and (A11), one can find the stable manifold

W s = {(x, y) ∈ Rt × Rs|y = φ1(x)},

and the unstable manifold

W u = {(x, y) ∈ Rt × Rs|x = φ2(y)}.

Appendix B. The stability region S1

In this section we study in the (K,L)−plane the region where inequalities (10),
(11) and (12) holds.
A simple calculation shows that inequality (10) is equivalent to

bK2 + (1− b)K − (1 + ab)KL+ (1− a)L+ aL2 > 0, (B1)

and inequality (12) is equivalent to

bK2 + 2(1− b)K − (1 + ab)KL+ 2(1− a)L+ aL2 + 4(ab− 1) < 0. (B2)
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Before finding the region where the three inequalities are satisfied we give some
notes about the following two equations

bK2 + (1− b)K − (1 + ab)KL+ (1− a)L+ aL2 = 0, (B3)

and

bK2 + 2(1− b)K − (1 + ab)KL+ 2(1− a)L+ aL2 + 4(ab− 1) = 0. (B4)

It is an elementary exercise to show that these two second-degree equations are
hyperbolas in the (K,L)−plane provided that the constants satisfy the determinant
condition

D =

∣∣∣∣ b −1+ab
2

−1+ab
2 a

∣∣∣∣ = −1

4
(1− ab)2 < 0.

The center (Kc, Lc) of (B3) is given by
(

1+a
1−ab ,

1+b
1−ab

)
and the center (K̄c, L̄c) of

(B4) is given by (2Kc, 2Lc). The angle of the principal axis of each hyperbola and
the positive K−axis equals

tan(2ϕ) = −1 + ab

b− a
.

In case of strong symmetry, for example when a = b = 0.5, both hyperbolas have
the same principal axis, L = 1+b

1+aK and the vertices of (B3) are V1 = (0, 0) and

V2 = (2Kc, 2Lc) and the vertices of (B4) are V̄1 = (2Kc(1 −
√
ab), 2Lc(1 −

√
ab))

and V̄2 = (2Kc(1 +
√
ab), 2Lc(1 +

√
ab)). It is clear that V1 < V̄1 < V2 < V̄2 since

0 < 2Kc(1−
√
ab) < 2Kc < 2Kc(1 +

√
ab),

and

0 < 2Lc(1−
√
ab) < 2Lc < 2Lc(1 +

√
ab).

Knowing these properties and using the implicit function theorem, in Figure B1
is present in the (K,L)−plane the solutions of (B3) and (B4) when a = b = 0.5.
In case of strong asymmetry, i.e., when either a > 1 or b > 1 such that a.b < 1

the relative position between these two hyperbolas and the lines is more involve.
However, the origin is always a point of (B3) not necessary a vertex. Furthermore,
the left branch of (B3) intersects the two lines at the origin and it enter in the first
quadrant but it remains “outside” the two lines.
Now we are going to find the region where inequalities holds. If we pick up a

point between each branch of the hyperbola either the sign is positive or negative.
A good candidate for this test is the center of each hyperbola. A calculation shows
that on (Kc, Lc) the value of the first member of (B1) is 1 > 0. Since K > 0 and
L > 0 inequality (B1) is verified whenever the values of the carrying capacities K
and L are between the positive axes and the “right” branch of hyperbola (B3).
Similarly, on (K̄c, L̄c) the first member of (B2) is 4ab > 0. Hence, inequality (B2)

is verified whenever the carrying capacities K and L are between the positive axes
and the “left” branch of hyperbola (B4) or in the “interior” of the “right” branch
of hyperbola (B4).
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Figure B1. The relative position of the hyperbolas det(J∗) = 1 and det(J∗) = −tr(J∗)− 1 and the lines
L = bK and L = K/a when a = b = .5. The black curves are the implicit solutions of det(J∗) = 1 while
the gray curves are the implicit solutions of det(J∗) = −tr(J∗)− 1. The stability region S1 is enclosed by
the two lies and the left branch of hyperbola det(J∗) = −tr(J∗)− 1.

From (9) it follows that the inequality (11) is verified. This corresponds to the
points in the (K,L)−plane between the lines L = K/a and L = bK. The stability
region S1 now follows from the intersection of these three regions.


