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Open problems in some competition models
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aDepartment of Mathematics, Trinity University, San Antonio, Texas, USA; bCenter for
Mathematical Analysis, Geometry, and Dynamical Systems, Instituto Superior Tecnico,

Technical University of Lisbon, Lisbon, Portugal

(Received 00 Month 20xx; in final form 00 Month 20xx)

We present open problems and conjectures for some two-dimensional competition models,
namely the logistic competition model and a Ricker-type competition model.
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1. Ricker competition model

In [2], the authors considered the Ricker competition model given by{
xn+1 = xne

K−xn−ayn

yn+1 = yne
L−yn−bxn

, (1)

where (x, y) ∈ R2
+. The parameters K,L > 0 are the carrying capacities of species

x and y, respectively. Moreover, the competition parameters a and b are assumed to
be positive real numbers.
System (1) is based on the classical Ricker competition model given by{

un+1 = un exp(K − c11un − c12vn)
vn+1 = vn exp(L− c21un − c22vn)

,

where the parameters K and L are assumed to be positive real numbers and cij ∈
(0, 1), 1 ≤ i, j ≤ 2.
System (1) possesses four fixed points (0, 0), (K, 0), (0, L), and (x∗, y∗), where

(x∗, y∗) =

(
aL−K

ab− 1
,
bK − L

ab− 1

)
.

The point (x∗, y∗) is “positive”, i.e., it is a coexistence equilibrium, if and only if
either

aL < K and bK < L (2)

or

al > K and bK > L. (3)

Note that

(2) implies ab < 1
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Figure 1. The stability regions and the bifurcation scenario, of the Ricker competition equation in
the parameter space K − L

and

(3) implies ab > 1.

The case ab = 1 is discarded since in this case the two isoclines are parallel and no
coexistence fixed point is present. Notice that the case ab > 1 leads to a celebrated
scenario in classic competition theory, the saddle exclusion case.
For the case ab < 1, the following result is the main stability theorem in [2].

Theorem 1.1. [2] Suppose that ab < 1 and let Ŝ = Int(S1) ∪ γ1, where Int(S1)
denotes the interior of S1. Then the coexistence fixed point

(x∗, y∗) =

(
aL−K

ab− 1
,
bK − L

ab− 1

)
of the Ricker equation (1) is asymptotically stable if

4(ab− 1) + 2(1− a)L+ 2(1− b)K ≤ (aL−K)(bK −L) < (1− a)L+ (1− b)K. (4)

Equivalently, the coexistence fixed point is asymptotically stable if (K,L) ∈ Ŝ.

The region S1, represents (4) in the parameter space K − L and is depicted in
Figure 1.
Now we have the following conjecture
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Conjecture 1.2 Under condition (4), the coexistence fixed point (x∗, y∗) is globally
asymptotically stable in the positive first quadrant, for all (K,L) ∈ Int(S1).

Open Problem 1.3 Determine the basin of attraction of the periodic cycles of period
2n−1, n = 2, 3, . . . in regions Sn.

For the exclusion fixed points (K, 0) and (0, L) we have the following result from
[2]

Theorem 1.4. [2] For the Ricker competition equation (1), the following statements
hold true:

(1) (K, 0) is asymptotically stable if 0 < K ≤ 2 and L < bK,
(2) (0, L) is asymptotically stable if 0 < L ≤ 2 and L > K/a.

Open Problem 1.5

(1) Determine the stability of the fixed point (K, 0) when K = 2 and L = bK. In
this case the eigenvalues of the Jacobian of the map of Eq. (1) are λ1 = −1
and λ2 = 1.

(2) Determine the stability of the fixed point (0, L) when L = 2 and L = K/a. In
this case the eigenvalues of the Jacobian of the map of Eq. (1) are λ1 = 1 and
λ2 = −1.

2. Logistic competition model

In [1], the authors considered the following logistic competition model{
xn+1 =

axn(1−xn)
1+cyn

yn+1 =
byn(1−yn)
1+dxn

, (5)

where x, y ∈ [0, 1], c, d ∈ (0, 1) and a, b ∈ (0, 4]. The parameters a and b are called the
intrinsic growth rates of species x and y, respectively, and c, d denote the competition
of the species.
System (5) has the fixed points (0, 0), (a−1

a , 0), (0, b−1
b ) and (x∗, y∗), where

x∗ =
b(a− 1)− c(b− 1)

ab− cd
, y∗ =

a(b− 1)− d(a− 1)

ab− cd
.

We make the assumption that

b > 1 +
d(a− 1)

a
and a > 1 +

c(b− 1)

b
(6)

which insures that the fixed point (x∗, y∗) lies in the positive first quadrant.

Theorem 2.1. [1] The positive fixed point (x∗, y∗) of the Logistic competition equa-
tion (5) is asymptotically stable if the following conditions hold:

−c(b− c+ bc)d2 + a3b2(2− b+ 2d) + a(b− c+ bc)d(3b+ c+ cd)

ab(−(1 + c)d+ a(1 + d))(−b(1 + c) + c(1 + d))

+
a2b

(
2b2(1 + c) + 3c(1 + d)− b(3 + 5d+ c(5 + 4d))

)
ab(−(1 + c)d+ a(1 + d))(−b(1 + c) + c(1 + d))

< 0, (7)
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S1
Q1

R1

S2

Q2

R2

S3

Q3 Q4

R3
R4

Τ1

Τ2

Γ1

Γ2

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

a

b

Figure 2. The stability regions and the bifurcation scenario of the competition logistic model in the
parameter space a− b.

and
−c(b− c+ bc)d2 + a3b2(3− b+ 3d)− ad

(
−b2

(
9 + 14c+ 5c2

)
+ c2(1 + d)

)
ab(−(1 + c)d+ a(1 + d))(−b(1 + c) + c(1 + d))

−

adbc (8 + 4c+ 4d+ 3cd)

ab(−(1 + c)d+ a(1 + d))(−b(1 + c) + c(1 + d))
+

a2b
(
3b2(1 + c) + c

(
9 + 14d+ 5d2

)
− 3b(3 + 4d+ 4c(1 + d))

)
ab(−(1 + c)d+ a(1 + d))(−b(1 + c) + c(1 + d))

> 0. (8)

Note that inequality (21) in [1], i.e.

(b(−1 + a− c) + c)(a(−1 + b− d) + d)(ab− cd)

ab(−(1 + c)d+ a(1 + d))(−b(1 + c) + c(1 + d))
< 0, (9)

holds true under condition (6). This observation has not been noted in [1].
Equivalently, the positive fixed point (x∗, y∗) of Eq. (5) is asymptotically stable if

(a, b) ∈ Int(S1), where S1 is the region depicted in Figure 2. Note that the curves τ1
and τ2 in Figure 2 are defined as

τ1 = {(a, b) ∈ R2
+ : b = 1 + d(a−1)

a } and τ2 = {(a, b) ∈ R2
+ : a = 1 + c(b−1)

b }.

Conjecture 2.2 The positive fixed point (x∗, y∗) of the logistic competition model (5)
is globally asymptotically stable in the positive first quadrant if (a, b) ∈ Int(S1).

Open Problem 2.3 Determine the basin of attraction of the periodic cycles of period
2n−1, n = 2, 3, . . . in regions Sn in Figure 2.

For the fixed points (a−1
a , 0) and (0, b−1

b ), we have the following result:
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Theorem 2.4. [1] The following statements holds true:

(1) The fixed point (a−1
a , 0) of Eq. (5) is asymptotically stable if 1 < a ≤ 3 and

1 < b < 1 + d(a−1)
a and is unstable if 1 < a < 3 and b = 1 + d(a−1)

a ,

(2) The fixed point (0, b−1
b ) of Eq. (5) is asymptotically stable if 1 < b ≤ 3 and

1 < a < 1 + c(b−1)
b and is unstable if 1 < b < 3 and a = 1 + c(b−1)

b .

Open Problem 2.5

(1) Determine the stability of the fixed point (a−1
a , 0) of Eq. (5) if a = 3 and

b = 1 + d(a−1)
a ,

(2) Determine the stability of the fixed point (0, b−1
b ) of Eq. (5) if b = 3 and

a = 1 + c(b−1)
b .

References
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