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Abstract
A new linear programming model used to aid in the design of radiotherapy
plans is introduced. This model incorporates elastic constraints, and when solved
with a path following interior point method, produces favorable plans. A sound
mathematical analysis shows how to interpret the solution, and hence, the treat-
ment planner receives meaningful knowledge about the radiotherapy plan being
developed. Preliminary experiments are conducted.
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1 Introduction

Because cancerous and displasiac cells are more sensitive to radiation than normal
cells, external beam radiation is often used to treat such maladies. The idea is
to focus radiation beams that are external to the body in such a way that they
deposit radiation into a tumor but do not deposit an abundance of radiation into
critical structures. The process of choosing a collection of beams, together with their
energies, is called treatment planning. Treatment procedures fall into the two basic
categories of radiosurgery and radiotherapy, the difference being that radiosurgery is
completed all-at-once and radiotherapy is extended over several smaller treatments
(usually fractions of the radiosurgery plan).

Linear programming models have been used extensively to find “good” radio-
therapy treatment plans. In fact, the first model proposed in 1968 was a linear
programming model [2], and many researchers have experimented with linear pro-
gramming formulations [13, 18, 15, 16, 17, 23, 27, 29, 30, 29]. Because the integral
dose to a cell is additive, the linear model seems natural and appropriate.

While linear models are prevalent in the literature, they have had their draw-
backs. Subsequently, several nonlinear models have been proposed [16, 22, 27, 29].
The recent review article by Shepard, Ferris, Olivera, and Mackie [29] nicely charac-
terizes many of the optimization models that have been used to design radiotherapy
plans. One of the most significant drawbacks of using linear programming lies not in
any specific model but rather in the solution technique. As discussed in [13], the fact
that the simplex algorithm produces a basic optimal solution implies that some of
the physician’s bounds are achieved. Depending on the specific linear programming
model, such achievement indicates that either portions of the critical structures are
to receive their maximum allowable dose or that the tumor is to receive the lowest
allowable dose. Neither of these outcomes is desirable. What would be nice, and
is forthcoming, is a linear programming model together with a solution technique
that adheres to the physician’s prescribed limits as much as possible. Moreover,
our model returns a treatment plan even when the treatment goals are impossible.
So diagnosing infeasible demands, which is the other major criticism of the use of
linear programming [22, 24, 27|, is a non-issue.

The article is organized in the following manner. Section 2 describes the dose
deposition matrix, which is used to calculate the amount of radiation small regions
of tissue receive. In Section 3 we discuss the treatment planner’s concerns when
designing a specific plan. The new model is presented in Section 4, and the results
of this section provide a meaningful solution analysis. In Section 5 we discuss why
treatment plans designed from the solution provided by a path-following interior
point algorithm are desirable. Experiments are found in Section 6, and the results
are summarized in Section 7.

The symbol ‘=’ is used as a definitional assignment, and the vector of ones is
denoted by e, where the length is decided by the context with which it is used.
The matrix AT denotes the Moore-Penrose generalized inverse of the matrix A.



We use rs(A4) to denote the minimum row sum of the matrix A —ie. rs(4) =
min;{A(; ye}. Other notation and terminology used is consistent with that found
in the Mathematical Programming Glossary [12].

2 The Dose Deposition Matrix

In this section we show how to construct a linear operator that is used to model
radiation deposition. Specifically, we show how to construct the dose deposition
matriz, which is the transpose of the fully discretized radon transform [1, 7, 17].
Suppose we have a N x N pixel image, and that the available angles are 6, 65,
03, ..., o. Furthermore, assume that each angle is comprised of 1 sub-beams.
These sub-beams may be elementary beams or pencils, the difference being that
pencils radiate from a point source and elementary beams are parallel to each other.
Our development does not depend on whether pencils or elementary beams are
chosen. Sub-beams are included in our model because modern treatment systems
are capable of intricate collimation. This technology uses a multileaf collimator
located in the gantry to shape the beam. The geometry of a model using elementary
beams, where n = 2, p = 4, and 1 = 4, is indicated in Figure 1 (so as to clarify
the geometry, the first angle is located at 7/4, whereas, the initial angle is usually
located at 0).

We set z(,;) to be the dose along the ith sub-beam of angle a, and d(; 44 to
be the distance from where sub-beam z(,;) enters the image to where it reaches
pixel p. We further define A, , ;) to be the product of e Hw.ai) and the geometric
area common to both the sub-beam z(,; and pixel p. For example, in Figure 1
the elementary beam corresponding to z(; 9) intersects one-half of pixel 3 and the
distance to this pixel along this elementary beam is 31/2/2 (assuming that each

pixel has a width of one). Hence, A(31.9) = %e¥“. The components of the dose
deposition matrix, denoted by A, are A, ;), where the rows of A are indexed by p
and the columns are indexed by (a, ).

The factor e #¥@.ei is included to measure how a beam of radiation attenuates
as it passes through the body, and values for the attenuation coefficient, p, depend
on the energy of the beam. The gamma-rays formed from Cobalt-60 have a rela-
tively low energy of 1.25 MeV and correspond to a u value of approximately 0.06.
Most modern facilities use linear accelerators and can produce beams of greater
intensities, like 8 MV and 15 MV. A Typical y value for these higher energy beams
is 0.02 [8]. For the geometry indicated in Figure 1, the dose deposition without
attenuation is
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Figure 1: The geometry of a 2 x 2 pixel image with angles at 7, =, %
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We set z to be the transpose of
[ 20y a2 T T(21) Z(2,r) T(p,1) (o) |

so that the total, or integral, radiation dose for pixel p is the pth component of Az.

3 Modeling Issues

While the dose deposition matrix allows one to easily model upper and lower bounds
for any given pixel in an image, modeling the treatment planners desires is a non-
trivial exercise. For example, a treatment planner might desire that the tumor
receive no less than 80 Gy. Similarly, the planner may hope that some other critical
structure receive no more than 40 Gy. Then, for each pixel p in the tumorous region



we have the linear inequality

Z A(p,a,i)L(ari) = 80,
(a,i)

and for every pixel p within the critical structure we have

> ApaiTa < 40.
(a,i)

Any element contained within the polyhedron described by these linear inequalities
satisfies the planner’s goals. Because of this, some researchers have chosen to pose
this problem as a feasibility problem [6, 24]. However, the majority of research has
been directed towards optimization models with linear constraints, with the most
immediate and natural objective functions being either to maximize tumor dose
or minimize critical structure dose. Because the maximization of a sum may lead
to one term having an unusually high value, other researchers have maximized the
minimum tumor dose or minimized the maximum critical structure dose [17]. An-
other linear objective that has been considered is that of maximizing the difference
between the tumor dose and critical structure dose [23]. Each of these objectives
functions captures a desirable quality of a treatment plan, but no single objective
completely describes the planners desires. Some have tried to encompass several of
these objectives with weighted sums [29, 19], but it is difficult to give precise mean-
ing to the weights [9]. The goals listed below indicate that a treatment planner has
a great deal to consider when deciding on a clinically desirable treatment plan.

Treatment Planners Desires
- Deliver a uniform, tumoricidal dose to the tumorous region.
- Deliver as little radiation as possible to the critical structures.
- Make the integral dose as small as possible.
- Reduce the frequency of unusually high doses outside the tumorous region.
- Control the number of beams in the treatment plan.

The goal of a uniform dose over the tumor is somewhat unnatural at first.
Indeed, one would suspect that the goal is to deliver as much radiation to the
tumor as possible. There are two main reasons for desiring a uniform tumoricidal
dose. First, unusually high levels of radiation can lead to large amounts of necrosis,
and the human body may experience difficulties dealing with a large volume of dead
tissue. Second, tumor cells are interspersed among healthy tissue. Hence, a uniform
dose to the tumorous region is crucial to a successful plan [30]. This follows because
a dose that is too low allows cancer cells to survive, while a dose that is too high
can have adverse affects to the surrounding tissue.

Another modeling issue that needs consideration is that different types of tissue
react differently to radiation exposure. For some organs, known as rope organs,
loosing functionality of a significant amount of tissue has little effect on the overall
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ability of the organ to function properly. Moreover, rope organs can loose overall
functionality if the entire organ is exposed to a relatively low level of radiation.
The kidney, liver, and lung are rope organs. This type of organ lends itself well
to what are known as dose-volume constraints [18, 15]. However, such constraints
lead to large mixed integer programs, and current solution procedures have un-
realistic time demands. Other organs, called chain organs, loose all functionality
once a functional subunit is destroyed. This type of tissue can handle relatively
high, uniform radiation levels, but a single hot spot could render the entire organ
useless. The spinal cord and bowel are examples of chain organs. A more thorough
discussion of rope and chain organs is found in [10, 25, 31, 32].

While there are many other obscure considerations taken into account when
designing a specific patient’s treatment plan, the desires just discussed are quantifi-
able. Optimization models found in the literature tend to focus on a single desirable
characteristics, whether it be a uniform tumor dose or a dose-volume constraint. In
the next section we present a new linear programming model and address how the
planner’s goals are dealt with.

4 A New Linear Model

Each pixel is assumed to represent either tumorous or non-tumorous tissue. Let
m be the total number of pixels, 7 be the number of tumorous pixels, m¢c be
the number of critical structure pixels, and mg = m — mp — m¢ be the number
of remaining pixels. Also let n be the number of sub-beams that intersect the
target volume. A prescription is comprised of a physician’s aspirations for the
tumor, usually a tumoricidal dose, and upper bounds for the non-tumorous tissue.
Specifically, a prescription is the 4-tuple (TUB,TLB,CUB,GU B), where

e TUB is a mr vector of upper bounds for the tumor,
e TLB is a mr vector of lower bounds for the tumor,
e CUB is a m¢ vector of upper bounds for the the critical structures, and

e GUB is a mg vector of upper bounds for the remaining good tissue.

We make the realistic assumptions that 0 < TLB < TUB, 0 < CUB, and 0 <
GUB. Because a uniform, tumoricidal dose is to be delivered to the tumor, the
lower and upper bounds for the tumor pixels are taken to be a fixed percentage
of the physician’s goal for the tumor. Supposing that the physician’s goal for a
tumorous cell is TG, values for TUB; and TLB; are (1 + tol)TG and (1 — tol)TG,
respectively. Here, tol is a percentage of variation for the tumor dosage and is called
the tumor uniformity level. Typical values of tol found in the literature range from
0.02 to 0.15. The vector GUB describes the highest amount of radiation that any
single pixel is allowed, and in general no tissue should receive more than 10% of the
tumor’s desired dose. Hence, we set GUB = T'G(1 + 0.10).



The rows of the dose deposition matrix are partitioned and reordered into the
rows that correspond to the tumor, the rows that correspond to the critical struc-
tures, and the rows that correspond to the remaining good tissue. This reordering
is indicated by the sub-matrices A,., A, and A, as indicated below,

A, | ¢— Tumor
A= | A, <— Critical Structures
Ag +— Remaining Good Tissue.

Sub-beams that do not intersect the tumor are removed from consideration by
eliminating the columns of A that have a corresponding zero column in A,. For
notational brevity, we keep the A notation for the sub-matrix with these columns
removed. So, in what follows A € R™", A, € R™™*", A, € R™®*" and
A, € RMeX™,

A matrix H € RP*? is semimonotone provided its More-Penrose generalized
inverse, denoted H™, is a nonnegative matrix. Nonnegative, semimonotone matrices
are characterized by the fact that there exists a positive diagonal matrix for which
H* = DHT [4]. For the remainder of this paper, the following semimonotone
matrices are assumed to have full column rank: [ € RIT, uc € R, ug € RI9,
L e R™*7 Ups € R™C*9 and Ug € R™¢*%, We further assume that [, uc,
and ug are positive, and that L, Ug, and Ug are nonnegative with no row sum
being zero —i.e. Le > 0, Ugce > 0, and Uge > 0. Now, for any positive scalar w, the
elastic model is

( min w-ITa+ ugﬂ + ugfy
such that
TLB—-La < A,x < TUB
EM (w) < A,z < CUBH+Ucp
A,z < GUB+Ugy
0 < La < TLB
—CUB < Ugp
0 < Ugy
\ 0 < =z

where x € R", o € R, § € R, and v € RY%. We note that it is easy to show
that because L and Ug are semimonotone, «, and -y are nonnegative.

The constraints TLB—La < A,z, A,z < CUB+Ucf, and A,z < GUB+Ugy
are called elastic because the bounds are allowed to vary with the vectors «, 3, and
v, respectively. The matrices L, Uc, and Ug define how one measures the amount
of elasticity, and I, uc, ug show how one either penalizes or rewards the amount
of elasticity. With this in mind, we see that the assumption that I, uc, and ug
are positive simply guarantees that any discrepancy is penalized, and that the



assumption that Le > 0, Uge > 0, and Uge > 0 makes sure that each constraint is
elastic. Any collection of [, uc, ug, L, Uc, and Ug defines a set of elastic functions,
and they are incorporated for the following reasons. First, as is shown in Lemma 2,
the elastic constraints guarantee that for any collection of elastic functions, EM (w)
is always strictly feasible. Second, the different lower bounds on the elastic functions
allow us to embody different treatment aspirations.

Because different elastic functions procure a different solution analysis, an inter-
pretation of EM (w) depends on the specific elastic functions. In particular, we make
the following selections when discussing average analysis and absolute analysis.

Average Analysis

Ta:R™ 5 R:a— (1/mr)ela La:R™ - R™ :a— «
ulB:R™ 5 R: B — (1/mc)e’ B UcB:R™ - R™ : 5= f
ulby : R 5 Ry = (1/mg)ely Ugy:R™¢ - R™G :y - v

Absolute Analysis

Ta:R—-R:a—a La:R—R™ :a— ae
B R—-R:B8— 8 UcB:R —R™ : 83— Be
u@’y:]R—)]R:’y—)’y Ugy: IR > R™G : v — vye

Suppose that average analysis is chosen. Then (La), = «, tells us how deficient
a plan is with regards to meeting the minimum tumor dose for pixel p, and [T« =
(1/mr)eT a is the average amount of such deficiencies. The interpretation of UcS =
B depends on the sign of the component. If (UcfB), = B, > 0, pixel p, which is
contained in some critical structure, is receiving more radiation than intended.
However, if 8, < 0, pixel p is receiving less radiation than is allowed. We now
see that the objective term uLB8 = (1/m¢)el B expresses the desire to decrease
the average dose to the critical structures; in fact the desire is to have the critical
structures receive no radiation. Similarly, (Ug)yp = 7, indicates how much pixel p
is over its alloted upper bound, and u.y = (1/mg)e’y is the average amount of
radiation the normal tissue is over its prescribed dose. The roles of 8 and ~y differ
because of the different lower bounds. Since 0 < +y, any plan satisfying Agx < GUB
contributes zero to the objective function. However, the lower bound of —CUB on
B means that plans with a low integral dose to the critical structures are preferred.
So, for the average analysis case we see that the objective function is three tiered
in its goals:

e minimize the average amount the tumor is under its prescribed dose,

e minimize the average amount of radiation that the critical structures receive,
and

e minimize the average amount the remaining pixels are over their upper bounds.



If absolute analysis is chosen, the interpretation of EM (w) is similar to that of
average analysis. The difference is that the elastic functions are each controlled by
a single parameter. So instead of minimizing an average discrepancy, the goal is to
minimize the maximum amount of discrepancy. Hence, when absolute analysis is
chosen, the three goals of the objective function are to

e minimize the maximum amount the tumor is under its prescribed dose,

e minimize the maximum amount of radiation that the critical structures re-
ceive, and

e minimize the maximum amount any remaining pixel is over its upper bound.

Of course any collection of elastic functions may be used, and there is really no
need for them to even be linear. However, we continue with the two collections
describing average and absolute analysis and show that a meaningful explanation
of the solution is possible.

As just described, the objective function is a weighted sum of three goals, and
while a common criticism of such objective functions is that the weights are diffi-
cult to understand, we show that choosing w appropriately provides a meaningful
interpretation. The positive scalar w weights the importance of a plan achieving the
minimum tumor dose —i.e. large values of w encourage I” « to be as small as possi-
ble. We would like to have the property that there exists a finite w > 0 such that
the optimal value of I« is zero. This follows because the tumor is then guaranteed
to receive its minimum radiation level. Such an w would serve as a certificate of a
tumoricidal dose. The bad news is that there are simple examples where the opti-
mal value of [T« is not zero for all w > 0. However, the good news is that we show
how to easily find an w that does certify that the discrepancy between the amount
delivered to the tumor and the tumor’s lower bound is sufficiently small. This result
is stated in Theorem 1, and relies on the following two lemmas. In what follows,
we use the standard big-O notation -i.e. f(z) = O(g(z)) if, for the non-negative
functions f and g, there exists a positive constant , such that f(z) < kg(z).

Lemma 1 Consider the functions Fy : RP» — R%, F5 : R?* —» R%, G; : R —
R%, Gy : RP* -5 R?, f:RP* - R, and g : RP* — R. Let w be an arbitrary posi-
tive scalar, F2(0) =0, f(0) = 0, and suppose the following mathematical programs
are well-posed:

min{wf(y) + 9(2) : F1(v) < a+ Fa(y), G1(v) < b+ G(2)} (1)
min{g(z) : F1(v) < a+ Fa(y), G1(v) < b+ Ga(2)} (2)
min{g(z) : F1(v) < a,G1(v) <b+ Ga(2)}, (3)

where we assume without loss in generality that each optimal value is positive. Then,
denoting an optimal solution of (1) by (v*(w),y*(w), 2*(w)), we have that

fw@ =o(1).

w



Proof: Let (7,Z) be optimal to (3) and set M to be the optimal value of (2).
Noticing that (v,y,z) = (v,0,2) is feasible to (1), we have by the optimality of
(v*(w),y" (w), 2" (w)) that

wf(y*(w)) +g(z"(w)) <wf(0) +g(2) = g(2).
Since g(z*(w)) > M, we conclude that
wf(y*(w)) < g(z) — M. (4)

The fact that both g(z) and M are not reliant on w completes the proof. [ |

The condition that the mathematical programs in (1), (2), and (3) be well-posed
manifests itself in different manners as related to EM (w). First, EM (w) being well
posed is equivalent to the condition that both it and its dual are feasible. The
elastic constraints actually allow the stronger statement that EM (w) and its dual
are strictly feasible, which means there exists a feasible element strictly satisfying
the inequalities. We denote the feasible regions for EM (w) and its dual by P and
D, respectively, and their strict interior by P° and D°. Lemma 2 now shows that
EM (w) is not only well-posed, but that both the primal and dual feasible regions
have non-empty strict interiors.

Lemma 2 For any collection of elastic functions we have that
P° +£ 0 and D° # ).

Proof: From the fact that every tumor pixel intersects some elementary beam we
have that A,e > 0. Hence, €¢A,e > 0, for all ¢ > 0. The assumption that TUB > 0
implies that there exists ¢! > 0 such that e A.e < TUB. Since Le > 0, Uge > 0,
and Uge > 0, we may choose €2 > 0, €3 > 0, and £* > 0 such that

e?Le > max{0,TLB —¢c"A_ e},
3Uce > max {elACe — CUB, 0} , and
e'Uge > max {elAGe —GUB, 0} .

From the assumption that L, Ug, and Ug are nonnegative matrices with no row

sum of zero, we have that (z,a, 8,7) = (¢'e, e2e, e3¢, e*e) € PO.

The dual feasible region is defined by

Agjﬂ'l — AZW2 — Agﬂ'?) — A£ﬁ4 < 0

Tat — "7+ LT7” = w-l
Ulr® +Uln® = wuc
Ug’ir4 + Ug7r8 = ug

SRR T It g

A
o



Set @® = e. Since L has full column rank, the system LT (7! + 77) = w -1+ LTe is
consistent, and hence (L) ¥ (w-I+L%e) is a solution. From Theorem 5.2 in [4] there
exists a positive diagonal matrix D such that LT = DLT. So, from the assumption
that [ > 0 and the fact that (L*)T = (LT)* we have,

IO w-1+LYe) = w@Hli+ @)L e
= w(DILHT1+ (DLHTL e
= wLDI+ LDIL%e
> 0.

Set 71 = 7 = (1/2)(LT)T(w - I + LTe). 1In a like fashion, set 73 = 7% =
(1/2)(UL)Tuc and 7* = 78 = (1/2)(UL)"ug. Since only sub-beams intersect-
ing the tumor are included in the model, we have that Aze > (). Hence, there exist
a 0 > 0 such that
T T=1 -3 T=4
A e> A T — A7 — A 7.

The proof is concluded since (7!, de, 73, 74, 7, 7, 77, 78) € D° [

Recall that the goal was to provide a certificate that guarantees the tumor
receives at least the amount of radiation prescribed by T'LB. We momentarily
show how to construct such a certificate provided that the tumor’s prescription is
attainable with the geometry described by A. We formalize this concept in the
next definition, and while the definition does not rely on the entire prescription, we
include the entire prescription for linguistic simplicity.

Definition 1 The prescription (TUB,TLB,CUB, GU B) allows tumor uniformity
if there ezists a plan, © > 0, such that TLB < A,z <TUB. Any such plan is said
to attain tumor uniformity.

We note that every prescription allows tumor uniformity provided that the atten-
uation coefficient is zero —i.e. a sub-beams depth into the image is not a factor
of the dose deposition coeflicient A, , ;). This follows because each tumor pixel is
covered by the sub-beams of any given angle. So, a dose deposition matrix formed
without attenuation has the property that A,e = Oe, where © is the number of
possible angles. Hence, there exists € such that €4, e = TGe, and tumor uniformity
is guaranteed. Theorem 1 now shows that if the tumor’s prescription is attainable,
the tumor deficiency is uniformly bounded above by the inverse of w.

Theorem 1 Let (z*(w), o (w), *(w),v*(w)) be an optimal solution to EM (w). For
any collection of linear elastic functions we have that IT o*(w) = O (%), provided
that the prescription allows tumor uniformity.
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Proof: Make the following assignments:

fla)=1Ta,  g(B,7) =ulB+uly,

—-A,x Lo —TLB
Fi(z) = 0 , Fola) = | La |,a= 0 ,
0 —La TLB
[ Apz ] [0 ] [ TUB T
Aoz UcB CUB
A U GUB
Gi(z) = Sz , Go(B,7) = Ugg ,and b= CUB
0 Ucy 0
| —Z ] | 0 | 0 ]

We now have that EM (w) is

min{wf () +9(8,7) : Fi(z) < a+ Fy(a),Gi(z) <b+ G2(8,7)}- ()

From Lemma 2 we have that this linear program is well posed. To invoke Lemma, 1
we need to establish that the following two linear programs are well-posed,

LP; min{g(B,7) : Fi(z) < a+ F3(a),Gi(z) < b+ G2(B,7)}
= min{u& B + uly : (z,,8,7) € P}, and

LP, min{g(8,7) : Fi(z) < a,G1(z) < b+ G2(8,7)}
= min{u$:B + ugy : (z,,B,7) € P,a = 0}.

From Lemma 2, P° # 0, and LP; is strictly feasible. Let T be a plan that attains
tumor uniformity. Then, similar to the proof of Lemma 2 there exists ! > 0 and
€2 > 0 such that
e'Uce > max {A,z — CUB,0} and
e2Uge > max {A,z — GUB,0} .

We now have that (z,ele, e?e) is a feasible element of LP;.

Since lower bounds for LP; and LP» are used below, instead of showing the
duals of LP; and LP, are feasible (which is readily accomplished as in the proof of
Lemma 2), we show that the objective functions in LP; and LP, are bounded below.
In both of these linear programs we have

—CUB < Ugp and 0 < Ugry.

The assumption that both Ug and Ug have full column rank and are semimonotone
implies that
B>-ULCUB and v > U/ 0 = 0. (6)
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To see this suppose that H is a semimonotone matrix with full column rank, and
consider the inequalities Hv > h. Then, Hv — h = w > 0, and the full column rank
of H implies that v = HTw + HTh. Since H is semimonotone, HT > 0, and hence
v > H*th. From the inequalities in (6) we now have for both LP; and LP, that

ubB +ugry > —ugUSCUB. (7)
|

From Theorem 1 there is positive scalar x such that I”« < k/w, which is useful
because an upper bound on k is easily found. Let (Z, &, (,%) and (Z,0,3,%) be
optimal solutions to LP; and LP,, respectively. From (4) we have that

w-1Ta* (W) < ubB+uly — (ubB+ub). (8)
The inequality in (7) implies that
- (ugﬁ + uga) < uLULCUB.

So, all that remains is to provide an upper bound on ugﬁ + ugf_y. Notice that the
maximum radiation allowed by a sub-beam is no more than

| TU Blloo

(l,flil}){A(p’“’i) : Afpayi) # 0,p is a tumor pixel}”

U=

Hence, the components of any plan attaining tumor uniformity are bounded above
by u, from which we conclude that z < ve. Set

_ [[Ac(we) = CUB]l

; o and 5 1Aelue) —CUBs

rs(Uc) rs(Uq) ’
so that

A,z < A,(ue) < CUB+ Ugf and

A,z < Ag(ue) < GUB+UgH.

We now see that (ue, 3,7) is feasible to LP; and ugﬁ +uLy > uLB + uLy. Using
that ule = |luc| and uLe = |lug||1, we have that the inequality in (8) now implies
that 7 a*(w) is no greater than

1 (|A; (we) = CUB]loo|lu&lh + |4 (ue) — GUB||o|luélln
rs(Uc) rs(Ug)

g a

" + ugUgCUB> =

Although &' contains a Moore-Penrose generalized inverse, which is in general
computationally expensive, calculating ' for either average or absolute analysis
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reduces to the much easier situation of finding the norms indicated. This follows
because in the average analysis case Uc is the identity matrix, and in the absolute
analysis case U is a column vectors of ones, which implies that U, = mLCUg .

Recall that T'G was the goal dose for the tumorous region and that we originally
set TLB = (1 — tol)TGe. To utilize the upper bound provided by «', we slightly
increase this lower bound and instead set TLB = (1—tol)TGe+ce. After calculating
k', we choose w = k'/e and solve EM (w). Theorem 1 now implies that the optimal
value of [« is less than e, and hence the sought after uniformity is guaranteed. So
using only the optimal objective value, we have from Theorem 1 the analysis found
in Figure 2. Of course a more detailed interpretation of the solution is possible by
examining the individual components of (a*(w), 8* (w), 7*(w))-

Before discussing our solution technique, we offer another interpretation of the
objective function. The terms w - [Ta and (ugﬁ + ug'y) compete in the following
way. As La | 0 low dosage plans are removed from the feasible region, and as
(UcB,Ugy) | (—CUB,0) high dosage plans are removed from the feasible region.
There is the possibility of having feasible plans that simultaneously achieve La = 0,
UcB = —CUB, and Ugy = 0. Such plans are called the unencumbered plans and
include only those sub-beams intersecting the tumor and not intersecting a critical
region. However, there are often not enough sub-beams striking only the tumor,
and hence no unencumbered plans. Schematics showing how La and (UcS,Ucy)
compete are found in Figures 3 and 4.

5 Solution Technique

As mentioned in Section 1, many different solution techniques have been used to de-
sign radiotherapy plans. Linear solvers have had the problem that physician limits
are often attained [13], meaning that therapy plans narrowly adhere to the pre-
scription. The problem here is that simplex algorithms produce an extreme point
solution, and a therapy plan found using this approach is, in a very real sense, an
extreme plan. However, with the number of sub-beams contained in a plan being
no greater than the number of constraints, simplex solvers do have the advantage
of producing plans with a controlled number of sub-beams [17]. Such control is
accomplished by aggregating constraints to represent integral doses over a region,
which reduces the number of constraints and subsequently the number of sub-beams.
Such treatment plans are often clinically desirable because of technological limita-
tions and time constraints. With many treatment systems the number of active
beams is usually held to no more than 4 or 5. However, aggregating constraints has
the disadvantage of allowing for inappropriately high levels of radiation.

Limiting the number of active beams is no longer as important as it once was
because of a new treatment paradigm called computer automated collimation. With
this type of treatment system the beam of radiation is continuously shaped as the
gantry rotates around the patient. In fact, with computer automated collimation
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Interpreting The Solution: Average Analysis
(l=euc=eug=¢e)

[Case 1: ITa*(w) >¢] We conclude that on average the prescription
does not allow tumor uniformity.

[Case 2: [Ta*(w) <] We conclude that on average the prescription
does allow tumor uniformity. This situation contains two impor-
tant sub-cases.

[Case 2a: /3" (w)+uly*(w) > 0] The conclusion here is that
an average tumor uniformity is achievable, but only at the
expense of some of the non-tumorous tissue receiving more
radiation than desired.

[Case 2b: ul(3*(w) + u&y*(w) < 0] The conclusion is that an
average tumor uniformity is allowed, and at the same time the
average amount of radiation over the non-tumorous tissue is
at least as good as desired.

Interpreting The Solution: Absolute Analysis
(l = Uc =ug = 1)

[Case 1: a*(w) > €] We conclude that the prescription does not al-
low tumor uniformity.

[Case 2: a*(w) <e] We conclude that the prescription does allow
tumor uniformity. This situation contains two important sub-
cases.

[Case 2a: uLp*(w)+uLy*(w) > 0] The conclusion here is that
tumor uniformity is achievable, but only at the expense of
some of the non-tumorous tissue receiving more radiation than
desired.

[Case 2b: ulB*(w) + ugy*(w) < 0] The conclusion is that
tumor uniformity is allowed, and at the same time the amount
of radiation over the non-tumorous tissue is at least as good
as desired.

Figure 2: Interpreting the solution for either average or absolute analysis
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La —0 (-CuB, 0) ~— (UCB, UGV)
Low ' Unencumbered | High
Dosage Plans i Dosage
Plans ! ' Plans

La=0  (U.B.U.Y)=(-CUB,0)

Figure 3: This schematic indicates
that the tumor dose restrictions are
attainable with zero dose to criti-
cal structures. Such plans are called

p— (-CUB,0) =— (U B, UgY)

Low ' High

Dosage | Dosage

Plans | ' Plans

(-CUB,0) =(U_B,UyY) a=0

Figure 4. This diagram shows that
when critical structures are re-
quired to receive radiation, there
are no unencumbered plans.

the unencumbered plans.

there are no clinical limitations that need to be incorporated other than the fact that
the gantry must rotate around the patient within a plane. However, we design plans
based on co-planer images, and we “stack” these plans to achieve “thickness”. For
example, suppose a treatment plan is being designed for a spherical tumor with a
diameter of 9mm. Each co-planer image represents a swath of the patient’s anatomy
that is about 3mm thick. For each of the 3 or 4 patient images that contain the
tumor we design a plan, and the patient is treated with each of the 3 or 4 co-planer
plans.

Because of the capability of administering intricate treatment plans, it now
seems natural to find a plan without consideration of clinical limitations, and then
fit this solution to the capabilities of the treatment facility. This is the perspective
from which we approach the problem. Below we discuss why most interior point
algorithms produce plans that are appropriate for the treatment procedure just de-
scribed. The process of adapting intricate plans for use in older treatment facilities
is not addressed and is the subject of current research efforts.

In 1979, Khachiyan showed that the class of linear programming problems is
solvable in polynomial time, and the algorithm that Khachiyan used to demon-
strate this property was an interior point method [14]. Since the middle 1980s, the
study of interior point algorithms has been one of the most productive and intrigu-
ing subjects in mathematics. Interested readers are referred to the texts of Roos,
Terlaky, and Vial [26], Wright [33], and Ye [34]. Most interior point algorithms
converge to a unique solution known as the analytic center solution, and only when
there is a unique optimal solution is the analytic center solution a basic optimal
solution. Moreover, this solution has characteristics that are different from basic
optimal solutions and more appropriate for radiotherapy planning.

The analytic center solution is the unique limit of a geometric structure called
the analytic central path, which is contained in the strict interior of the feasible set.

15



Geometrically, path following interior point algorithms follow the analytic central
path towards optimality, and hence, converge towards the analytic center solution.
A fundamental result in the theory of interior point algorithms is that the analytic
central path exists if, and only if, the strict interiors of both the primal and dual
problems are non-empty. From Lemma 2 we have that path following interior point
algorithms are amenable to EM (w).

The analytic center solution is a strictly complementary solution, which means
that each complementary pair of primal and dual variables contains a single zero.
The fact that every linear program has a strictly complementary solution was first
proven in 1956 [11], and such solutions induce what is known as the optimal par-
tition. This partition is maximal [3] and divides the primal constraints into two
categories, those that are allowed to be strictly satisfied at optimality (indexed by
the set B) and those that must hold as equalities at optimality (indexed by the
set N). Notice that this means the optimal set, denoted by P*(w), is equal to the
subset of P with the inequalities indexed by N replaced with equalities.

For EM (w) we now have that a strictly complementary solution is provided by a
path following interior point algorithm, and that such a solution indicates, relative
to optimality, everywhere that strict adherence to the prescription is allowed. For
example, suppose that the set of unencumbered plans is non-empty. Then, any plan
satisfying

TLB< A,z <TUB, A,z =0, A,z <GUB,and z >0

is optimal. Suppose that z* is the plan provided by the analytic center solution
of EM(w). We are now assured that if x’("aﬂ.) = 0, the i* sub-beam of angle a is
never used in an unencumbered plan. For any pixel p we similarly have that if
either (A,z*), = TLB,, (A,z*), = TUB,, or (A, z*), = GUB,, the radiation
level delivered to pixel p must attain the corresponding prescribed bound for every
unencumbered plan. Alternatively, z* is a plan that is strictly better than the
prescription everywhere that is possible. We now discuss why the analytic center

solution is preferred among all plans with these characteristics.

A result first shown by McLinden [20, 21] was that the analytic center solution,
henceforth denoted as (z¢(w), a®(w), f¢(w),v%(w)), is the analytic center of P*(w).
Let (Br,Bc, Bg, Bz) be a partition of B, where the subsets correspond to the
constraints pertaining to the tumor, the critical structures, the remaining non-
tumorous tissue, and the plan z, respectively. With this notation, the fact that
(z¢(w), o (w), B¢(w),¥¢(w)) is the analytic center of P*(w) is equivalent to saying
that it is the unique solution to

max{ 3 (n(CUB + Uof — A2); + In(Ucf + CUB),)
i€Bc
+ > (In(TUB — A,2); + In(A,z + La — TLB); + In(TLB — La); + In(La);)
i€EBT

+ Y (n(GUB +Uay — Aga)s + m(Uan)) + 3 nzi: (z,0,8,7) € (P)° }.

i€Bg i1€By
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Hence, the analytic center solution is a mazimum entropy solution, relative to the
restriction that the accumulative total of insufficient tumor dose and non-tumorous
tissue over dose is already minimized. Similar maximum entropy radiotherapy plan-
s were discussed by Sandham, Yuan, and Durrani [28]. However, they use the
max{ f; In(f;)} definition of maximum entropy and we use the max{In(f;)} defini-
tion. More importantly, their objective is to find a maximum entropy plan relative
to the non-elastic linear constraints. This means that they are assuming that the
physician’s treatment aspirations are attainable. Additionally, a solution to their
model will always have the critical structures receiving radiation, even if this is not
required. Our objective is to minimize undesirable deviations from the prescription,
and the fact that we end up with a maximum entropy solution is a byproduct of
the path-following interior point algorithm.

The most important observation to make is that relative to optimality, the
analytic center solution provides a plan that strictly adheres to the prescription
as much as possible. This is not to say that each prescription bound is satisfied
as much as possible, but rather that the sum of the logarithms of the amounts of
strict adherence is maximized. So, there is the possibility that some prescribed
limits are nearly attained so that other prescribed limits are even more satisfied.
In general, the analytic center solution is different from other centers, such as the
Barry center and center of mass, and unfortunately does not rely on the geometry of
the optimal set. This is because the analytic center solution depends on the manner
in which the optimal set is represented. Recent investigations into this dependence
are found in [5], where it is shown that the analytic center solution is invariant over
all representations without redundant inequalities.

We end this section with a discussion of how rope and chain organs are handled.
As noted in Section 3, chain organs lend themselves to deposition patterns that are
uniform, and the idea is to spread the delivered energy evenly throughout the tissue.
The just described nature of the analytic center solution tends to exhibit exactly
this type of behavior. So, no modeling adjustments are warranted when dealing
with chain organs. However, rope organs are susceptible to complete failure with a
uniform dose. Instead, these organs permit rather large doses to fractions of their
tissue, and we want to “clump” the delivered energy into a small band through the
organ. When dealing with a rope organ we aggregate the constraints concerning
this organ into a single constraint. For example, suppose that the liver, which is a
rope organ, is designated as a critical structure, and that A, is the submatrix of
A, whose rows correspond to the liver pixels. The physician prescribes an upper
bound of 50 Gy on the liver cells and tags this structure as a rope organ. Instead
of using the collection of constraints, A,z < 50e, we use the single constraint,
elA a® < 50e”e. While we have no guarantee that this manipulation will have the
desired effect, the idea is to allow greater levels of radiation for some cells in an
attempt to have many other cells receive little or no radiation. This technique is
not original and as already discussed has been used to control the number of beams
in a plan.
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6 Experimentation

A prototype treatment system called Radiotherapy optim.Al Design, or RAD, has
been developed using MATLAB®. This system is available from http://www.
trinity.edu/aholder/research/oncology/, and requires MATLAB’s optimiza-
tion toolbox. As with most software development, the step from theory to imple-
mentation was not trivial. We begin this section with a brief discussion of some of
these issues.

First, the use of k" as indicated in Section 4 leads to numerical instability because
this value is often too large. We have instead found that setting ' = ||TLB|c
works well. Second, RAD currently uses a 64 x 64 grid, and allows angles evenly
spaced at every 15, 5, or 1 degree(s), with each beam being comprised of 10, 32, or
32 pencils, respectively. If each pixel were restricted, the problem is routinely too
large for the linear programming solvers in MATLAB’s optimization toolbox. Most
of the constraints are from non-tumorous, non-critical structure pixels —i.e. the
largest group of constraints is A,z < GUB + Ug7y. These constraints are included
so that the otherwise unrestricted tissue does not receive an unusually high dose
of radiation. We have found that MATLAB’s solvers work well when instead of
restricting each of the 4096 pixels, the user restricts only regions where hot spots
are likely to occur. Moreover, most problems are solvable within a few minutes, and
as such, an initial solve with A, vacuous indicates whether hot spots are even of
concern. If they are, the user simply restricts the appropriate regions and re-solves
the problem.

In addition to allowing the user to choose from different angle geometries, RAD
has the following features.

e Either absolute or average analysis is allowed.

e A prescription window allows the user to easily set the tissue type, the pre-
scription levels, and the tumor uniformity level.

e A simplex based solver is available.

e After the optimization routine is complete, three figures are presented. The
first and second figures are a contour plot and a 3-D image of the radiation
levels delivered by the plan. The third figure provides an explanation of the
solution that depends on whether absolute or average analysis was chosen.

In the examples that follow there were 360 beams equally spaced every degree,
each beam containing 32 sub-beams. The amount by which T'LB is increased is
internally set at 10~%. The problems were solved on a 500 MHz PC with 384 M of
RAM. Because the simplex solver does not employ sparse matrix routines, we were
not able to use the simplex based solver on the examples below.

The first example is of a tumor that has half-way grown around a critical struc-
ture. The tumoricidal dose was 80 Gy, and the critical structure pixels were re-
stricted to 30 Gy. The tumor uniformity was set at 2%, and no other pixels were
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restricted (A, is empty). Using absolute analysis, we found the optimal plan de-
picted in Figures 5 and 6 in 62.50 seconds. This plan has a maximum and minimum
tumor dose of 78.42Gy and 81.56Gy, respectively, and the critical structure receives
no radiation. Hence, this is an unencumbered plan where every tumor constraint
is strictly satisfied.

Figure 5: A contour plot show- Figure 6: The vertical height is
ing how the deposition pattern of the level of radiation delivered by
the plan “bends” around the criti- the plan over the image. The high
cal structure. peaks indicate hot spots.

In this example there are several small regions outside the critical structure and
the tumor that receive more than 90 Gy, which is an unacceptably high amount.
Notice that these hot spots are precisely where one would expect because the beams
that appear most natural for this problem intersect over these regions. If we restrict
the pixels surrounding the tumor and the critical structure to 85 Gy —i.e. include the
pixels surrounding the original image in A,z < GUB + Ugy, we find that the hot
spots are eliminated. The resulting plan is illustrated in Figures 7 and 8. The new
problem was solved in 200.72 seconds, so the increase in overall time was nominal.
The levels of radiation over the tumor are well within 80 Gy £2% with the maximum
and minimum dose being 78.42 Gy and 81.57 Gy, respectively. Omnce again, the
critical structure receives no radiation, and hence the plan is unencumbered.

The next example has a tumor surrounded by four critical structures. The
tumoricidal dose is again set at 80 Gy, the critical structures on the the left and
right are restricted to no more than 50 Gy, and the critical structures on the top
and bottom are restricted to 30 Gy. The tumor uniformity was set at 10%. The
absolute analysis plan had a solution time of 188.24 seconds, and has a minimum
and maximum tumor dose of 72.04 Gy and 87.93 Gy. Each critical structure is
guaranteed to be under its prescribed upper bound by at least 30 Gy, which means
that no radiation is deposited into the critical structures on the top and bottom.
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Figure 7: The contour plot of the Figure 8: The radiation levels for
plan found after restricting the re- the plan found after restricting the
gions where the hot spots occurred. hot spot regions.

There are no hot spots, with every pixel in the image receiving less than 1.1 x
max;{TUB;} Gy = 96.8 Gy. This plan is shown in Figure 9.

Using the same situation just described, we developed a plan with average anal-
ysis that has an average tumor dose of 78.89 Gy. The critical structures are on
average under their prescribed amount by 38.55 Gy. The plan took 220.28 seconds
to design. From Figure 10, we see that the plan developed with average analysis
tends to clump the energy into a few beams. This is intuitive because the average
amount of radiation deposited in the critical structures is significantly less when
only a few critical structure pixels receiving a moderate amount of radiation (the
vast majority receive zero). This is in contrast to the absolute analysis case where
reducing the maximum amount of radiation a critical structure receives tends to
distribute the delivered energy among several beams.

7 Conclusions

We have shown that the model EM (w) is theoretically sound and practical in use.
From the analysis in Section 4 we know exactly how to make relevant statements
about the solution returned by the optimization routine. The information provided
is easily understandable, and hence treatment planners need not be mathematical
programmers to understand the solution characteristics. The implementation dis-
cussed in Section 6 is easy to use, and problems are solved in a time frame that
allows treatment planners to alter and re-solve problems.

In the future we wish to enlarge the grid size to the more realistic size of 1024 x
1024. This will most likely entail building a link to an interior point solver exterior
to MATLAB. There is also the need to transform the plans provided by RAD into
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Figure 9: A plan found using abso- Figure 10: A plan found using aver-
lute analysis. age analysis.

plans that are implementable by older treatment facilities. This means that angles
from a plan must be pruned, and that the sub-beam intensities must be altered to
conform to paradigms of shaping the radiation beam other than collimation (most
treatment facilities use variable degree wedges to shape the beam).

The author joins the sentiments of Shepard, Ferris, Olivera, and Mackie [29]
when they say “It is our hope that the community of optimization experts will be
able to offer further insights that will improve our ability to solve these difficult
problems.” Indeed, radiotherapy treatment planning is a research area where a sus-
tained dialog between medical physicists and optimization experts could positively
effect many lives.
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