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A jump system is a set of integer lattice points satisfying an exchange axiom.
‘We discuss an operation on lattice points, called reduction, that preserves the
jump system two-step axiom. We use reduction to prove a weakened version
of a matroid conjecture by Rota[3], as well as demonstrate new operations on
matroids and delta-matroids.
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1. INTRODUCTION

Matroids have long been an important structure in pure combinatorics.
We recall that a matroid (E, M) consists of a finite set of edges, E, together
with M, a collection of subsets of E, satisfying an exchange axiom.

Aziom 1 (Matroid). For all A,B € M, and for all e € A\ B, there is
some f € B\ A with AA{e, f} € M. Here A denotes symmetric difference.
The elements of M are the bases of the matroid.

Delta-matroids are a generalization of matroids introduced in 1987 by
Bouchet [1]. A delta-matroid (E, D) consists of a finite set of edges, E,
together with D, a collection of subsets of E, satisfying an exchange axiom.

Aziom 2 (Delta-Matroid). For all A,B € D, and for all e € AAB,
there is some f € BAA with AA{e, f} € D. The elements of D are the
feasible sets of the delta-matroid.

* Portions of this work comprise part of the author’s PhD thesis written under the
direction of Richard Brualdi at the University of Wisconsin at Madison. This work was
partially supported by a Trinity University summer stipend.
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It is easy to see that a matroid is precisely a delta-matroid with equicar-
dinal feasible sets. Delta-matroids satisfy a variety of nice properties, in-
cluding a greedy algorithm and polyhedral description.

Jump systems were introduced in 1995 by Bouchet and Cunningham [2]
as a generalization of delta-matroids. Let E be a finite set. We now fix
Z¥ as our ground set. Fix the I' metric, where for z,y € Z¥, d(z,y) =

> |z — yi|- Let z 2, 2 denote that d(z,2) = 1 and d(z,y) > d(z,y). We
i€E

say that z is a step from z toward y. A jump system J is a subset of Z”
satisfying a two-step axiom.

Aziom 8 (Jump System). For all z,y € J and for all z; € Z¥ with
z Y 2, then either z; € J, or there is some 2z € J with z 2 21 5 2.

There is a simple bijection between delta-matroids (E, D) and jump sys-
tems J on {0,1}¥ C Z”. The elements of E correspond to the coordinates
of Z¥, and feasible sets correspond to characteristic vectors.

We also recall the following theorem, which gives (under a special con-
dition) a test for membership in a jump system.

TueorREM 1.1 (Lovész [4]). Let J be a jump system on Z¥. Suppose
that for all z € J, ||z||1 = a for some fized a. Let v € ZF with ||v||; = a.
Then v € J if and only if for all A C E, there is some x € J with

DT> ) v

i€EA icA

If the jump system is on {0,1}¥ (and hence represents a delta-matroid),
then the condition of Theorem 1.1 is equivalent to the corresponding delta-
matroid actually being a matroid.

We present several new operations on jump systems. In Section 2, we
define reduction and present our central result, that reduction preserves
Axiom 1. In Section 3, we use reduction to prove a weakened version of
a matroid conjecture by Rota[3]. Finally, in Section 4, we define several
other new operations on jump systems, and show that they preserve Axiom
3.

2. REDUCTION

A reduction of an integer lattice is a lower-dimensional integer lattice,
related in a natural way to the original lattice.

DEFINITION 2.1.  Fix Z”. Let F C E. Set E' = (E\ F) U{f}, where
f is a new element (f ¢ E). Let R denote the reduction map from Z¥ to
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ZE' defined by

zi  G€E\F
R@)i=>a i=7f

jEF

Let J be a jump system on Z”. We have R(J) = {R(z) | z € J} C Z¥'.
We say that R(J) is a reduction of J formed by reducing F.

Reduction satisfies a number of nice properties. It is quite easy to see
that R(v) + R(w) = R(v + w), and that |R(v)|| = ||v||. Further, the
composition of two reductions is a reduction. Our central result is that a
reduction of a jump system is, in turn, a jump system.

THEOREM 2.1. R(J) is a jump system.

Proof. Suppose E = {1,2,...,n}. It is sufficient to prove the result for
F = {1,2}, since (as noted above) the composition of two reductions is a
reduction, so reductions of |F| > 2 can be achieved by iterating reductions
of size 2. Let the unit vectors of Z¥ be {e1,es,...,e,}. Let the unit
vectors of ZE be {fo, fs, fas--- » fn}, with R(e1) = R(es) = fo, R(es) =
f3,...,R(en) = fn. Let 2,y € R(J), and let = Y z4a,foranya e Z5 . 1f
z+a € R(J), then Axiom 3 is satisfied (proving the theorem), so henceforth
we make the assumption that z+a ¢ R(J). We would like to produce some
z € R(J) withz +a 5 2. Let u,v € J with R(u) = z,R(v) = y. Let
b € ZF with R(b) = a, and with u = u + b (note that if 2y < yo, then
either u; < v1 or us < vo so some such b always exists). If u+b € J, then
R(u+b) =z +a € R(J), contradicting our assumption. Therefore, we can
apply Axiom 3toget u > u+b > u+b+ec withu+b+ce J. Now
Ru+b+c)=x+a+ R(c) € R(J) and z + a + R(c) is a step from z + a,
since ||R(c)|| = 1. If it is in the direction of y, then Axiom 3 holds and the
theorem follows. If ¢ = £¢;(3 < ¢ < n), then R(c) is in the direction of y
and the theorem follows. Otherwise, without loss of generality, we assume
that ¢ = e; and (u + b); < v1. There are three cases to consider:

Case A. (u+b)1+ (u+b)2 <vi+wve (le. (x4 a)o < yo)-
This is the easy case, as we have z +a - z + a + R(c).

Case B. (u+b)1 + (u+bd)e > v +v2 (ie. (z+a) > yo)-
We have (u+b); < v; and (u+ b)2 > ve. This case proceeds by a sequence
of steps. In each step, either the process terminates and Axiom 3 holds, or
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a w; € J is produced, and the process continues. However, each step gets
closer to v (i.e. [|wy —v|| > ||lw2—v|| > ...), so the process must terminate.

Step B-1. Set wi = u+b+e € J. We have w1 —> w1 — ez. If
wy — ez € J, then R(w1 — e2) = ¢ + a € R(J), contradicting our assumption.
We can therefore apply Axiom 3 to get w1 — w1 — ez — w1 —e2 + d1 € J.
If di = +e;(3 < i < n), then z + a % = + a + R(d1) and Axiom 3 holds.
Suppose that either di = e1 or di = —e2. If di = —e2, then Axiom 3 holds, as
(x4 a)o > yo and 4+ a % & + a + R(dy). Hence, either Axiom 3 holds, or we
must have d1 = e1 and we continue to step 2.

Step B-2. Set we =u+b+e1—ez+e1 €J. We have R(wz) =z +a+eo
(note that wp = w1 — ez + €1) and wp 2 wy —ey. If wy —ey € J, then
R(wz —e2) = z+a € R(J), contradicting our assumption. As before, we apply
Axiom 3 to get w2 s wg —es > wa —eg +dy € J. If dy = +e;(83< i< n),
then Axiom 3 must hold. If d2 = —e2, then again Axiom 3 must hold. Hence
either Axiom 3 holds, or we must have d2 = e1, and the process continues.

Case C. (u+b)1+ (u+b)s=v1+v2 (le. (z+a)=(y))
We have (u+b); < v; and (u+ b)2 > ve. This case proceeds by a sequence
of steps. In each step, either Axiom 3 holds, or a w; € J is produced, and
the process continues. However, each step gets closer to v (i.e. ||wy —v|| >
[lwe —v|| > ...), so it must terminate.

Step C-1. Set w1 =u+b+e; € J. We have wy s w—ey. fwy—eg € J,
then R(w1 — e2) = & + a € R(J), which contradicts our assumption. We can
therefore apply Axiom 3 to get w; 2w —eg = wy —ea+dy € J. I
di = +e;(3 < i < n), then £ +a % =+ a+ R(d1) and Axiom 3 holds.
Otherwise, we must have di = e1 or di = —ea. Set d so that di +d}] = e1 —e»
(note that R(d1+d*) = R(e1—ez) = 0). We have u+b+e1 — utbter—es —
u+b+e —ex+di,whereu+b+eicJandu+b+e; —ex+d; €J.

Step C-2. Set wo =u-+b+e —ex+dy € J. If dj = e1, then we have
(u+b+er —e2)1 < (W1, (u+b+er —e2)2 > (v)2, and hence wa 2 wa + d}.
If di = —eg2, then a similar argument gives wo 2y wy +di. Iif we+dj € J, then
R(w2 +d}) = ¢ + a € R(J), which contradicts our assumption. We therefore
apply Axiom 3 to get wo 2wy + dy s wy +d} +do. If dy = £e4(3 <4 < n),
then s +a % z4+a+ R(dz), so Axiom 3 holds. Otherwise, we must have
do = e; or do = —e2, and the process continues.



REDUCTION OF JUMP SYSTEMS 5

3. MATROID CONSEQUENCES

Let By, Bs,. .., B, be pairwise nonintersecting bases of a rank n matroid
(E, M). Rota has conjectured in [3] that there always exists an n xn matrix
A, whose jth column consists of the elements of By, ordered in such a way
that the rows of A are bases as well.

We confirm a weaker version of this conjecture, namely that for any ¢
with 1 < i < n, there always exists an n X n matrix A whose jth column
consists of the elements of Bj, and that the first i rows are a disjoint union
of i bases.

First, we recall some notions about matroid union. If (E, M) is a ma-
troid, then the union M \/ M is a matroid on E, each of whose bases is a

]
disjoint union of two bases of M. Similarly, the union \/M is a matroid
on E each of whose bases is a disjoint union of i bases of M (provided
one such disjoint union exists, which must be true in the context of Rota’s
conjecture). For more information about matroid unions, see [6] or [5].

THEOREM 3.1. Let By,Bs,...,B, be any bases of a rank n matroid

]
(E,M). If1 < i< n, then there is a basis B of \| M with |BNB;| =i for
1<j<n

Proof. Without loss of generality, we assume |E| = n%. Let J be the

]
jump system on VA corresponding to the matroid \/ M. For 1 < j < n, let
F; = {coordinates corresponding to the elements of B;}. We now reduce
each F; to produce a jump system on Z". R(J) is a jump system by
Theorem 2.1. If i - T = (4,4, ... ,i) € R(J), then the theorem follows.
~——
n

By Theorem 1.1, -1 € R(J) if for all A C {1,2,...,n}, there is some

z € R(J) with > z; > i|4|. Fix A C {1,2,...,n}. We define C C
JjEA

{1,2,...,n} as follows:

1. If |A] < 4, set C = A U any other (¢ — |A|) elements of {1,2,... ,n}.
2. If |A| > 4, let C = any i elements of A.

By construction, |C| = i. Let y € Z” be the incidence vector of |J B;.
jec

Because y corresponds to 4 disjoint bases, we must have y € J. Set z =

R(y) € R(J). Observe that for i ¢ C, z; = 0. There are two cases to

consider:

1. If |4| <4, then ) z; = |Aln > i|A].
jeA



6 VADIM PONOMARENKO

2. If |A| >4, then > z; = > z; =in > i|Al
jEA jec

Hence, in either case, we have constructed z € R(J) with > z; >i|A|, as
jeA

desired. |

4. OTHER JUMP SYSTEM OPERATIONS

There are a variety of operations on jump systems that preserve the jump
system property. For a survey, see [2]. We recall three of them. If J is a
jump system on Z¥  and v € Z¥, then the translation J+v = {z+v|z € J}
is a jump system.

If J is a jump system on Z”, and F C E, then the reflection of J in the
coordinates indexed by F is a jump system. That is, the set of 2/, so that

ol =7 i€ B\F is a jump system
[ P Y A E it b
Let a; € Z U{—o00}. Let b; € Z U{oo}. [] [as,b;] is called a boz. The

icE
intersection of a box with a jump system J is, in turn, a jump system.

PROPOSITION 4.1. Let (E, D) be a delta-matroid, F C E, and 0 < a <
|F|. Then there is o delta-matroid (E',D’), where each D' € D’ has a
corresponding D € D, satisfying: f ¢ D' <= |DNF|=aand f € D' <
|DNF| =a+1. Furthermore, if (E,D) is a matroid, then (E',D') is a
matroid.

Proof. We reduce F, translate by —a times the unit vector corre-
sponding to f, and intersect with the box that restricts f to [0,1] and
leaves all other coordinates alone. A delta-matroid (E,D) is a matroid
precisely when |D| is constant for all D € D. Suppose that this is the
case. If a delta-basis D has o < |DNF| < a+ 1, then |D'| = |D| — a.
Otherwise, D has no corresponding D'. Consequently, all delta-bases

in the image contain r(D) — « elements, and the image is a matroid. |

Observe that the rank r(M’) of the matroid (E', M’) either satisfies
r(M") =r(M) — a, or else r(M’) = 0. The latter happens when no bases
B satisfty a < |[BNF| < a+ 1.

We now introduce an operation that does not respect the matroid prop-
erty (equicardinality of feasible sets). A constriction is a map from Z¥ to
a box.
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DEFINITION 4.1.  Fix Z¥. Let [] [a;,b;] be a fixed box. Let C denote
icE
the constriction map from Z¥ to Z¥ (in fact, into the box) defined by

z; a; <z <
Clx)i=1a; z;<a
b, b <z

We have C(J) = {C(z)|z € J} C Z¥. We say that C(J) is a constriction
of J into the box.

Constriction satisfies various nice properties, such as C(v+w) = C(v) +
C(w), and that the composition of two constrictions is a constriction. We
now show that constriction preserves Axiom 3.

PROPOSITION 4.2. Let J be a jump system on ZZ. Let [] [ai,bi] be a

icB
box. Then C(J) is a jump system.

Proof. Suppose that E = {1,2,...,|E|}. Let M = meaf}( z1. Consider
x

the box [—00, M — 1] X [—00,00] X - -+ X [—00,00]. It suffices to prove that
C(J) is a jump system for this specific box, since the composition of two
constrictions is a constriction.

Let «',y', 2, € C(J), with 2’ 2 2|. If 2/ € C(J), then Axiom 3 holds,
and the proposition follows. Henceforth, we assume that that z; ¢ C(J).
Let z,y € J be such that C(z) = 2/,C(y) = ¢'. Let z; € Z” be such that
C(z1) = 2z, and z % 2. Now, we must have 2, ¢ J, since 2| ¢ C(J).
We can therefore apply Axiom 3 to get z - 21 —» 2o with 25 € J, and
hence C(z2) € C(J). Because z; Yy 25, we must have zo = 2; + 8 for some
B=xe;,1<i<|E| If 8 =+e;for2<i<|E| then C(z) = 2,+8, 2, *»
C(z2), and Axiom 3 is satisfied. If 8 = +e;, then either C(z3) = C(21) or
C(z2) = z{ + 8. The former is impossible since we assumed that C(z9) =

2, ¢ C(J). Therefore, we must have 2, 2 C(22), and the proof is com-
plete. |

Let (E,D) be a delta-matroid. Let z,y € E. If we reduce {z,y} and
constrict that coordinate to [0, 1], then we will have a delta-matroid ((E\z\
y)Uz, D), where z € D’ if and only if (x OR y) € D. If we translate by the
negative of the unit vector corresponding to z before constricting, we can
replace OR by AND. Reflections allow us to construct any possible truth
table for these two elements. Further combinations allow us to construct
truth tables for any number of elements.
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