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Abstract: In this article, we prove that in connected metric spaces k — cycles
are not globally attracting (where k£ > 2). We apply this result to a two species
discrete-time Lotka-Volterra competition model with stocking. In particular, we
show that an k — cycle cannot be the ultimate life-history of evolution of all pop-
ulation sizes. This solves Yakubu’s conjecture but the question on the structure
of the boundary of the basins of attraction of the locally stable n — cycles is still
open.
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1 INTRODUCTION

Mathematical models have provided important insights into the general condi-
tions that permit the coexistence of competing species and the circumstances that
lead to competitive exclusion [1, 2, 4, 6-18, 20-29]. The following mathematical
model, System (1), describes the growth dynamics of two species (Species 1 and
2) in competition, where both species are governed by Ricker’s model and Species
1 is being stocked at the constant per capita stocking rate o per generation [28,

29]:

zo(t+1) = xo(t) exp(p2 — qa(1(t) + z2(1))).

For each Species 7 € {1,2}, x;(t) is its population size at generation ¢ and p;, g;

ri(t+1) = z1(t)exp(pr — qu(21(t) + 22(1))) + oz (2), } (1)

and « are positive constants. The effects of population density on the survival and
growth of each individual species are modeled in System (1), by assuming that
each per-capita growth rate, g;(z1+2) = exp(p; —¢;(x1+x2)), is a function of the
total density of the two competitors. For species with closely spaced generations,
System (1) without stocking reduces to the Lotka-Volterra differential equations
[16]. Notice that System (1) has no isolated positive fixed points.

If the carrying capacity of Species 1, %, is less than that of Species 2, Z—j, then
Species 1 goes extinct whenever there is no stocking (o = 0) [10]. Consequently,
z—i < % implies that the endangered Species 1 is the only species being stocked.
Very small values of the constant per capita stocking rate o do not save the
endangered species from extinction. However, it is possible for the endangered
species without stocking to become the dominant species with stocking [28]. This
reverse exclusion principle occurs whenever the constant per capita rate of stock-
ing « is sufficiently large. Intermediate values of oz promote the stable coexistence

of the two competitors via the emergence of stable k£ — cycles. The boundary of



the basin of attraction of the k — cycles can be fractal in nature [28, 29].
Yakubu obtained parameter regimes for the occurrence of an attracting 2-
cycle in System (1) and conjectured on the existence of globally stable 2-cycles
[20, 21, 28, 29]. In this paper, we solve Yakubu’s problem and we prove that
in connected metric spaces, k — cycles are not globally attracting. Therefore, in
System (1), an k — cycle cannot be the ultimate life-history of evolution of all

population sizes.

2 NOTATIONS AND PRELIMINARIES

To write the reproduction function of System (1), we denote the vector of popu-

lation densities z(t) = (z1(t), z2(t)) by = (x1, z2) and define the map
F :[0,00) x [0,00) = [0,00) x [0,00)

by
F(fCl, -iUQ) = (55191(361 + 352) + axq, $292($1 + $2))

where the variable planting coefficient « is positive and where g;(z;) = exp(p; —
qiz;) for each i € {1,2}. F* is the map F' composed with itself ¢ times, and F}(x)
is the j™ component of F* evaluated at the point z = (z1,22) in R?. Therefore,
F' gives the population densities in generation ¢. The set of iterates of the map
F is equivalent to the set of all density sequences generated by System (1).
Define the single species, 1-dimensional maps f; : R, — R, and f, : R, —
R, by fi(z1) = 21 exp(p1—q121)+ax; and fo(z2) = 72 exp(pa—qox2), respectively.
If Species j is missing in System (1), then F' reduces to f;, where i # j € {1,2}.
The only positive fixed point of f; is X; = ;%51—05) while that of fy is Xy = 2_;'

p1—In(l—a) 0

Consequently, ( P

of F.

) and (0, 22) are the non-zero boundary fixed points

Since g; is a strictly decreasing continuous function, f;(x;) > x; whenever

0 < z; < X;and f;(x;) < z; whenever x; > X;. Consequently, under f; iterations,
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I; = fi([0, X;]) is a compact invariant interval in R, . Every point either eventually
enters I; and stays or just reaches a limit in it. Thus, I; = f;([0, X;]) is a global
attractor under f; iterations. In fact, under f; iterations, I; is the dual attractor to
infinity. Notice that the fixed point zero in I; is a repellor. The largest attractor
in the open interval (0,00), denoted by T;, is the dual attractor to the pair of
repellors zero and infinity (under f; iterations) [9]. In [28], Yakubu showed that

when
——— +In(1 - 1
<o o)
then
—In(l — «
T1 — {pl ( )},
q1
and, when
D2 € (O: 2)7 (2)
then

T D2
= I -
2 {QQ}

Large values of p; and py give rise to complex (chaotic) dynamics on the attractors
T and T5, respectively. We will use the following dominance criteria of Franke

and Yakubu [9]:

Species 1 dominates 2whenever max1; < min 75,

and,

Species 2 dominates 1whenever maxTy < min 7.

A general result of Franke and Yakubu implies that the dominant species
drives the dominated species to extinction in System (1) [9]. In fact, using this
result we obtain the following:

Theorem 1: X, = 2—; 1s a global attractor on the 2 — axis and Species 2

drives 1 to extinction whenever inequalities (1) and (2) hold and X; < Xj.



Theorem 2: X; = 1%(11—05) s a global attractor on the 1 —axis and Species

1 drives 2 to extinction whenever inequalities (1) and (2) hold and X; > Xs.

Theorem 1 and Theorem 2 complement Theorem 5 in [28]. In Theorem 5,
cited above, it is assumed that ¢; = ¢ and eP?> — e’* < . Then from Theorem 1
we have p; —In(1 — «) < py. Exponentiating both sides yields, e?* < (1 —a)eP? <
(1 — a)(a + eP*). Hence, p; < In(1 — a) < 0 a contradiction.

In [28], Yakubu proved that there is no population explosion in System (1).
Hence no point has an unbounded orbit. To understand the properties of System
(1), we describe regions in [0, 00) x [0, 00) where each species increases or decreases
in abundance.

If z1 + 29 < X; then Fj(x1,22) > x;, and, if 1 + x5 > X; then Fj(z1,20) < ;.
That is, after one generation the population size of Species i increases [respec-
tively, decreases] whenever the total population is smaller [respectively, bigger]
than its carrying capacity. Consequently, we divide the first quadrant into three
regions based on whether the first coordinate increases or decreases under F
iterations.

Whenever X; < X, we let A = {(x1,22) € [0,00) X [0,00) | x1 + x2 >
X2}, B = {(z1,22) € [0,00) x [0,00) | x1 + 22 < X3} and M = {(z1,22) €
[0,00) X [0,00) | X7 < @1 + 22 < X3}. In region A [respectively, B], both coordi-
nates of points decrease [respectively, increase| under F iteration and population
sizes of Species 1 and 2 decrease [respectively, increase]. On the line segment
L = {(z1,22) € [0,00) x [0,00) | 1 + z9 = X}, after one generation, the first
coordinate remains the same while the second coordinate increases under F' iter-
ation. That is, if a population size is on L, after one generation, the population
size of Species 2 increases while that of Species 1 remains the same. In region M,
after one generation, the first coordinate decreases while the second coordinate

increases under F' iteration, that is, the population size of Species 1 decreases



while that of Species 2 increases.

3 Boundary Fixed Points

The one-hump single species models, f; and f5, describe the dynamics on the axes
and are capable of supporting period-doubling bifurcations including complex
(chaotic) dynamics. In this section, we use f; and f, to study the ultimate
life-history evolution of populations under F' iterations.

We need the following result on the (local) stability of the boundary fixed
points and periodic points.

Lemma 1: The boundary fized points are (0,0), X; and Xs.

1. The unstable fized point (0,0) has unstable manifolds on the 1 — axis and

2 — axis.

2. If X < Xy then X5 has a stable manifold in the interior of Ri while X

has an unstable manifold in the interior of R3.

3. If X1 > X5 then X1 has a stable manifold in the interior of Ri while X4

has an unstable manifold in the interior of RZ.

4. If py < 2, then Xy has a stable manifold on the 2 — axis. As py increases
past 2, a period-doubling bifurcation occurs resulting in the birth of a stable
2 — cycle with stable manifold on the 2 — axis. Further increases in ps
values with all other parameters fized generate stable 2™ — cycles (where

n € {2,3,...}) with stable manifold on the 2 — axis.

5. If p1 < ﬁ +1In(1 — «), then X; has a stable manifold on the 1 — axis.

As p1 increases past (13—04) +1In(1 — @), a period-doubling bifurcation occurs
resulting in the birth of a stable 2—cycle with stable manifold on the 1—axis.
Further increases in py values with all other parameters fixed generate stable

2" — cycles (where n € {2,3,...}) with stable manifold on the 1 — axis.
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To prove (1), (2) and (3) we compute the Jacobian matrix

DF (1, 70) = ( (1 —qz1) exp(pr — q1(z1 + 22)) + @ —q121 exp(p1 — ¢1(z1 + 22)) ) '

—qom2 €xp(p2 — g2(21 + T2)) (1 — g272) exp(p2 — g2(z1 + 22))
Hence,
pr(xy) = (1T T i) ).
and,

— g 22
DF(X,) = ( exp(p1 —;Z;W)Jra . _0p2 ) :

DF(0,0) has eigenvalues A\; = exp(p1) + @ > 1 and Ay = exp(ps) > 1 with

corresponding eigenvectors v; = < (1) ) and vy = ( (1) ), and this proves (1).
DF(X;) has eigenvalues \; = 1—(p;—In(1—«))(1—«) and Ay = exp(gz(Xo—X1))

with corresponding eigenvectors

o=(o)

(p1 —In(1 —a))(1 — ) )

"o < I—(pr—In(1—a))(1 - a)—exp(ps — q2w)

q1

while DF(X,) has eigenvalues \; = 1—p, and Ay = exp(p; —¢1 X2)+« with corre-

sponding eigenvectors v; = ( ? ) and vy = (

1—po — (exp(p1 — 122) + @)
P2

X; < X, implies that the external eigenvalue of DF(X;), Ao = exp(ga2(Xo —
X1)) > 1 while that of DF(X3), As = exp(p1 — ¢1X2) + a < 1, this establish-

es (2). The proof of (3) is similar and is omitted. In System (1), each axis is

F — invariant and on each i — axis the map F' is f;, a one hump map. In

[22 - 24], R. May proved that f, undergoes period-doubling bifurcations. Pro-

ceeding exactly as in [22 - 24] one obtains that the map f; undergoes similar

period-doubling bifurcations. This completes the proof.

Now, we consider System (1) where both species have the same carrying

capacity (X;=Xp).

Lemma 2: In System (1), let X; = Xo.
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1. F has a line of fized points at L .

2. If p1 < ﬁ +In(1 — ) and py < 2, then 1 > 0 or x5 > 0 at the point

(z1,22) in R% implies that w((z1,z2)) C L.

Proof: Clearly, X;=X, implies System (1) has a line of fixed points at L.
Consider the nonzero point (z1,22) in R%. On the ¢ — axis, X; is locally stable
implies it is globally stable in (0,00) [9]. Consequently, p; < ﬁ +1n(1 — )
implies w((z1,0)) = X; C L while py < 2 implies w((0, z3)) = Xo C L. Now, we
consider the interior point (z;,z2) with its entire orbit in the region below the
line L, B = {(x1,22) € [0,00) X [0,00) | z1 + 22 < X;}.Then for each i € {1, 2},
{F}(z1,72)} is an increasing sequence bounded above by the line segment L in
R%, and, F*(21, z2) converges to a fixed point of F' on the line L. Also, if the entire
orbit of (x, ) is in the region above the line L, A = {(z1,22) € [0, 00) X [0, 00) |
T1 + T > X1}, then {F}(x1,72)}, a decreasing sequence bounded below by the
line segment L in R? , converges to a fixed point of F' on the line L.

Now we consider a positive point (z1,x2) with some iterate in both regions
A and B. If there exists a positive integer T such that F*(x;, ;) remains in A
(or B) for all t > T then proceeding exactly as before, we obtain convergence
to the line segment L. If the positive point (x1,z3) is mapped in and out of
region A (or B) indefinitely, then there exists a subsequence {t;} with ¢; < ¢ty <
t3 < ... such that each F'%(z,z2) € B. In [9], Franke and Yakubu proved that
Fi'(z1,29) < FP(31,13) < Fi*(21,29) < .... Consequently, the continuity of F
and the boundedness of orbits force convergence to the line segment L.

Lemma 3: If a point (z1,22) in R? is not in the basin of attraction of any
fixed point, then there exist nonnegative integers 1, t, and 7" such that F (z, z5)
€ A and F*(xy,25) € B, where t,1, > T.

Proof: We will prove the result for region B. The proof for A is similar and is
omitted. Recall that the first quadrant is F' invariant. Suppose there exists a non-

negative integer 1" such that the orbit of F7(z1,z5) does not intersect region B.
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Then the sequence of first coordinates, F (x1, z3), F1(FT (z1,72)), F2(F" (x4, 13)), -..

is a nonincreasing sequence bounded below by zero and hence has a limit de-
noted by Z,. Therefore, F!(z1,z5) — Fi™ (x1,25) — 0 as ¢ — oo. Hence,
Fi(z1,29) + Fi(z1,22) — X, as t — oo. This implies that F(zi,zs) — X;1—
Ty as t — oo and F'(zy,z9) is in the basin of attraction of a fixed point, a
contradiction.

The following result (Corollary 1) is an immediate consequence of Lemma 3.

Corollary 1:

1. n—cycles of F in R% have some points in region A and some in B where

n > 2.

2. 2 —cycles of F in R%r have one point in region A and the other point in

B.

4 2-Cycles of F' (Yakubu's conjecture)

System (1) has no isolated positive fixed points. However, on solving the system
of two equations z;(t + 2) = z1(¢t) and z9(t + 2) = z5(¢) simultaneously where

x1(t), zo(t) # 0 we obtain that System (1) has a 2-cycle at

2p2—vg2(1+exp(p2—v92))
g2(a+exp(p1—vq1)+exp(p2—7q2))
v )

—( 2p2—vg2(1-+exp(p2—v¢2))
q2(atexp(p1 —vq1)+exp(p2—7¢2))

—f[+ 246
(W% B =a’~1+exp(2(pi—p2 L)), § = cvexp(p1—2p2 I

where v = qil In
and ¢ = aexp(p:) [28, 29]. Yakubu conjectured, in [29], that if p1 = 2,¢1 =
1,0 = 1 and o = % then System (1) has a globally stable positive 2-cycle in
(0,00) x (0,00) whenever X; < py < 3.411822071. Here, we use a very general
result to show that in connected metric spaces, n — cycles of continuous maps

are not globally stable whenever n > 2. Consequently, in Yakubu’s conjecture,

the positive 2 — cycle is locally asymptotically stable and not globally stable.
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First, we introduce additional notation and definitions. Let f : X — X be a
continuous map on a metric space X and z* € X is a locally asymptotically stable
fixed point of f. The basin of attraction of z*, W7 (z*), is {z € X | limp 0 () =
z*}. If y* € Xis a locally asymptotically stable k-periodic point of f then it is a
fixed poinnt of g = f* and its basin of attraction under g is W_;Jq (y*). The basin of
attraction of the cycle O(y*)=(y*, f(y*, ..., f{k —1)(y*) is given by W5 (O(y*)) =
Uia Wy (F(y"))-

W7 (z*) is an open f invariant set [6]. Furthermore, the complement of
W7(z*) in X and the boundary of W7 (z*) in X are f invariant sets [6. Nex-
t, we prove that stable period k£ — cycles are not globally stable in connected
metric spaces.

Theorem 3. If f: X — X is a continuous map on a connected metric space
X and y* € X s a locally asymptotically stable k — cycle of f with k > 2, then
W5(0(y)) ¢ X.

Proof: For each j € {0,1,2,....k — 1}, Wgs(fj(y*)) is a nonempty subset of
X and contains f/(y*), since g(f’(y*)) = f/(y*). Furthermore, the sets W (y*),
WE(f(*)), ... W5 (f¥1(y*)) are disjoint. If W5(O(y*)) = X, then X is a disjoint

union of nonempty open sets. This is impossible as X is a connected metric space.

4.1 Example

In Yakubu’s example with p; = 2,¢1 =1,¢o =1, @ = 5 and p, = 2.2, System (1)

has a locally asymptotically stable positive 2 — cycle at
{( 0.4063 ) ’ < 0.3741 >}.
1.9592 1.6604
The positive 2 — cycle is locally asymptotically stable and not globally stable
in (0,00) x (0,00) (Theorem 3). In fact, X, is a saddle fixed-point and X; =
1.5+ 1In2 < Xy = 2.2 implies that the stable manifold of X, is in the interior

of R% (Lemma 1) while the unstable manifold is on the vertical axis. Figure 1

shows the stable manifold of X, (black region in (0,00) x (0,00)) and the basin
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of attraction of the positive 2 — cycle (white region in (0,00) x (0,00)). A lot
of positive population sizes are in the stable manifold of the saddle fixed-point,
X, = 2.8, and a lot more are in the basin of attraction of the positive 2— cycle(see
Figure 1). FIG. 1: Stable manifold of X, (black region) and basin of attraction
of the positive 2 — cycle(white region). Horizontal axis is z; and vertical axis is
zo. The parameter p, measures the level of intraspecific competition in Species 2.
To study the changes in the basin of attraction of the positive 2 — cycle as we
increase the level of intraspecific competition, we keep the parameters pq, 1, ¢o,
1

and « fixed at p; = %,ql =1,q2 = 1 and a = 5 and increase p;. At p, = 3, the

system has a locally asymptotically stable positive 2 — cycle at
{( 0.5793 > | ( 1.0799 >}
0.6103 3.7305

coexisting with the saddle fixed-point at Xy = 3. Figure 2 shows the stable
manifold of X, (black region in (0,00) x (0,00)) and the basin of attraction of
the positive 2—cycle (white region in (0, c0) x (0, 00)). Our numerical simulations
show an increase in fragmentation of the basin of attraction of the 2 — cycle as
we increase po. Constructing the geometric structure of the basin of attraction
of the 2-cycle and deciding if it is a connected set are open questions that we are
working on.FIG. 2: Stable manifold of X, (black region) and basin of attraction

of the positive 2 — cycle(white region). Horizontal axis is 1 and vertical axis is

ZI9.
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