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1 Introduction

The study of asymptotics theory of ordinary difference equations originates
from the work of Henry Poincaré. In 1885, Poincaré [19] published a sem-
inal paper on the asymptotics of both ordinary difference and differential
equations, where he studied the kth order linear nonautonomous difference
equation of the form

y(n+ k) + (a1 + p1(n))y(n+ k − 1) + · · ·+ (ak + pk(n))y(n) = 0 (1.1)

with k ∈ Z+, ai ∈ C and pi(n) : Z+ → C for 1 ≤ i ≤ k. This equation is
said to be of Poincaré type if limn→∞ pi(n) = 0 for 1 ≤ i ≤ k. We assume
that Eq.(1.1) is of Poincaré type and associated with Eq.(1.1) its limiting
equation

x(n+ k) + a1x(n+ k − 1) + · · ·+ akx(n) = 0 (1.2)

with the corresponding characteristic equation

λk + a1λ
k−1 + · · ·+ ak = 0. (1.3)

Suppose that λ1, λ2, ..., λk are the characteristic roots of Eq.(1.2), i.e., the
roots of Eq.(1.3). It is straightforward to see that solutions of Eq.(1.2) are
of the form

r∑
i=1

qi(n)λni
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where qi(n) is a polynomial in n of degree less than the multiplicity of λi and
λ1, · · · , λr are all the distinct characteristic roots of Eq.(1.2). The main goal
of the asymptotic theory is to relate solutions of Eq.(1.1) with solutions of
Eq.(1.2) in an asymptotic fashion. We now state the fundamental result due
to Poincaré [19] as mentioned above. Poincaré Theorem Suppose that λi’s

are the characteristic roots of Eq.(1.2) and |λi| 6= |λj| for i 6= j. Then every
solution y(n) of Eq.(1.1) satisfies either y(n) = 0 for all large n or

lim
n→∞

y(n+ 1)

y(n)
= λi (1.4)

for some characteristic root λi.

Oscar Perron [16] later improved this fundamental result of Poincaré. He
showed that under the condition ak 6= 0, Eq.(1.1) has a fundamental set of
solutions yi(n) which satisfy Eq.(1.4) for 1 ≤ i ≤ k. Subsequently, Perron
[17] also removed the conditions imposed on the characteristic roots but
gave a weaker conclusion than Eq.(1.4) as stated below. Perron Theorem

Suppose that ak 6= 0. Then Eq.(1.1) has k linearly independent solutions
yi(n), 1 ≤ i ≤ k, such that

lim sup
n→∞

n
√
|yi(n)| = |λi| (1.5)

where λi’s are the characteristic roots of Eq.(1.2).

Based on a result of C.W. Coffman [4], M. Pituk [18] proved a standing
conjecture which states that every solution y(n) of Eq.(1.1) satisfies

lim sup
n→∞

n
√
|y(n)| = |λ| (1.6)

for some characteristic root λ of Eq.(1.2). This conjecture was first intro-
duced in a seminar at Trinity University by U. Krause and S. Elaydi. Moti-
vated by equations (1.4) and (1.5), U. Krause in the above-mentioned seminar
introduced several types of solutions of Eq.(1.1) which he called ”Poincaré
types” of solutions: weak Poincaré (WP), Poincaré (P), and strong Poincaré
(SP). The main objective of this paper is to extend these ”Poincaré types”
solutions of scalar difference equations to the k-dimensional system

~y(n+ 1) = [A+B(n)] ~y(n), n ≥ 0, (1.7)
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where A is a k × k nonsingular matrix and B(n) is a k × k matrix de-
fined on Z+. A notion closely related to our Poincaré type solutions is the
notion of strong ergodicity which is known in the mathematical ecology lit-
erature [6, 14]. In population biology, matrix difference equations have been
exploited to study the dynamics of structured population models since the
pioneering work of Lewis [13] and Leslie [12] in the 1940s. It is often desirable
to understand the long term behavior of population growth. One of the most
important aspects in this respect is ergodicity. A population is said to be er-
godic if its eventual behavior is independent of its initial state [3]. For an age-
structured population model with unchanging fertility and mortality rates, it
is known that the normalized age distribution approaches a stable age distri-
bution regardless of the initial population. Such property is well documented
and often referred to as the fundamental theorem of demography or the strong
ergodic theorem of demography [3, 5]. For other types of structured popu-
lation models, for example the size-structured models, a similar asymptotic
property can occur if the vital rates under consideration are also assumed
to be independent of time and population density [3]. Motivated by this
concept we introduce the more general notion of ergodic Poincaré. We show
that strong Poincaré implies Poincaré, Poincaré implies weak Poincaré, and
ergodic Poincaré implies Poincaré. For the case when the eigenvalue is posi-
tive, strong Poincaré implies ergodic Poincaré. Counterexamples are given to
illustrate the fact that these implications may not be reversed. Let R be the
set of real numbers and Rk

+ = {(x1, x2, · · · , xk) ∈ Rk : xi ≥ 0 for 1 ≤ i ≤ k}
be the positive cone of Rk. A matrix A is called nonnegative if each of its
entries is nonnegative, in which case we write A ≥ 0. A is called positive if
A ≥ 0 and A 6= 0, we write A > 0. A is called strictly positive, A >> 0 in
notation, if each of its entries is positive. Similar terminology is also used
for vectors. Let ~ei ∈ Rk

+ denote the column vector for which the ith entry
is 1, with all other entries 0. The celebrated Perron-Frobenius theory [20]
states that for any irreducible and primitive k×k matrix A > 0, there exists a
unique dominant eigenvalue λ1 > 0 which is moreover simple. Corresponding
to this eigenvalue there exists a right eigenvector ~v1 >> 0. Moreover, there
exists an integer p > 0 such that Ap >> 0 by the primitivity of A. The main
results are Theorems 3.3, 3.5 and 4.3. Theorem 3.3 gives a genuine extension
of Poincaré Theorem to systems of difference equations. A sufficient condi-
tion for which Eq.(1.7) is of ergodic Poincaré is presented in Theorem 3.4.
Theorem 4.3 derives sufficient conditions for the strong Poincaré property of
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Eq.(1.7) when Eq.(1.7) is regarded as a perturbation of the corresponding
linear system. The final section provides conditions under which the nonlin-
ear system is strong ergodic. We refer the reader to the treatise [1] and [9]
for basic material on asymptotic theory of difference equations.

2 Classification of Solutions

In this section we define several types of solutions of the following linear
nonautonomous system of difference equations

~y(n+ 1) = [A+B(n)]~y(n), n = 0, 1, 2, · · · , (2.1)

where A is a k× k nonsingular matrix and B(n) is a k× k matrix defined on
Z+. We then discuss relationships between these types of solutions. Coun-
terexamples will be given to demonstrate irreversible of the relationship.
Definition 2.1 Let ~y(n) be a solution of Eq.(2.1). Then ~y(n) is said to be

of

(1) weak Poincaré type (WP) if

lim
n→∞

n
√
‖~y(n)‖ = |λ|

for some eigenvalue λ of A.

(2) Poincaré type (P) if

lim
n→∞

‖~y(n+ 1)‖
‖~y(n)‖

= |λ|

for some eigenvalue λ of A.

(3) strong Poincaré type (SP) if

lim
n→∞

~y(n)

λn
= ~c

for some eigenvalue λ of A and some vector ~c 6= ~0.
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(4) ergodic Poincaré (EP) if

lim
n→∞

~y(n)

‖~y(n)‖
= ~ξ

for some eigenvector ~ξ of A.

We say that Eq.(2.1) has one of the above-mentioned properties if each one
of its nontrivial solutions has the property. Eq.(2.1) possesses strong ergodic

property if there exists an eigenvector ~ξ >> 0 of A > 0 such that every
solution ~y(n) of Eq.(2.1) with ~y(0) > 0 is of ergodic Poincaré with the same
~ξ as its limit.

Before investigating the interrelations between the four types of solutions
introduced above, we establish the following lemma. Lemma 2.1 Let ~y(n)

be a solution of Eq.(2.1). Then

(a) ~y(n) is of WP if ~y(n) is of P.

(b) ~y(n) is SP if and only if

~y(n) = [~ξ + o(1)]λn

for some eigenvector ~ξ of A belonging to the eigenvalue λ, given that
limn→∞B(n) = 0.

Proof. (a) Suppose that ~y(n) is of P, i.e., there exists an eigenvalue λ of A
such that

lim
n→∞

‖~y(n+ 1)‖
‖~y(n)‖

= |λ|.

Then

‖~y(n)‖ =

(
n−1∏
j=0

[ |λ|+ γ(j)]

)
‖~y(0)‖

for some null sequence γ(n). Hence

lim
n→∞

n
√
‖~y(n)‖ = |λ| lim

n→∞
n

√√√√n−1∏
j=0

[
1 +

γ(j)

|λ|

]
lim
n→∞

n
√
‖~y(0)‖.
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Note that ‖~y(0)‖ 6= 0 by our assumption. As a result, limn→∞
n
√
‖~y(n)‖ = |λ|

and ~y(n) is of WP. (b) If ~y(n) is SP, then there exists an eigenvalue λ of A
and a vector ~c 6= ~0 such that limn→∞ ~y(n)/λn = ~c, and so ~y(n) = [~c+o(1)]λn.
Consequently, from Eq.(2.1) we have

λ
~y(n+ 1)

λn+1
= [A+B(n)]

~y(n)

λn
⇒ λ~c = A~c,

i.e., ~c is an eigenvector of A belonging to λ. This proves sufficiency. The ne-
cessity is straightforward. Now, we summarize some implications between

the four types of solutions introduced in Definition 2.1. Theorem 2.2 Let

~y(n) be a solution of Eq.(2.1). Then

(a) ~y(n) is of SP⇒ ~y(n) is of P⇒ ~y(n) is of WP.

(b) ~y(n) is of EP ⇒ ~y(n) is of P if limn→∞B(n) = 0.

If ~y(n) is of SP with an associated positive eigenvalue λ and limn→∞B(n) =
0, then ~y(n) is of EP.

Proof. (a) If ~y(n) is SP, then

~y(n) = λn[~c+ ~Γ(n)], where ~Γ(n) = o(1) and ~c 6= ~0.

Consequently,

~y(n+ 1)− λ~y(n)

‖~y(n)‖
λ

(
λ

|λ|

)n ~Γ(n+ 1)− ~Γ(n)

‖~c+ ~Γ(n)‖
→ ~0 as n→∞,

and ~y(n+ 1) can be written as

~y(n+ 1) = λ~y(n) + ~Γ1(n)‖~y(n)‖, where ~Γ1(n) = o(1).

By Triangle Inequality,

|λ| − ‖~Γ1(n)‖ ≤ ‖~y(n+ 1)‖
‖~y(n)‖

≤ λ|+ ‖~Γ1(n)‖.

Therefore,

lim
n→∞

‖~y(n+ 1)‖
‖~y(n)‖

= |λ|.
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i.e., ~y(n) is P and hence is WP by Lemma 2.1(a).

(b) Suppose now ~y(n) is EP with limn→∞
~y(n)

‖~y(n)‖
= ~ξ for some eigenvector

~ξ of A. Notice that ‖~ξ‖ = 1 and A(limn→∞
~y(n)

‖~y(n)‖
) = A~ξ. Thus

lim
n→∞

A~y(n)

‖~y(n)‖
= λ~ξ,

where λ is the eigenvalue of A with the eigenvector ~ξ. Consequently,

lim
n→∞

[A+B(n)]
~y(n)

‖~y(n)‖
= λ~ξ

and thus limn→∞
‖~y(n+ 1)‖
‖~y(n)‖

= |λ|, i.e., ~y(n) is of P. (c) If ~y(n) is SP, then

by Lemma 2.1(b)

~y(n) = λn
[
~ξ + o(1)

]
,

for some eigenvector ~ξ. Since λ > 0,

~y(n)

‖~y(n)‖
=

~ξ + o(1)

‖~ξ + o(1)‖
→

~ξ

‖~ξ‖
, as n→∞

i.e., ~y(n) is EP.

The following examples show that the converse of Theorem 2.2 need not
be true.

Example 2.1 Consider the following system

~y(n+ 1) =

(
1 2
0 1

)
~y(n), n ≥ 0.

Then

~y(n) = α(−1)n
(

1
0

)
+ β

(
1
1

)
=

(
β + α(−1)n

β

)
,

is a solution, where α, β > 0. By a direct computation one can see that

lim
n→∞

n
√
‖~y(n)‖ = 1,

7



where λ = 1 is an eigenvalue of A, i.e., ~y(n) is WP. However,

lim
n→∞

‖~y(n+ 1)‖
‖~y(n)‖

=


β

β + α
if n is even

β + α

β
if n is odd.

(2.2)

Thus limn→∞
‖~y(n+ 1)‖
‖~y(n)‖

doesn’t exist as α, β > 0, i.e., ~y(n) is WP but is

not P. This demonstrates that the implication of Theorem 2.2(a) can’t be
reversed. Example 2.2 Consider the system

~y(n+ 1) =

(
−n+1

2n
0

0 1

)
~y(n), n ≥ 1,

~y(1) =

(
1
0

)
.

The solution is given by

~y(n) =
(−1)n−1 n

2n−1

(
1
0

)
, n = 1, 2, ...

Since
‖~y(n+ 1)‖
‖~y(n)‖

→ 1

2
as n→∞,

where −1/2 is an eigenvalue of the corresponding linear system, ~y(n) is P.
However,

lim
n→∞

~y(n)

‖~y(n)‖
= lim

n→∞
(−1)n−1

(
1
0

)
does not exist, i.e., ~y(n) is not EP. Therefore the converse of Theorem 2.2(b)
is not true. Example 2.3 Consider the difference system

~y(n+ 1) =

(
n+1
n

0
0 1

)
~y(n), n ≥ 1,

~y(1) =

(
1
0

)
.

8



The solution is given by

~y(n) = n

(
1
0

)
, n = 1, 2, ...

Since
~y(n)

‖~y(n)‖
=

(
1
0

)
,

where (1, 0)T is an eigenvector of A belonging to λ = 1, ~y(n) is EP. However,

~y(n)

1n

diverges, i.e., ~y(n) is not SP. We conclude that the converse of Theorem 2.2
in general is not true. This example also demonstrates that Poincaré doesn’t
imply strong Poincaré.

3 An Extension and a Generalization of Poincaré The-
orem

Observe that Example 2.1 (and there are many other examples as well) shows
that the result of Pituk theorem can’t be replaced by either P or EP. In this
section we strengthen the assumptions on the eigenvalues of A and obtain
sufficient conditions for the Poincaré and ergodic Poincaré properties. We
begin with a definition and two crucial lemmas. These concept and basic
results will enable us to accomplish our goal. Definition 3.1 A solution

~y(n) of Eq.(2.1) is said to have the index for maximum property (IMP) if
there exists an index l ∈ {1, ..., k} such that for sufficiently large n

‖~y(n)‖ = max
1≤i≤k

|yi(n)| = |yl(n)|.

Clearly, solutions given in Example 2.2 and Example 2.3 have the IMP.
The following lemma gives a sufficient condition for which solutions of Eq.(2.1)
have the IMP. Lemma 3.1 Let limn→∞B(n) = 0. If A = diag(λ1, ..., λk)

such that 0 < |λ1| < ... < |λk|, then every solution of Eq.(2.1) has the IMP.
Proof. Since limn→∞B(n) = 0, for any ε > 0, there exists N1 > 0 such that
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‖B(n)‖ = max1≤i≤k
∑k

j=1 |bij(n)| < ε for n ≥ N1. We choose ε > 0 such that

|λi|+ ε

|λj| − ε
< 1 for 1 ≤ i < j ≤ k.

Let ~y(n) be a nontrivial solution of Eq.(2.1) and ln be the first index such
that

‖~y(n)‖ = |yln(n)|.

We claim that ln is nondecreasing. To see this suppose that ln+1 < ln, then

yi(n+ 1)| ≤ |λi||yi(n)|+ ε|yln(n)|
yi(n+ 1)| ≥ |λi||yi(n)| − ε|yln(n)|

for all n ≥ N1. This implies that

|yln+1(n+ 1)|
|yln(n+ 1)|

≤
|λln+1 | |yln+1(n)|+ ε|yln(n)|
|λln| |yln(n)| − ε|yln(n)|

=
|λln+1| |yln+1(n)|/|yln(n)|+ ε

|λln| − ε

≤
|λln+1 |+ ε

|λln| − ε
< 1

which contradicts to the definition of ln+1. Since ln assumes only finitely
many values, the result follows.

Lemma 3.2 Let limn→∞B(n) = 0. Suppose that A = diag(λ1, ..., λk) such
that 0 < |λ1| ≤ ... ≤ |λk|. Then every nonzero solution ~y(n) of Eq.(2.1) that
has the IMP with ‖~y(n)‖ = |yl(n)| for all large n satisfies

lim
n→∞

|yj(n)|
|yl(n)|

= 0 for |λj| 6= |λl|.

Proof. Let ~y(n) be a nonzero solution of Eq.(2.1) that has the IMP. Since

limn→∞B(n) = 0, for any ε > 0 there exists N > 0 such that ‖B(n)‖ < ε

and ‖~y(n)‖ = |yl(n)| for n ≥ N . We choose ε > 0 so that
|λi|
|λj| − ε

< 1 for

10



1 ≤ i < j ≤ k and |λi| 6= |λj|. Observe that for n ≥ N ,

yi(n+ 1)| ≤ |λi| |yi(n)|+ ε|yl(n)|
yi(n+ 1)| ≥ |λi| |yi(n)| − ε|yl(n)|,

for 1 ≤ i ≤ k. Suppose that |λj| 6= |λl|. We first consider the case when
j > l. Let

s = sup
n

|yj(n)|
|yl(n)|

.

Then there exists a subsequence ni such that

lim
ni→∞

|yj(ni)|
|yl(ni)|

= s.

Observe that

|yj(ni + 1)|
|yl(ni + 1)|

≥ |λj| |yj(ni)| − ε|yl(ni)|
(|λl|+ ε)|yl(ni)|

=
|λj| |yj(ni)|/|yl(ni)| − ε

|λl|+ ε

for ni > N . Therefore,

s ≥ |λj|s− ε
|λl|+ ε

and consequently

s ≤ ε

|λj| − |λl| − ε
for all sufficiently small ε. This implies that s = 0 and the assertion is shown.

On the other hand, if j < l, then

|yj(n+ 1)|
|yl(n+ 1)|

≤ |λj| |yj(n)|+ ε|yl(n)|
(|λl| − ε)|yl(n)|

=

(
|λj|
|λl| − ε

)
|yj(n)|
|yl(n)|

+
ε

|λl| − ε

for n > N . Thus,

|yj(n)|
|yl(n)|

≤
(
|λj|
|λl| − ε

)n−N |yj(N)|
|yl(N)|

+

1−
(
|λj |
|λl|−ε

)n−N
1− |λj |

|λl|−ε

 ε

|λl| − ε
,
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and as a result

lim sup
n→∞

|yj(n)|
|yl(n)|

≤ ε

|λl| − |λj| − ε
for all sufficiently small ε. This implies that

lim sup
n→∞

|yj(n)|
|yl(n)|

= 0

and completes the proof.

By using Lemmas 3.1 and 3.2, we present a sufficient condition for which
Eq.(2.1) has the Poincaré property. Theorem 3.3 Suppose that the eigen-

values of A have distinct moduli and limn→∞B(n) = 0. Then Eq.(2.1) pos-
sesses the Poincaré property P. Proof. We may assume, without loss of

generality, that A is in diagonal form, i.e., A = diag(λ1, λ2, ..., λk), where
0 < |λ1| < · · · < |λk|. Let ~y(n) be a nontrivial solution of Eq.(2.1). It follows
from Lemma 3.1 that

‖~y(n)‖ = |yl(n)|

for all large n, for some 1 ≤ l ≤ k. Moreover, Lemma 3.2 implies

lim
n→∞

|yi(n)|
|yl(n)|

= 0

for 1 ≤ i ≤ k such that i 6= l. Therefore, if i 6= l, then

lim
n→∞

yi(n+ 1)

|yl(n)|
= lim

n→∞

[
λi

yi(n)

|yl(n)|
+

k∑
j=1

bij(n)
yj(n)

|yl(n)|

]
= 0

and if i = l we have

lim
n→∞

yl(n+ 1)− λl yl(n)

|yl(n)|
= lim

n→∞

k∑
j=1

bij(n)
yj(n)

|yl(n)|
= 0.

Consequently,

lim
n→∞

‖~y(n+ 1)− λl ~y(n)‖
‖~y(n)‖

= 0
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and the proof of Theorem 2.2(a) can be applied to show that ~y(n) is of P.
This completes the proof of the theorem. The following theorem is an

immediate consequence of Lemma 3.1 and Theorem 3.3. Theorem 3.4 If

A = diag(λ1, ..., λk) such that 0 < λ1 < ... < λk and limn→∞B(n) = 0, then
Eq.(2.1) has the ergodic Poincaré property. In fact, any nontrivial solution
~y(n) of Eq.(2.1) satisfies

lim
n→∞

~y(n)

‖~y(n)‖
= ±~ej

where ~ej depends on ~y(n).

Theorem 3.5 Let A > 0 be irreducible and primitive with dominant eigen-
value λ1 > 0. Suppose that the eigenvalues of A have distinct moduli,
A + B(n) > 0 is irreducible for n = 0, 1, · · ·, and limn→∞B(n) = 0. Then
Eq.(2.1) possesses the strong ergodic property and consequently the ergodic
Poincaré property. Proof. Let λ1, λ2, · · · , λk be the eigenvalues of A such

that λ1 > |λ2| > · · · > |λk|. Let ~vi and ~wi be the corresponding right and
left eigenvectors of A belonging to λi respectively. Let T = (~v1, · · · , ~vk). Ob-
serve that A = TDT−1, where D =diag(λ1, · · · , λk). Let ~y(n) be a solution
of Eq.(2.1) with ~y(0) > 0 and set ~z(n) = T−1~y(n). Since A + B(n) > 0 is
irreducible, we have ~y(n) > 0 for n = 1, 2, · · ·. Eq.(2.1) is transformed into
the following system

~z(n+ 1) = [D + C(n)]~z(n), (3.1)

with C(n) = T−1B(n)T and limn→∞C(n) = 0.
Since Eq.(3.1) has the IMP, we let l be such that |zl(n)| = max1≤i≤k|zi(n)|

for all large n. Note that ~z(n) = T−1~y(n) 6= 0 for all n ≥ 0, as the rows of
T−1 are the left eigenvectors ~wi of A and ~w1 >> 0. It follows from Lemma

3.2 that limn→∞
|zj(n)|
|zl(n)|

= 0 for all j 6= l. Therefore, limn→∞
~z(n)

‖~z(n)‖
=

lim
n→∞

~z(n)
|zl(n)|

‖ ~z(n)
zl(n)
‖

= ~el or −~el for some 1 ≤ l ≤ k and hence, limn→∞
~y(n)

‖~y(n)‖
=

lim
n→∞

T~z(n)

‖T~z(n)‖
=
±T~el
‖T~el‖

=
±~vl
‖~vl‖

. However, since ~y(n) > 0 and ~v1 is the only
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positive eigenvector of A, we conclude that limn→∞
~y(n)

‖~y(n)‖
=

~v1

‖~v1‖
.

4 A Criterion for Strong Poincaré

In this section we derive a sufficient condition for the existence of strong
Poincaré type solutions. The technique used here is the concept of dichotomy.
Eq.(2.1) very often can be regarded as the perturbation of the following linear
system

~x(n+ 1) = A~x(n), n = 0, 1, 2, · · · . (4.1)

As a consequence, Eq.(4.1) can be exploited to study Eq.(2.1). We first
recall the definition of dichotomy and a basic result. We refer the reader
to [1, 9, 10] for details and proofs of the preliminary. Definition 4.1 Let

X(n) be a fundamental matrix of Eq.(4.1). Then Eq.(4.1) is said to possess a
dichotomy if there are constants M > 0, α ∈ (0, 1], and a projection matrix
P such that

‖X(n)PX−1(m+ 1)‖ ≤Mαn−m, for n ≥ m ≥ 0

‖X(n)(I − P )X−1(m+ 1)‖ ≤Mαn−m, for m ≥ n ≥ 0.

Furthermore, if α = 1, then Eq.(4.1) is said to have an ordinary dichotomy,
and if α ∈ (0, 1), Eq.(4.1) is said to possess an exponential dichotomy.

Theorem 4.1 Suppose that Eq.(4.1) possesses an ordinary dichotomy with
a projection matrix P and that B(n) ∈ `1(Z+). Then there is a homeomor-
phism between bounded solutions of Eq.(2.1) and Eq.(4.1). If, in addition,
X(n)P → 0 as n→∞, then for each bounded solution ~x(n) of Eq.(4.1) there
exists a bounded solution ~y(n) of Eq.(2.1) such that

~y(n) = ~x(n) + o(1). (4.2)

We now prove our first result in this section. Lemma 4.2 Suppose that

the eigenvalues of A are such that λ1 > |λ2| ≥ ... ≥ |λk| ≥ 0. If ~x(n) is a
solution of Eq.(4.1), then either

lim
n→∞

~x(n)

λn1
= ~0 or lim

n→∞

~x(n)

λn1
= ~ξ,
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where ~ξ is an eigenvector of A associated with λ1. Proof. There exists a

nonsingular matrix S such that A = SJS−1, where J = diag(λ1, J2, ..., Jr) is
the Jordan form of A, and Ji, i = 2, ..., r are the Jordan blocks corresponding

to the eigenvalues λ2, · · · , λr, respectively. Suppose that limn→∞
~x(n)

λn1
6=

~0. Setting ~z(n) = λ−n1 S−1~x(n) and J̃ = λ−1
1 J = diag(1, λ−1

1 J2, ..., λ
−1
1 Jr),

Eq.(4.1) reduces to
~z(n+ 1) = J̃~z(n), n ≥ 0

whose solution can be written as

~z(n) = c1~e1 + o(1),

where c1 6= 0 as limn→∞
~x(n)

λn1
6= ~0. Since the first column of S is an eigen-

vector associated with λ1, we have

~x(n)

λn1
= S~z(n) = ~ξ + o(1)

where ~ξ is an eigenvector of A belonging to λ1 and the assertion is shown.
By using Lemma 4.2, the following theorem provides a sufficient condition for

which solutions of Eq.(2.1) are of strong Poincaré. Theorem 4.3 Suppose

that the eigenvalues of A are such that λ1 > |λ2| ≥ ... ≥ |λk| ≥ 0, and that
B(n) ∈ `1(Z+). If ~y(n) is a solution of Eq.(2.1), then either

lim
n→∞

~y(n)

λn1
= ~0 or lim

n→∞

~y(n)

λn1
= ~ξ,

where ~ξ is an eigenvector of A associated with λ1.

Proof. If limn→∞
~y(n)

λn1
6= ~0, then setting ~w(n) = λ−n1 ~y(n) and letting Ã =

λ−1
1 A, Eq.(2.1) reduces to

~w(n+ 1) =

[
Ã+

B(n)

λ1

]
~w(n), n ≥ 0.
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Observe that the eigenvalues of Ã are such that 1 > |µ2| ≥ ... ≥ |µk| ≥ 0.
Therefore, the unperturbed system

~z(n+ 1) = Ã~z(n)

possesses an ordinary dichotomy with projection matrix P such that Z(n)P →
0 as n→∞, where Z(n) is the fundamental matrix.

Since B(n)/λ1 ∈ `1(Z+), Theorem 4.1 and Lemma 4.2 imply

~w(n) = ~z(n) + o(1),

where ~z(n) is either ~0+o(1) or ~ξ+o(1). However, as limn→∞
~y(n)

λn1
6= ~0, ~w(n) =

~ξ(n) + o(1), where ~ξ is an eigenvector of Ã associated with 1. Accordingly,
~y(n) is of SP. Theorem 4.3 has the following immediate consequence.

Corollary 4.4 Suppose that B(n) ∈ `1(Z+), and that the eigenvalues of A
are such that λ1 > |λ2| ≥ ... ≥ |λk| ≥ 0. If A > 0 is irreducible and primitive,
then every solution ~y(n) of Eq.(2.1) with ~y(0) > 0 satisfies

lim
n→∞

~y(n)

||~y(n)||
= ~ξ,

where ~ξ >> 0 is the eigenvector of A belonging to λ1 with ‖~ξ‖ = 1.

5 Strong ergodic theorems for nonlinear systems

In this section we assume that A > 0, A is irreducible and primitive. We
derive sufficient conditions for which nonlinear systems have the strong er-
godic property. Let σ(A) = {λ1, λ2, · · · , λm} be the spectrum of A with
λ1 > |λi| for 2 ≤ i ≤ m and let ν(λi) be the Riesz index of λi. In particular,
ν(λ1) = 1. Let G be an open subset of the complex plane containing σ(A).
Definition 5.1 Let F(A) denote the family of functions defined and analytic

on G. Definition 5.2 Let f ∈ F(A), and let the boundary of G, denoted

by ∂G, consist of a finite number of rectifiable Jordan curves. Suppose that
G ∪ ∂G is contained in the domain of analyticity of f . Then f(A) is defined
by the equation

f(A) =
1

2πi

∫
∂G

f(λ)R(λ;A)dλ, (5.1)
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where R(λ;A) is the resolvent of A at λ.

Note that f(A) depends only on f and not onG for any function f ∈ F(A)
and thus f(A) is well defined [7]. We restrict ourselves to those f ∈ F(A)
such that the nonnegative real axis is invariant under f , i.e., we let F+(A) =
{f ∈ F(A) : f(z) ≥ 0 for 0 ≤ z ∈ G}. Let {fn}∞n=0 be an arbitrary sequence
of functions from F+(A) and consider the system of difference equations

x(n+ 1) = fn(A)x(n), n = 0, 1, · · · (5.2)

The following strong ergodic theorem cited from [11, 14] is useful for our
study.

Theorem 5.1 Let A > 0 be an irreducible and primitive k × k matrix with
spectrum σ(A){λ1, · · · , λm}, where λ1 > |λi| for 2 ≤ i ≤ m. Let ~v1 >> 0 be
the corresponding normalized right eigenvector of A belonging to λ1 and let
ν(λi) be the Riesz index of λi for 1 ≤ i ≤ m. Consider a sequence {fn}∞n=0

with fn ∈ F+(A) for all n = 0, 1, · · · satisfying

|fn(λi)|
fn(λ1)

≤ δi < 1 for all large n (5.3)

for 2 ≤ i ≤ m, for some positive real numbers δi, and

|f (α)
n (λi)|
fn(λ1)

= O((n+ 1)k(α,i)), n→∞ (5.4)

for some k(α, i) ∈ R, for all 1 ≤ α ≤ ν(λi) − 1, if ν(λi) > 1. If ~x(n) is

a solution of Eq.(5.2) with ~x(0) > 0, then the normalized solution
~x(n)

‖~x(n)‖

satisfies limn→∞
~x(n)

‖~x(n)‖
= ~v1.

Our main result in this section is the following. Theorem 5.2 Let

A, σ(A), ν(λi) and ~v1 be defined as in Theorem 5.1. Let B(n) = gn(A), n =
0, 1, · · · for some {gn(A)} ⊂ F+(A) satisfying (H1) there exists δi > 0 such

that
|gn(λi)|
gn(λ1)

≤ δi < 1 for all large n, for 2 ≤ i ≤ m,
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(H2)
|g(α)
n (λi)|
gn(λ1)

= O((n + 1)k(α,i)), n → ∞, for some k(α, i) ∈ R, for all

1 ≤ α ≤ ν(λi) − 1 if ν(λi) ≥ 2. Then any solution ~y(n) of Eq.(5.2) with

~y(0) > 0 satisfies limn→∞
~y(n)

‖~y(n)‖
= ~v1, i.e., Eq.(5.2) possesses the strong

ergodic property.

Proof. Let fn(z) = z+gn(z). Then fn is analytic in some open set containing
σ(A) and fn(R+) ⊂ R+, i.e., {fn}∞n=0 ⊂ F+(A). It remains to verify that fn
satisfies Eq.(5.3) and Eq.(5.4). Indeed, let δ̂i =max{δi, |λi|/λ1}, then δ̂i < 1

for 2 ≤ i ≤ m and, for n sufficiently large,
|fn(λi)|
fn(λ1)

≤ |λi|+ |gn(λi)|
λ1 + gn(λ1)

≤

|λi|+ δign(λ1)

λ1 + gn(λ1)
≤ δ̂i < 1 for 2 ≤ i ≤ m by (H1). If ν(λi) > 1, then

f ′n(z) = 1 + g′n(z) and for n sufficiently large
|f ′n(λi)|
fn(λ1)

≤ 1 + |g′n(λi)|
λ1 + gn(λ1)

≤

1 +M1,i(n+ 1)k(1,i)gn(λ1)

λ1 + gn(λ1)
as gn(A) satisfies (H2). Thus, let M̂1,i =max{1/λ1,M1,i}.

Then
|f ′n(λi)|
fn(λ1)

≤ (n + 1)|k(1,i)|1/λ1 + (M1,i/λ1)gn(λ1)

1 + gn(λ1)/λ1

≤ M̂1,i(n + 1)|k(1,i)|,

i.e.,
|f ′n(λi)|
fn(λ1)

= O((n + 1)|k(1,i)|) as n → ∞. Furthermore, for any j ≥ 2,

f
(j)
n (λi) = g

(j)
n (λi). It follows that Eq.(5.4) is satisfied for all 1 ≤ j ≤ ν(λi)−1.

Therefore, with A + B(n) = A + gn(A) = fn(A), Theorem 5.1 implies that
solutions ~y(n) of Eq.(5.2) with ~y(0) > 0 satisfy the desired asymptotic be-
havior. Remark. In this paper (sections 2-4) we have assumed that the

constant matrix A to be nonsingular. However, using Corollary 1 in [8] one
may extend our results to the case when A is noninvertible.
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