1

Asymptotic Stability of Linear Difference
Equations of Advanced Type

Fozi M. Dannan
Department of Mathematics, Faculty of Science,
Qatar University, Doha, Qatar
Saber N. Elaydi

Department of Mathematics, Trinity University,
San Antonio, Texas 78212

October 8, 2001

Abstract

Necessary and sufficient conditions are obtained for the asymptotic
stability of difference equations of advanced typen of the form

z(n) —azx(n+1)+bzx(n+k)=0,n=0,1,..

where a and b are arbitrary real numbers and k£ > 1.
For a = 1, we establish an analogue of a result by Levin and May.

Introduction

Delay idfference equations of the form

z(n+1)—azx(n)+bx(n—k)=0, n=0,1,...;(a #0),

(1)

where £ > 1 is an integer and a,b € R, have been extensively studied
in the last decade, see for example Clark[1], Elaydi[2], Levin and May][6],
Kuruklis[5], Kocic and Ladas [4]. When a=1 and b is an arbitrary real num-
ber, and £ is a positive integer, Levin and May showed that the zero solution
of Eq(1) is asymptotically stable if and only if
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0 <b<2coslkr/(2k +1)]. (2)

Matsunaga and Hara [?] extended this result to the two dimensional sys-
tem z(n+1) —x(n)+ Bx(n—k) = 0, where B is a 2 X 2 constant matrix. For
the general case when a is any real number, Clark[1] gave an elegant proof
to the following result: if |a| + |b| < 1, then the zero solution of Eq(1) is
asymptotically stable. Later, Kuruklis [5] gave necessary and sufficient con-
ditions for the zero solution of Eq(1) to be asymptotically stable. Moreover,
his result includes as a special case the result of May and Levin cited above.

The main objective of this paper is to extend the above work to linear
difference equations of advanced type of the form

z(n) —ax(n+1)+bzx(n+k)=0, n=0,1,2,.. (3)

where a and b are arbitrary reals and £ > 1 is an integer . These difference
equations appeared in the book of Gyori and Ladas [?]. They may represent a
mathematical model of species whose kth generation depends on the present
and next generations. Moreover, difference equations of advanced type are
usually associated with the study of differential equations with piecewise
continuous argument such as

y' = Ay(t) + By([t + k) (4)

, where [ ] denotes the greatest integer function. If we let y,(¢) to be the
solution of Eq(4) on the interval [n,n+1) and z(n) = y,(n), then Eq(4) may
be transformed to Eq(3) (for more details see [?]. It is well known that the
zero solution of Eq.(4) is asymptotically stable if and only if all the roots of
its characteristic equation

b —aA+1=0 (5)

are inside the unit disk. Equation (5) can be written equivalently as

e —p+1=0 (6)
where ¢ = b/a* (a # 0) and u = a) . Hence all the roots of Eq.(5) are
inside the unit desk if and only if all the roots of Eq.(6) are inside the disk
ul < lal .

Our main result is Theorem 3.8 which provides necessary and sufficient
conditions for the asymptotic stability of the zero solution of Eq.(3). As a
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consequence of this theorem we obatin an analogue of Levin and May’s above
celebrated result for advanced difference equations.

2 preliminary Lemmas

Lemma 2.1 . Let k > 1 be an integer and a # 0 be an arbitrary real number
. Then the following inequality holds true

k—1
ol =1 _ (k= 1)

=B . 7
[ "
Proof . The equality sign holds for a = iﬁ . Define the func-
— 7 k_ 1"
tion f(a) = (k_;#ak—a—i—l . Hence f'(a) = (%) Tkl 1 , f(a)=
Ufc;—_lzk ab=% . Since f(:%) = f (%) =0, it follows that a = £ is a dou-

!

—1
ble root of f(a) = 0. Now if k is an even number , then f"(a) > 0 ( for
a>0ora<0). Therefore f(a) > 0 and thus Inequality (7) holds. On
the other hand if % is an odd number and a > 0 , then f"(a) > 0 and
consequently, f(a) > 0 and thus Inequality (7) holds . For a < 0 and

k is an odd number , we have f"(a) < 0. Since f (—ﬁ) = 0,it follows

that f (—%) = 2 is the maximum value of f (a) . Hence f (a) < 2. This
implies

_ 1)k
%ak S a+1
and
k-1
a+1 _ (k—1) .
ab Kk
If we put a = —|a| , then (7) follows.

Lemma 2.2 . Let & be real root of Eq.(6) . The following statements hold
true :

(i) ¢ increases as & increases if either 0 <& < ﬁ or £ <0 and k s
an odd number .

(ii) ¢ increases as & decreases if either & > % or £ <0 and k is an
even number .



Proof. Since £ is a root of Eq. (6) , we have ¢ = (£ — 1) /¢ and

d—g—f’”[(( k)E) + k] (8)

(i) If 0 <&< £ or £ <0and kisan odd number , then % ¢ >0 and £
increases with ¢ .

(ii) In this case we get from (8) that Z’—g < 0. Thus & decreases as ¢
increases .

Lemma 2.3 Let m # n be positive integers and f(0) = sinmf/sinnf .
Then

(i) f(0) decreases in (0,Z) for m > n and in (0,7)\{0,%,2%, .,7} for
m=mn-+ 1.

(i) f(0) increases in (0,%) for m < n and in (0,7)\{0,%,2%, .., 7} for
m=mn—1.

Proof. We have that

£ (8) = (m cos mb sinnf — n cos nf sin mo) / sin?nb .

Letting
G(0) = 2 (mcosm@ sinnf — ncosnf sinmd) ,
then
G(#) = (m —n)sin (m +n) 0 + (m + n)sin (m —n) 6, 9)
and

G (0) =2 (n -m )sin mf sinnd . (10)

(i) : Since m > n , we have that G'(6) <0 for 0 <6 < Z but G(0) =
0. Thus f (8) < 0 in (0,Z) and f(f) is a decreasing function in (0, Z) .
Now , let m =n+ 1 Eq.(9) becomes

G(0) =sin(2n+1)§ — (2n + 1) sin @ .
Since G (f) < 0 for 0 < 6 < 7 , it follows that f () < 0 and f () =

% is a decreasing function on 0 < # < 7 . The second part (ii) can

be proved similarly .



Lemma 2.4 Let k > 1 be positive integer , and 0 < 0 < m. If |a| > %,
then

sin k6
sin(k—1)6
has ezactly (k — 2) roots 6; (1 = 2,3,...,k — 1) such that 6; € I; = ((i,:)w, %) =
(ai, b;) . For |a| < £, Eq.(11) has an additional root in the interval (0,
(0,

—la|] =0 (11)

>N =

= )

)
sin(k—1)8 k)"
, it follows that there exists

Proof. By Lemma 2.1, the function f (§) = -S2f— decreases in
k k
z

If |a] < £%, then from limg_ o+ f (0) = =5
e (k) > 0 such that f(¢) — |a] > 0 and f (%) — |a|] < 0. Therefore, Eq.(11)

has only one root in (0, %) . For |a| > £, it is clear that f(07) < 25 <

la| and f (%) < 75 < |a|. Since f () decreases in (0 ”), it follows that

'k
f(0) — £ =0 has no roots in (0, %) .

Now we show that every interval I; (i = 2,3, ...,k — 1) contains only one
root of Eq.(11) . We notice that for any |a| , there exists a number 7 €
I; such that f(7) — |a] > 0 (this follows from limy_,,, f () = o0), also
f(b;) — |a|] < 0. Therefore, I; contains at least one root of equation Eq.(11)
. To complete the proof , it is enough to show that f(f) decreases in any
interval I; . Following the steps of the proof of Lemma 2.3. , where m =k

and n =k —1 ,then Eq.(10) becomes

G (0) = —2(2k —1)sin kfsin (k — 1) 6 . (12)
In the interval I; we have

i—-1)rm< (i = 1) kr

ﬁ<k9<i7r
and
(i—1)7r<(i];#<k9<i7r
and
(i—Dr<(k-1)9< EZDIm 0



Therefore, si;;gfﬁ)e >0 in L(i=2,3,..,k—1) and G (§) <0 . It

follows that f () < 0 in I; and f(0) decreases in I; and the root of
f(0) —|a| =0 is unique in I; .

Lemma 2.5 The number of real roots of Eq.(6) is given as follows :
(i) Two ( one ) roots for ¢ <0 and k is an even ( odd ) number .
(ii) No roots ( one root ) for ¢ > By = (k*,i#

) number .

(1ii) Two ( three ) roots for ¢ < Py, and k is an even ( odd ) number .

and k is an even ( odd

Proof. The validity of this lemma can be shown graphically from the
graphs of 7 = cu* and 7 = p—1. Note that when ¢ = S, the linen = u—1
is tangent to the curve n = cu® The analytical proof will appear in the sequel.
If we write complex roots of Eq.(6) in the form pu = r (cos@ +isinf) ,we
get the following equations

crfcoskf —rcosf+1=0 (13)

cr¥sin k@ — rsin = 0. (14)
From Eqgs.(13) and (8) , it follows that

. sin k6 (15)
"~ Sin (k—1)0

sin 0
C= -
rk=1sin k0

Let 6, (i =1,2,...,k — 1) be the solutions of Eq.(11) , it follows from (15)
and (16) that

(16)

sin 01

=" 17
la|* " sin k6; (17)

The number of the complex roots of Eq.(6) corresponding to 6; will be
discussed in the following .



Lemma 2.6 . The number of complex roots of Eq.(6) equals the number of
solutions of Fq.(11) .

Proof. It is clear that if 6; is a solution of Eq.(11) in (0,7) , then
2m —6; 1is also a solution. This means that 6; and 27 —6; are corresponding
to complex roots of Eq.(6) that are conjugate pairs . Thus if Eq.(14) has N
roots in  (0,7) , then it has 2N rootsin (0,27) .

Case 1 : ¢ < 0. By Lemma 2.2, Eq.(11) has k — 1 roots for |a| < £
and k —2 roots for |a| > £ . We choose those values of 6; such that
¢ < 0. From Eq.(16) we conclude that ¢ < 0 when sinkf; < 0 . From
Lemma 2.2. we have

(t—1)m im
— <0<,
k-1 Tk
where i =1,2,...,k—1 for |a] < £ and i=2,3,...,k—1 for
la| > & . Hence
k(-1
(i—l)w<%<k0i<iw. (18)

If kiseven,then sinkf; <0 for +=2,4,6,....,k—2 and the number
of roots in (0,7) is %2 and consequently k£ —2 in (0,27) . If kis
odd , then sinkf; <0 for i =2,4,6,....,.k —2 and the number of roots in

(0,2m) is k—1.

Case 2 may be proved similarly.

3 Main Results

In what follows we give theorems which guarantee that all roots of Eq.(6)
are inside the disk |p| < |a] .

Theorem 3.1 Let k > 1 be an integer, and ¢ an arbitrary real . Then all
complex roots of Eq.(6) are inside the disk |p| < |a| if and only if

N =

(1 + a? — 2 |al cos ¢):

l¢| > - : (19)
|al
where ¢ 1is the solution in I = ((kk__?”, (k_kl)ﬂ) f shféﬁf‘i)g = la| .
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Proof. The complex roots of (6) , = r (cosf +isinf) ,where 0 < 6 <
27 and r > 0, can be obtained from (13) and (11) . Applying simple
operations on (13) and (11) , one obtains the following :

1

\C\:T,c—,l

sin 0
sinkf|

sin 6

The level curves of F (c,r,0) = |c|rF~! —| S0

are given by # =constant

. Assume that |a| < ;&5 (the case |a| > % can be treated similarly)
and 6; < 0y < ... < O_; are the solutions of |a| = sirf(izf?)e in (0,7) . The

equations of the level curves in the (r,c) plane are given by

1

sin Hz
lc(r)| = FE—1

sin k@z

Li=1,2,.. k—1 .

[V

(1—|—a2—2|a\ cos 0)
la[*

an increasing function of # in (0, 7) ,(% > 0), then for r = |a| and

01 <0y <..<6_1, weget the corresponding values

is

It is clear that |c (r)| is a decreasing function. Since |c (|a|)| =

(M

(1+a— 2||ka‘ T

i (Jal)] =

la

that satisfy |[c1| < |co| < ... <|cg—1] -

It is not difficult to show that r < |a| if and only if |c| > [cx—1 (Ja])| -
In fact since |c(r)| is a decreasing function, |c(7)| > |ck—1 (|a|)| implies
r < |a| . Also r < |a| implies that |c(r)] > ¢z 1 (Ja]) , for if we assume
the contrary , we obtain 7 > |a| .This is a contradiction. Since c¢g_; (|a|) is
the corresponding value to 6;_; = ¢ that lies in ((kk_fl)”, (k_kl)”) , the proof
is complete .

Theorem 3.2 . Let k > 1 be an odd integer and ¢ > 0 . Then all roots of
Eq.(6) are inside the disk |p| < |a| if and only if

la| + 1
lal*

(20)




Proof. First we deal with the roots of Eq.(6) . Set F (u) = cu® —p+1
and note that F (0) >0, F(—oo) <0and F" (u) < 0 for u < 0 it follows

that Eq.(6) has one negative root. If ¢ = fj = (k_li,)ckfl , then Eq.(6) has
a double root p = £ Putting F; (u) = Bep* — p+ 1, we see that if

¢ > [ then F (ﬁ) > F (%) =0 , and so Eq.(6) has no positive roots

. If ¢< B, then F (ﬁ) < F; (ﬁ) =0, and so Eq.(6) has exactly two
positive roots .
Now , consider the equation

Fo(p)=copF —p+1=0 (21)

where
_ lal41

Co = afF

Case 1 : ¢4 > Br. There are no positive roots and ¢ > ¢, is a sufficient
condition.

Case 2 : ¢, < Bg.For ¢, < ¢ < By, Eq.(6) has two positive roots
&< % , & > ﬁ and a negative root & . Lemma 2.1. implies that
€| <la|

To prove that & and &, are less than |a| , it is enough to show that
& < |a| for ¢, < ¢ < B . For this aim we show that F (u) > 0for p > |al .
In fact , for p > |a| , we have that F, (u) > W— 1>0,and F,(|a])>
0,and so F,(u) > 0. Since F (u) > F,(p) , then F () > 0 . Therefore
the real roots of Eq.(6) are inside the disk |u| < |a|if and only if ¢ > ¢, .
Theorem 3.1 implies that all complex roots of Eq.(6) are inside the unit disk

lp| < |a| if and only if

(1+ a? —2]al cos qﬁ)%
jaf* ’

e >
where ¢ is defined in Theorem 3.1

Theorem 3.3 . Let k > 1 be an odd integer and ¢ < 0. Then all roots of
Eq.(6) are inside the disk |p| < |a| if and only if

=

(1+a? —2|alcos @)

c< — E , (22)

la
where ¢ is defined in Theorem 3.1

9



Proof. Since F () = cu® — p + 1 satisfies the following properties :
FO)F(1) <0, F(u) <0for p >1, F(p) > 0for p <0, and
F'(u) < 0for 0 < u < 1, then Eq.(6) has one positive root & < 1. If
la| > 1, then the positive root ¢ < |a| . It follows from Theorem 3.1 that
all the roots of Eq.(6) are inside the disk |u| < |a| if and only if (12) holds .
If |a| < 1, then the equation

ol — 1

Jal*

pr—p+1=0

has the positive root u = |a| . Applying Lemma 2.1, we conclude that the
positive root & of Eq.(6) satisfies £ < |a| if ¢ < % . Using Theorem 3.2.
and the fact that

(1+a2—2|a|cos¢)% la] — 1
- k < k

lal lal

for |a| <1, yields the desired result.

Theorem 3.4 . Let k > 1 be an even integer and c¢ > 0 . Then the
following statements hold true :

(i) if ¢ > (k_;,)ck_l = fk , then all roots of Eq.(6) are inside the disk

| < |a| if and only if

o=

(1+ a? — 2|al cos ¢)
‘k:

c> (23)

la

(it) if |a| > £, then all roots of Eq.(6) are inside the disk |u| < |al if
and only if

D=

(1+a2_|2ka(:05¢) <c< B (24)

la
where ¢ is defined in Theorem 3.1

Proof. (i) If ¢ > B , then Eq.(6) has no real roots and Theorem 3.1
implies that all complex roots are inside the disk |u| < |a] if and only if (23)
holds .
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(ii)) If ¢ < Bk , then Eq.(6) has two positive roots 0 < & < % and

& > £ . The proof is similar to that of Theorem 3.3. For |a| < %5 , it

follows that & > |a| . For |a| > % , the equation

a| -1
|a|k w—=p+1=0

has the positive root u = |a| . Applying Lemma 2.1. we conclude that if

‘TIL‘}I <c< By, then |a| > & > % . Since

N =

laj—1 (1+a®—2]a|cos®)
o< %

lal lal

it follows by Theorem 3.1 that all the roots of Eq.(6) are inside the disk
|p| < |a| if and only if (23) holds .

Theorem 3.5 . Let k > 1 be an even integer and ¢ < 0. Then all roots of
Eq.(6) are inside the disk |p| < |a| if and only if

_al+1
jaf*

Proof. For F () = cpf — u+1 ,we notice that F (0) F (1) < 0 and for
0<p<1wehave F' (u) = kep*~' —1 < 0. Therefore Eq.(6) has exactly
one positive root in (0,1) . Ia is clear that F(u) < 0 for x> 1, and so
Eq.(6) has no other positive roots. Similarly it is not difficult to show that
Eq.(6) has only one negative root . Consider the equation

al+1
- “G|k pr—p+1=0

that has a negative root p = —la| . If ¢ < — |‘|1C‘L?;1 , then Lemma

1. implies that the negative root &; satisfies [£;| < |a| . Clearly that the
positive root & < |a| for |a| > 1.1If |a|] <1, then from F (—o0) < 0 and
F(=&) =8+ 1+ & = 26 > 0 , we conclude that & < —& , hence
& < |&| < |a| . The proof would be complete if we apply Theorem 3.1 to
complex roots and observing that
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D=

la] + 1 (1+ a? — 2]al cos @)
- ST k

la| lal
Next we present necessary and sufficient conditions for the roots of Eq.(5) to
be inside the unit disk .

Theorem 3.6 . Let k > 1 be an odd integer . Then all the roots of Eq.(6)
are inside the unit disk if and only if one of the following conditions hold.
(i) b>a+1land a>0 .
(i) b<a—1and a<0 .
1
(iii) b< — (1+a* — 2acos¢)? and a>0 .
1
(iv)b> (1+a®>—2]alcosg)? anda <0 ,

where ¢ is the solution in I = ((k,%l)”, @) of sinséﬁ?)e = |a| .

Proof. We recall first that the roots of Eq.(5) are inside the unit disk if
and only if the roots of Eq.(6) are inside the disk |u| < |a| .

(i) Since @ > 0and b >0 , then ¢ > 0 and Theorem 3.2. implies that
all roots of Eq.(5) are inside the unit disk if and only if

_b a+1
C_E ak

ie. b>a+1.
(i) Here also we have that ¢ > 0. Theorem 3.2 implies that all roots of
Eq.(5) are inside the unit disk if and only if

£> —a+1 a-1
ak (_a)k - ak

or b<a—1.Notethat a* <0 .
(iii) Since ¢ > 0 and b < 0 , then ¢ < 0 and Theorem 3.3 implies that
all roots of Eq.(5) are inside the unit disk if and only if

o=

b (1 +a® — 2acos ¢)

ak ak

(iv) Since a < 0 and b > 0 , then ¢ < 0 and Theorem 3.3. implies that
all roots of Eq.(5) are inside the unit disk if and only if
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N

b (1+ a? —2|a|cos ¢)

ak —ak

or equivalently

M

b> (1+a2—2|a|cos¢) :

Theorem 3.7 . Let k > 1 be an even integer . Then all the roots of Eq.(6)
are inside the unit disk if and only if one of the following conditions holds :
(i) b<—la|—1
1 k—1
(ii) b> (1+a®—2|alcosp)? and either b > %ak
or b<(k_;#ak and |a| > &,

where ¢ is the solution in I = ((kk_fl)”, (k_kl)”) of Si;&‘f?)a =

lal

Proof . (i) Since b <0 , then ¢ < 0 and Theorem 3.5. implies that all
roots of Eq.(5) are inside the unit disk if and only if

b la| +1
a* jal*

The result follows if we notice that a* > 0.
(ii) Since b > 0 and k£ is an even integer , then ¢ = a% > 0 Applying

Theorem 3.5. (i) we obtain that if % > (k_;# , then all roots of Eq.(5)
are inside the unit disk if and only if

D=

b - (1+ a® — 2 |a| cos ¢)

ak —ak

Thus the first part of (iii) follows directly . The second part of (iii) can
be proved similarly using Theorem 3.4. (ii) .

Using Theorems 3.6 and 3.7 we have th following fundamental result..
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Theorem 3.8 . Let k > 1 be an integer and let a, b be arbitrary reals .
Equation (3) is asymptotically stable if and only if Conditions (i) - (iv) of
Theorem 8.6. holds for even k or Conditions (i)- (ii) of Theorem 3.7. for
odd k.

Figures 1 and 2 show the domains of (a,b) for which the roots of
A —aX+1 =0 with a # 0 and k > 1, are inside the unit disk and
consequently for which the difference equation (3) is asymptotically stable .
Finally we establish the counterpart of the result of Levin and May for dif-
ference equations of advanced type.

Theorem 3.9 Let a=1 and b is an arbitrary real number, and k > 1 is a
positive integer. Then the zero solution of Eq(3) is asymptotically stable if
and only if either b > 2 or

Corollary 3.10
b < —2|cos[(2k — b5)n/(4k — 2)]| (25)

Proof. From Theorems 3.6 and 3.7, the zero solution of Eq(3) is asymp-
totically stable if and only if

(i) b>2o0rb< —/(2—2cos¢) if k is odd.

(i) b< 20rb>\/>2—2cos¢)andb> L l)k :

where ¢ is the solution in I = <(kk__21)7r, (k—1)m ) of snf(i;clfﬁ)a = |a| . We first
observe that b > 2 implies b > \RQ - 2cos(q§)) which in turn implies that

b > (k_,i# Furthermore, b < \ﬂ2 — 2 cos ¢) implies that b < —2. Hence the
zero solution of Eq(3) is asymptotically stable if and only if b6 > 2 or

b < —\[(2 —2cos ¢) = —2sin(9). (26)

Since sin(k¢) = sin(k—1)¢, it follows that either (k—1)¢p+kd = (2n+1)7
or (k—1)¢ = k¢ + 2nm,n € Z. But the second option is invalid for ¢ € I.
The first option yields n = k£ — 2. Hence
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For k = 2,¢ = /3 lies in the first quadrant and for £ > 2, ¢ lies in the
second quadrant. Hence

—2sin(¢) = —2]| cos (%) (28)

which establishes the theorem.
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