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Abstract

The data describing an asymptotic linear program rely on a single param-
eter, usually referred to as time, and unlike parametric linear programming,
asymptotic linear programming is concerned with the steady state behavior as
time increases to infinity. The fundamental result of this work shows that the
optimal partition for an asymptotic linear program attains a steady state for
a large class of functions. Consequently, this allows us to define an asymptotic
center solution. We show that this solution inherits the analytic properties of
the functions used to describe the feasible region. Moreover, our results al-
low significant extensions of an economics result known as the Nonsubstitution
Theorem.

Key Words: Asymptotic Linear Programming, Analytic Matrix Theory, Op-
timal Partition, Mathematical Economics, Nonsubstitution Theorem

† Department of Mathematics, Trinity University, San Antonio, TX, USA.
†† Hearin Center for Enterprise Science, School of Business Administration, The

University of Mississippi, University, MS, USA.
††† Department of Mathematics, Pacific Lutheran University, Tacoma, WA,

USA.
∗ Research supported by ONR grant N00014-01-1-0917. Research conducted

at Trinity University.



1 Introduction

The data describing many business and economic linear programs depend on a
single parameter t, usually viewed as time. As such, understanding the dynam-
ics of a solution as time progresses is important, and steady-state properties are
often desired. A property stabilizes if it attains a steady-state for all sufficiently
large t, (typical properties are feasibility and boundedness).

The foundational work on asymptotic linear programming was done by
Jeroslow in [15] and [16], where the author assumes that the data functions
are rational. In [15], the author shows that an optimal basis becomes stable for
sufficiently large t, and that the number of basic optimal solutions stabilizes.
This article also shows how to use the simplex method to produce a steady-
state optimal basis. The continuity properties of a basic optimal solution near
its poles are investigated in [16]. Bernard [3, 4] has studied the complexity of
updating a basis in the special case of the data being linear in t. Economic
models are developed and analyzed in [2] and [4].

Throughout, we are concerned with the asymptotic linear program

LP (t) min{cT (t)x : A(t)x = b(t), x ≥ 0},

and it associated dual

LD(t) max{bT (t)y : AT (t)y + s = c(t), s ≥ 0},

where A(t) : IR → IRm×n, b(t) : IR → IRm, and c(t) : IR → IRn. For any t ∈ IR,
the data instance defining LP (t) is (A(t), b(t), c(t)). The feasible region for
LP (t) is denoted by P(t), and the strict interior is Po(t) = {x ∈ P(t) : x > 0}.
Similarly, the dual feasible region is D(t), and its strict interior is Do(t) =
{(y, s) ∈ D(t) : s > 0}. The primal and dual optimal sets are denoted by P∗(t)
and D∗(t), respectively. The necessary and sufficient optimality conditions for
LP (t) and LD(t) are

A(t)x = b(t), x ≥ 0, (1)
AT (t)y + s = c(t), s ≥ 0, and (2)

xT s = 0. (3)

The theoretical elegance and robust computational behavior of the simplex
method dominated the linear programming literature until the 1980s. However,
the lack of a polynomial time simplex algorithm lead researchers to investigate
other solution techniques, and in 1979 Khachiyan [18] developed an interior
point algorithm that showed that the class of linear programs is solvable in
polynomial time. While Khachiyan’s result substantially added to the theory
of linear programming, the practical performance of this algorithm was disap-
pointing. As such, the mathematical programming community’s focus remained



on the simplex algorithm. This changed in 1986 when Karmarkar [17] claimed
to have an interior point algorithm that out performed the simplex algorithm.
This claim was heavily scrutinized by the academic community, and we now
understand that interior point algorithms are not just viable alternatives to
the simplex algorithm, but that they do indeed out perform simplex based
procedures on large problems.

The most prevalent interior point algorithms are called path-following inte-
rior point algorithms, and these algorithms follow an infinitely smooth curve,
called the central path, towards optimality. Our succinct development of the
central path is adequate for our purposes, but interested readers are directed
to the three texts of Roos, Telaky, and Vial [23], Wright [27], and Ye [28]
for a complete development. The central path is constructed by replacing the
complementarity constraint in (3) with

Xs = µe, (4)

where X is the diagonal matrix of x, µ is positive, and e is the vector of ones.
Notice that this constraint requires an x and a (y, s) such that x > 0 and s > 0,
and hence, it requires that the primal and dual strict interiors be nonempty
—i.e. Po(t) 6= ∅ and Do(t) 6= ∅. Because we are interested in the solutions
provided by path-following interior point algorithms, we make the following
assumption.

Assumption 1 For sufficiently large t ∈ IR, the strict interiors of the primal
and dual feasible regions are nonempty.

Assumption 1 is equivalent to assuming that the primal and dual optimal sets
are bounded for large t [27], and without loss in generality we assume through-
out that t is large enough to satisfy this assumption. The x and s components of
a solution to the system (1), (2), and (4) are unique and are denoted by x(µ, t)
and s(µ, t)) (see any of [21, 23, 27, 28]). The reason that y is not guaranteed
to be unique is that y and s are not guaranteed to be related in a one-to-one
fashion —i.e. A(t) is not guaranteed to have full row rank. To overcome this
difficulty, we set y(µ, t) = (AT (t))+(c(t)−s(µ, t)), where (AT (t))+ is the Moore-
Penrose pseudo inverse of AT (t). We make the following naming conventions
for a fixed t.

The central path at time t : {(x(µ, t), y(µ, t), s(µ, t)) : µ > 0}
The primal central path at time t : {x(µ, t) : µ > 0}

The dual central path at time t : {(y(µ, t), s(µ, t) : µ > 0}

The central path has a unique limit, called the center solution, which is in the
strict interior of the optimal set. Denoting this limit by (x∗(t), y∗(t), s∗(t)), we
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have for sufficiently large t that

lim
µ↓0

x(µ, t) = x∗(t) ∈ P∗(t), and

lim
µ↓0

(y(µ, t), s(µ, t)) = (y∗(t), s∗(t)) ∈ D∗(t).

Unlike a basic optimal solution, the analytic center solution is always strictly
complementary, meaning that (x∗(t))T s∗(t) = 0 and x∗(t) + s∗(t) > 0. (An
early result due to Goldman and Tucker guarantees that every solvable linear
program has such a solution [7].) Any strictly complementary solution induces
the optimal partition, which for sufficiently large t is defined by

B(t) = {i : x∗i (t) > 0}, and
N(t) = {1, 2, 3, . . . , n}\B(t).

The set B(t) indicates the collection of primal variables allowed to be positive
at optimality, and the set N(t) indicates the collection of primal variables that
are zero in every optimal solution. The roles of B(t) and N(t) are reversed for
the dual problem, so N(t) indexes the dual slack variables allowed to be positive
at optimality, and B(t) indicates the collection of dual slack variables forced to
be zero at optimality. Allowing a set subscript on a vector (matrix) to be the
subvector (submatrix) corresponding with the components (columns) indexed
by the set, we have that the optimal partition characterizes the optimal sets as
follows,

P∗(t) = {x ∈ P(t) : xN(t) = 0}
= {x : AB(t)(t)xB(t) = b(t), xB(t) ≥ 0, xN(t) = 0} (5)

and

D∗(t) = {(y, s) ∈ D(t) : sB(t) = 0} =

{(y, s) : ATB(t)(t)y = cB(t)(t), ATN(t)(t)y + sN(t) = cTN(t)(t), sN(t) ≥ 0}. (6)

The strict interiors of the optimal sets are

(P∗(t))o = {x ∈ P∗(t) : xB(t) > 0}, and
(D∗(t))o = {(y, s) ∈ D∗(t) : sN(t) > 0}.

The primal center solution is the analytic center of P∗(t), and the dual center
solution is the analytic center of D∗(t). This means that x∗(t) is the unique
solution to

max

 ∑
i∈B(t)

ln(xi) : AB(t)(t)xB(t) = b(t), xB(t) > 0, xN(t) = 0

 . (7)
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Similarly, (y∗(t), s∗(t)) solves

max

 ∑
i∈N(t)

ln(si) : ATB(t)(t)y = cB(t)(t), A
T
N(t)(t)y + sN(t) = cTN(t)(t), sN(t) > 0

 .

The necessary and sufficient Lagrange conditions for the mathematical program
in (7) are the existence of a ρ and a γ such that

AB(t)(t)xB(t) = b(t), xB(t) > 0,
ATB(t)(t)ρ+ γ = 0, γ > 0, and

XB(t)γ = e.

 (8)

The dual multipliers ρ and γ are not y∗(t) and s∗(t). Since the mathematical
program in (7) is strictly convex, x∗B(t)(t) uniquely satisfies these equations.
Also, sinceX∗B(t)(t) is invertible, the third equation implies that γ is also unique.
However, if AB(t)(t) does not have full row rank, the linear relationship between
ρ and γ is not one-to-one. Subsequently, ρ is unique only if AB(t)(t) has full row
rank. We later use the fact that AB(t)(t) and b(t) could have been replaced in (7)
by a submatrix of AB(t)(t) having full row rank and a corresponding subvector
of b(t) —i.e. via row reduction. If such a substitution were undertaken, we have
that the solution to (8) is unique and that x∗B(t)(t) remains uniquely optimal
(but γ and ρ are different). Similar conditions are available for the dual center
solution.

Our goal is to revisit the topics first investigated by Jeroslow, but instead of
dealing with basic optimal solutions, we deal with the optimal partition and the
center solution. We note that our approach is more general for the following
two reasons. First, if LP (t) and LD(t) have unique solutions for sufficiently
large t, the center solution is basic. Since we show in Section 2 that the center
solution stabilizes, our results include the case of unique optimal basis —i.e.
our results reduce to Jeroslow’s results when the optimal solution is unique
for all sufficiently large t. Second, our analysis is more general because it
does not require that the data be rational in t (asymptotic linear programs
in the literature have been built with rational functions [15, 16] and linear
functions [2, 3, 4, 29]). In fact, the only restriction made on A(t), b(t), and c(t)
is that they adhere to Assumption 2.

Assumption 2 We assume that the triple (A(t), b(t), c(t)) is well-behaved,
meaning that there exists a time T , such that for t ≥ T , the functions A(t),
b(t), and c(t) are continuous and have the property that the determinants of all
square submatrices of [

A(t) 0 b(t)
0 AT (t) c(t)

]
are either constant or have no roots.
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For example, if (A(t), b(t), c(t)) is rational, the determinants of the square sub-
matrices are rational and Assumption 2 is satisfied. However, the class of
functions with which we deal is substantially larger than the set of rational
functions.

We are interested in properties that reach a steady state or stabilize as time
attains sufficiently large values. One of the main results of this paper shows that
there exists a time T , such that for all t ≥ T , the optimal partition stabilizes.
In other words, we show that there exists a time T , such that the components of
an optimal solution required to be zero at T are precisely the decision variables
that must be zero for each t ≥ T . Hence, the collection of variables that must
be zero in an optimal solution stabilizes.

The paper proceeds as follows. In Section 2 we present a simple argument
showing that the optimal partition stabilizes. Using this result, we develop
some analytic properties in Section 3. In Section 4 we show that the results of
Section 2 have economic implications by extending a famous economics result
called The Nonsubstitution Theorem. Conclusions and directions for future
research are located in Section 5.

Some brief notes on notation are warranted before we begin our develop-
ment. A superscript + on a matrix indicates the Moore-Penrose pseudo in-
verse (a good reference is Campbell and Meyer [5]). Capitalizing a vector
variable forms a diagonal matrix whose main diagonal is comprised of the ele-
ments of the vector. So, if x and γ are vectors, X = diag(x1, x2, . . . , xn) and
Γ = diag(γ1, γ2, . . . , γn). The rank, column space, and null space of a matrix A
are denoted rank(A), col(A), and null(A), respectively. The determinant of the
matrix A is det(A). The collection of real valued functions having n continuous
derivatives is denoted Cn, and we use the standard notation that C0 is the set
of continuous functions. For notational ease, we say that the matrix function
M(t) is in Cn if every component function of M(t) is in Cn. Other notation is
standard within the mathematical programming community and may be found
in the Mathematical Programming Glossary [8].

2 The Asymptotic Optimal Partition

The main objective of this section is to establish that the optimal partition
stabilizes, and we define the asymptotic optimal partition to be the optimal
partition that attains a steady-state. The following example clarifies our ob-
jectives.

Example 1 Consider

A(t) =
[
1, 1 +

1
et

]
, b(t) =

(
1 + t

t

)
, and c(t) =

(
1/t

tan−1(t)

)
.
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Let x̂(t) be an optimal solution at time t. Then,

A(1,1)(t)c2(t) < A(1,2)(t)c1(t) ⇒ x̂(t)1 = 0,
A(1,1)(t)c2(t) > A(1,2)(t)c1(t) ⇒ x̂(t)2 = 0, and
A(1,1)(t)c2(t) = A(1,2)(t)c1(t) ⇒ neither x̂(t)1 or x̂(t)2 must be zero.

These conditions imply that

for 0 < t < 1.34961, we have (B(t)|N(t)) = ({2}|{1}),
for t > 1.34961, we have (B(t)|N(t)) = ({1}|{2}), and
for t = 1.34961, we have (B(t)|N(t)) = ({1, 2}|∅).

So, the collection of indices of the decision variables that must be zero in an
optimal solution stabilizes after 1.34961. However, if we replace c with

c(t) =
1
t

(
cos(t)
sin(t)

)
,

we have that the components forced to be zero at optimality change with every
solution to tan(t) = 1 + 1/et. Since this equation has an unbounded sequence
of solutions, the desired stability does not exist. Notice that for this c, we have
‖c(t)‖ = 1/t, which is monotonically decreasing. Hence, component functions
that provide monotonic norms are not sufficient. We also point out that the
optimal partition exists for t = ∞ (assuming t is in IR∗ = IR ∪ {∞}). In this
case we have that A(∞) = [1, 1], b(∞) = (1), and c(∞) = (0, 0)T , which implies
that (B(∞)|N(∞)) = ({1, 2}|∅). We mention this to distinguish the difference
between behavior at∞, which we are not investigating, and asymptotic behavior,
which we are investigating. In this last situation we have that the optimal
partition does not stabilize because for every t1 we can find a larger t2 such
that the optimal partitions are different. However, the partition does exist for
t =∞.

Let {(B1|N1), (B2|N2), . . . , (B2n |N2n)} be all possible two set partitions of
{1, 2, . . . , n}. For any fixed time, one of these partitions is the optimal partition
for LP (t). We relate t to a partition by defining φ(t) : IR → {1, 2, . . . , 2n},
such that the optimal partition of LP (t) is (Bφ(t), Nφ(t)). We note that φ is
well defined because the optimal partition is unique. The goal of this section
may now be stated as showing that there exists T such that φ(t) is constant
for t ≥ T .

For j = 1, 2, . . . , 2n, let vj = (vT1 , v
T
2 , v

T
3 )T be partitioned as

(
xT
Bj
, yT , sT

Nj

)T .
Define

Hj(t) =

 ABj (t) 0 0
0 AT

Bj
(t) 0

0 AT
Nj (t) I

 and hj(t) =

 b(t)
cBj (t)
cNj (t)

 .
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We say that vj is sufficiently positive, written vj>|0, if v1 > 0 and v3 > 0.
Observe that v̂φ(t) = (v̂T1 , v̂

T
2 , v̂

T
3 )T relates to

((xT
Bφ(t) , x

T
Nφ(t)), yT , (sTBφ(t) , s

T
Nφ(t))) = ((xT

Bφ(t) , 0), yT , (0, sT
Nφ(t)))

in a one-to-one fashion —i.e. v̂1 ↔ xBφ(t) , v̂2 ↔ y, and v̂3 ↔ sNφ(t) . From (5)
and (6) we now see that the set of sufficiently positive solutions toHφ(t)(t)vφ(t) =
hφ(t)(t) is isomorphic to (P∗(t))o × (D∗(t))o. Also, from the fact that the op-
timal partition is unique, we have the important property that the equation
Hj(t)vj = hj(t) has a sufficiently positive solution if, and only if, j = φ(t).

The proof that the optimal partition stabilizes depends on the following
three lemmas. The first of these lemmas shows that the rank of a matrix
attains a steady-state under Assumption 2.

Lemma 1 Let M(t) be a matrix function whose component functions have
the property that there exists a time T , such that for all t ≥ T , the determi-
nants of all square submatrices are either constant or have no roots. Then, the
rank(M(t)) stabilizes.

Proof: Let T be such that for all t ≥ T , the determinants of all square
submatrices of M(t) have either become constant or have no roots. Let S(T )
be a maximal submatrix of M(T ) with nonzero determinant. Then, all larger
square submatrices have a determinant of zero for t ≥ T . Since det(S(t)) 6= 0
for t ≥ T , we have that rank(M(t)) = rank(S(t)) for t ≥ T .

The second lemma shows that the optimal partition remains constant over
a neighborhood provided that hj(t) remains in the column space of Hj(t), and
that the Moore-Penrose pseudo inverse of Hj(t) is continuous. The continuity
of H+

j (t) might appear self serving, but as we shall see, this condition is tied
closely to the rank of Hj(t), which is easier to deal with.

Lemma 2 Let t0 be large enough to satisfy Assumption 1, and set j = φ(t0).
Let N be a neighborhood of t0 such that H+

j (t) is continuous over N and that
hj(t) ∈ col(Hj(t)) for t ∈ N . Then, the optimal partition is constant over some
neighborhood about t0.

Proof: Let vj(t0) be a sufficiently positive solution to Hj(t0)vj = hj(t0).
Then, vj(t0) = H+

j (t0)hj(t0) + q(t0), where q(t0) ∈ null(Hj(t0)). Let

vj(t) = H+
j (t)hj(t) + (I −H+

j (t)Hj(t))(q(t0) +H+
j (t0)hj(to)−H+

j (t)hj(t)).

The proof follows once we show that for t sufficiently close to t0, vj(t) is a
sufficiently positive solution to H+

j (t0)vj = hj(t0). First, since

(I −H+
j (t)Hj(t))(q(t0) +H+

j (t0)hj(to)−H+
j (t)hj(t)) ∈ Null(Hj(t))
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we have

Hj(t)vj(t) = Hj(t)H+
j (t)hj(t)

= hj(t),

where the last equality follows because hj(t) ∈ col(Hj(t)). Second, because
both H+

j (t) and hj(t) are continuous at t0, H+
j (t0)hj(to)−H+

j (t)hj(t)→ 0 as
t→ 0. Hence, as t→ t0

(I −H+
j (t)Hj(t))(q(t0) +H+

j (t0)hj(to)−H+
j (t)hj(t))

→ (I −H+
j (t0)Hj(t0))q(t0) = q(t0),

where the last equality follows because q(t0) ∈ Null(Hj(t0)). We now have that

vj(t) = H+
j (t)hj(t) + (I −H+

j (t)Hj(t))(q(t0) +H+
j (t0)hj(to)−H+

j (t)hj(t))

→ H+
j (t0)hj(t0) + q(t0)

>| 0,

which completes the proof.

Lemma 2 connects the local stability of the optimal partition with the con-
tinuity of H+

j (t), and Lemma 3 shows that the Moore-Penrose pseudo inverse
is continuous so long as rank is preserved. This result, together with Lemma 1,
allow us to use the steady-state behavior of the rank of Hj(t) to show that the
optimal partition stabilizes. A proof of the following result is found in [5].

Lemma 3 The matrix function H+
j (t) is continuous at t0 if, and only if,

rank(Hj(t0)) = rank(Hj(t)), for t sufficiently close to t0.

We are now ready to establish that the optimal partition of LP (t) and LD(t)
stabilizes for sufficiently large t.

Theorem 1 Assume that (A(t), b(t), c(t)) satisfies Assumptions 1 and 2. Then,
there exists a T , such that for all t ≥ T , (B(t)|N(t)) = (Bφ(T )|Nφ(T )).

Proof: We first note that Hj(t)vj = hj(t) has a solution if, and only if,
rank(Hj(t)) = rank([Hj(t)|hj(t)]). From Assumption 2 and Lemma 1 we have
that there is a T1 such that for all t ≥ T1 and all j ∈ {1, 2, . . . , 2n},

rank(Hj(T1)) = rank(Hj(t)) and
rank([Hj(T1)|hj(T1)]) = rank([Hj(t)|hj(t)]).

Assumption 1 implies that there exists T2 > T1 such that for t ≥ T2, there exists
a sufficiently positive solution to Hφ(t)(t)vφ(t) = hφ(t)(t). Let T > T2 > T1.
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Then, rank(Hφ(t)(t)) is constant and hφ(t)(t) ∈ col(Hφ(t)(t)), for t ≥ T . From
Lemma 2 we have that there is an open neighborhood, N1, about T such that
T2 6∈ N1 and (B(t)|N(t)) = (B(T )|N(T )), for t ∈ N1. Let

N2 = {T + δ̂ : (B(t+ δ)|N(t+ δ)) = (B(T )|N(T )), δ ∈ [0, δ̂]}.

Again, from Lemma 2 we have that for any t ∈ N1 ∪ N2, there is an open
neighborhood about t over which the optimal partition is stable, which means
that N1 ∪N2 is open. Now, let

t̂ = inf{t > T : (B(t)|N(t)) 6= (B(T )|N(T ))}.

Suppose for the sake of attaining a contradiction that t̂ < ∞. Since N1 ∪ N2

is open, we have that (B(T )|N(T )) 6= (B(t̂)|N(t̂)). From Lemma 2 we know
that there exists an open neighborhood, N3, about t̂ such that (B(t)|N(t)) =
(B(t̂)|N(t̂)) for t ∈ N3. However, N2 ∩ N3 6= ∅, and for any t ∈ N1 ∩ N2 we
have the contradiction that

(B(T )|N(T )) = (B(t)|N(t)) = (B(t̂)|N(t̂)).

Hence, (B(t)|N(t)) = (B(T )|N(T )) for all t ≥ T .

Theorem 1 shows that the optimal partition stabilizes, and this result allows
us to make the following definitions.

Definition 1 Assuming the data functions adhere to Assumptions 1 and 2, we
define the asymptotic optimal partition to be the unique partition for which
there exists T such that (B(t)|N(t)) = (B(T )|N(T )), for all t ≥ T . We denote
this partition by (B̄|N̄), and we set T to be a sufficiently large time so that
(B(T )|N(T )) = (B̄|N̄).

Definition 2 Under Assumptions 1 and 2, and for t ≥ T , the asymptotic
center solution, x∗(t) = (x∗

B̄
(t), x∗

N̄
(t)) = (x∗

B̄
(t), 0), is defined so that x∗

B̄
(t)

is the unique solution to

max

∑
i∈B̄

ln(xi) : AB̄(t)x = b(t), xB̄ > 0

 .

In this section we have established, under mild assumptions, that the op-
timal partition attains a steady-state as time proceeds to infinity. This means
that the collection of variables that are zero in every optimal solution becomes
invariant for sufficiently large time. Using this information, we defined the
asymptotic optimal partition and subsequently defined the asymptotic center
solution. Properties of this unique solution are studied in the next section.
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3 Analytic Properties of the Asymptotic An-

alytic Center

In this section we exploit the fact that the optimal partition stabilizes to attain
analytic properties of the asymptotic center solution. For a fixed t ≥ T , the
analytic properties of the central path and the center solution are well studied.
For example, the elements of the central path are analytic functions of µ, b,
and c, a fact first recognized by Sonnevend [25]. Differential properties of
the central path with respect to µ are important for algorithm design and are
found in [1, 10, 11, 13, 26, 30]. Analytic properties of the center solution with
respect to b and c are studied in [13] and [14]. However, all of these results
assume that the coefficient matrix is fixed, and the only papers that consider
the more difficult situation of perturbing A are [6] and [9]. Since each of A, b,
and c depend on t in the asymptotic linear program, the results of this section
are significantly different than those in the literature. Because the results of
this section are asymptotic, we assume for linguistic simplicity that t ≥ T
throughout this section.

The main result of this section states that the asymptotic center solution
inherits the analytic properties of A(t) and b(t). So, since both A(t) and b(t)
are continuous, x∗(t) is continuous, and if A(t) and b(t) are differentiable, x∗(t)
is differentiable. The proofs establishing the continuity and differentiability of
x∗(t) are handled separately. The reason for the separate arguments is that
the vehicle of proof for differentiability is the implicit function theorem, which
is not applicable unless the data functions are themselves differentiable. The
continuity of x∗(t) is proven through an adaptation of an argument in [6]. To
explain this approach, we introduce some notation and generalize the definition
of the analytic center. Let {U(t), u(t)} be matrix functions in IRm×n × IRm,
and for each t, suppose that P (U(t), u(t)) defined by {x : U(t)x ≤ u(t)} is
bounded. For x ∈ P (U(t), u(t)), define s = u(t) − U(t)x and let I = {i :
si > 0 for some x ∈ P (U(t), u(t))}. The analytic center of P (U(t), u(t)) is
xc(U(t), u(t)) and is the unique solution to

max

{∑
i∈I

ln(si) : x ∈ P (U(t), u(t))

}
.

The following small example illustrates the difficulty of dealing with a non-
constant coefficient matrix. In particular, it shows that the analytic center
need not be continuous even if U(t) and u(t) are smooth.
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Example 2 Consider

{(U(t), u(t))} =




2− 1
1+(t−100)2 1
−1 −1
−1 0

0 −1

 ,


1
−1

0
0


 .

For t 6= 100 we have that I = {4}, but for t = 100, I = {3, 4}. It is easy
to check that xc(U(t), u(t)) = (0, 1), for all t 6= 100 (in fact this is the only
element in P (U(t), u(t))), but that xc(U(100), u(100)) = (1/2, 1/2).

From this example we see that the analytic center is not necessarily continu-
ous with respect to changes in the matrix coefficients. An important observation
is that the first two constraints are implied equalities for t = 100, but that the
first three constraints are implied for t 6= 100. Moreover, notice that

rank

([
2− 1

1+(t−100)2 1
−1 −1

])

is 2 for t 6= 100 and 1 for t = 100. What the authors of [6] were able to show
is that the analytic center is continuous with respect to matrix perturbations
at t0, so long as the rank of the matrix formed by the implied equalities at
t0 is constant over some sufficiently small neighborhood of t0. To state this
precisely, we partition the rows of U(t) and u(t) at t = t0 as indicated,

U(t) =
[
At0(t)
Bt0(t)

]
and u(t) =

(
at0(t)
bt0(t)

)
,

where At0(t0)x = at0(t0) for all x ∈ P (U(t0), u(t0)) and Bt0(t0)x < bt0(t0) for
some x ∈ P (U(t0), u(t0)) —i.e. I indexes the rows of the submatrix B. For
example, consider {U(t), u(t)} from the previous example, and let t0 = 100.
Then, the first two inequalities form the collection of implied equalities at t0,
which means that

At0(t) =

[
2− 1

1+(t−100)2 1
−1 −1

]
, Bt0(t) =

[
−1 0

0 −1

]
,

at0(t) =
(

1
−1

)
, and bt0(t) =

(
0
0

)
.
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However, for t1 6= 100 we have

At1(t) =

 2− 1
1+(t−100)2 1
−1 −1
−1 0

 , Bt1(t) =
[

0 −1
]

,

at1(t) =

 1
−1

0

 , and bt1(t) =
(

0
)

.

So, the superscript indicates the time at which the inequalities are partitioned
into those that are implied and those that are not implied. Lemma 4 shows
that the analytic center of P (U(t), u(t)) is continuous at t0, provided that the
rank of the coefficient matrix for the implied equalities is invariant over some
neighborhood about t0. A proof is found in [6].

Lemma 4 Let {U(t), u(t)} be continuous at t0. Then, the analytic center
xc(U(t), u(t)) is continuous at t0, provided that rank(At0(t)) is constant for all
t sufficiently close to t0.

From Lemma 4 we see that the continuity of the analytic center depends
on a rank condition dealing with the implied equalities. Since x ∈ P∗(t) for
t ≥ T implies that xN̄ (t) = 0, and there exists x ∈ P∗(t) such that xB̄(t) > 0,
we have that N̄ indicates the entire set of implied equalities that define the
optimal face. Moreover, we have that the asymptotic center solution is the
analytic center of the optimal face. As the next theorem shows, the rank of
these implied equalities is constant for all t ≥ T , and hence the asymptotic
analytic center solution is continuous for large t.

Lemma 5 Let (A(t), b(t), c(t)) satisfy Assumptions 1 and 2. Then, x∗(t) is
continuous for sufficiently large t.

Proof: Let t0 ≥ T , and set

U(t) =



AB̄(t) | AN̄ (t)
−AB̄(t) | −AN̄ (t)

0 | I
0 | −I

−−− | − −−
−I | 0

 and u(t) =



b(t)
−b(t)

0
0

−−
0

 ,

where the row partitioning indicates the submatrices At0(t) and Bt0(t). Since
U(t)x ≤ u(t) is the same as AB̄xB̄ = b, xN̄ = 0, and xB̄ ≥ 0, we have that
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P (U(t), u(t)) = P∗(t). So, xc(U(t), u(t)) = x∗(t), and from Lemma 4 the
continuity of x∗(t) follows because

rank




AB̄(t) | AN̄ (t)
−AB̄(t) | −AN̄ (t)

0 | I
0 | −I




is stable for sufficiently large t.

The use of c(t) differs from the use of (A(t), b(t)) in the proof Lemma 5.
This is because c(t) is used only to define B̄ and N̄ , and hence, the dependence
that x∗(t) has on c(t) is expressed through the asymptotic optimal partition.
This is in contrast to the use of A(t) and b(t), which are not only used to define
B̄ and N̄ , but are also used to define the polytope P∗(t). This observation
fore-shadows the fact that x∗(t) inherits the differential properties of A(t) and
b(t), but that c(t) only needs to be continuous for such an inheritance to work.

As previously mentioned, the proof establishing the differentiability of x∗(t)
follows from the implicit function theorem. However, the nonsingular gradient
required by the implicit function theorem is not immediately available. The
problem is that AB̄(t) need not have full row rank. We overcome this difficulty
by allowing ÂB̄(t) be a submatrix of AB̄(t) such that ÂB̄(t) has full row rank
and null(AB̄(t)) = null(ÂB̄(t)). Then, P∗(t) = {x : ÂB̄(t)xB̄ = b̂(t), xN̄ =
0, xB̄ ≥ 0}, where b̂(t) is the subvector of b(t) corresponding to ÂB̄(t). We now
have that x∗

B̄
(t) is the unique solution to

max

∑
i∈B̄

ln(xi) : ÂB̄(t)xB̄ = b̂(t), xB̄ > 0, xN̄ = 0

 ,

and because ÂB̄ has full row rank, x∗
B̄

is part of the unique solution to

ÂB̄(t)xB̄ = b̂(t)
ÂTB̄(t)ρ+ γ = 0

XB̄γ = e.

What this means is that x∗(t) is not affected by removing redundant equality
constraints, and hence, we can remove redundant equality constraints with im-
punity. Lemma 6 uses this fact to establish that the asymptotic center solution
is as smooth as AB̄(t) and b(t).

Lemma 6 Assume that (A(t), b(t), c(t)) satisfies Assumptions 1 and 2. Addi-
tionally, for t ≥ T assume that both AB̄(t) and b(t) are in Cn, for some n ≥ 1.
Then, x∗(t) is in Cn for all t ≥ T .
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Proof: Since xN̄ (t) = 0 for all t ≥ T , the proof trivially holds for these
components. Let t0 ≥ T and let ÂB̄(t0) be a full row rank submatrix of AB̄(t0)
with the property that null(ÂB̄(t0)) = null(AB̄(t0)). We note that because the
determinants of all square submatrices are either fixed or have no roots, the
collection of rows used to form Â is independent of t ≥ T . Let k be the rank
of ÂB̄(t0), and define Ψ : IR2|B|+k+1 → IR2|B|+k by

Ψ(xB̄, ρ, γ, t) =

 ÂB̄(t)xB̄ − b̂(t)
ÂT
B̄

(t)ρ+ γ

XB̄γ − e

 ,

where b̂(t0) is the subvector of b(t0) that corresponds with the submatrix
ÂB̄(t0). We point out that the solution to Ψ(xB̄, ρ, γ, t0) = 0, xB > 0, and
γ > 0 is unique, which follows because this solution satisfies (8) with AB̄(t0)
and b(t0) replaced with ÂB̄(t0) and b̂(t0). Hence, the xB̄ part of this solution is
x∗
B̄

(t0). We let ρ0 and γ0 be the unique solution to Ψ(x∗
B̄

(t0), ρ, γ, t0) = 0. The
gradient of Ψ with respect to xB̄, ρ, and γ is

∇(xB̄ ,ρ,γ)Ψ(xB̄, ρ, γ, t) =

 ÂB̄(t) 0 0
0 ÂT

B̄
(t) I

Γ 0 XB̄

 .

The full row rank of ÂB̄(t0) implies that ∇xB̄ ,ρ,γΨ(x∗
B̄

(t0), ρ0, γ0, t0) is invert-
ible (see Theorem II.41 in [23]). The desired analytic property of x∗

B̄
(t0) follows

from the implicit function theorem.

As previously alluded to, the proof of Lemma 5 required that only c(t) be
continuous for sufficiently large t. Similarly, there are no differential properties
imposed on AN̄ (t). Theorem 2 follows directly from Lemmas 5 and 6 and shows
that the asymptotic center solution inherits the analytic properties of AB̄(t) and
b(t).

Theorem 2 Assume that (A(t), b(t), c(t)) satisfies Assumptions 1 and 2. Then,
for sufficiently large t we have that x∗(t) ∈ Cn, provided that AB̄(t) and b(t)
are in Cn, n ≥ 0.

4 Economic Applications

In this section we show how to use the asymptotic optimal partition to extend
a classic result in economics known as the Nonsubstitution Theorem (a result
first proved by the Nobel Laureate Paul Samuelson [24]). This result states
that there is a collection of processes in an economy that are optimal, in the
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sense that the amount of required labor is as small as possible, independent of
the demands. The importance of the Nonsubstitution Theorem is highlighted
in the following quote [20], “The theorem was received with some astonishment
by the authors working in the neoclassical tradition since it flatly contradicted
the importance attached to consumer preferences for the determination of rel-
ative prices.” Indeed, this result has been studied by other Nobel Laureates
(Mirrlees [22]) and continues to be investigated [19].

This section is divided into two subsections. Subsection 4.1 begins by de-
veloping a simple model of an economy and continues by showing how linear
programming techniques are used to select production procedures and calcu-
late prices. After stating the The Nonsubstitution Theorem, we allow the data
describing the economy to become dynamic —i.e. dependent on the single pa-
rameter of time. Subsection 4.1 concludes with a dynamic version of the Non-
substitution Theorem, which has a surprising corollary. Subsection 4.2 removes
one of the economic assumptions required by the Nonsubstitution Theorem, and
develops a similar result under a new set of assumptions.

4.1 A Dynamic Version of the Nonsubstitution The-
orem

We consider an economic model where there are constant returns to scale and a
single, primary, non-producible, homogeneous labor source. Suppose we want
to manufacture n commodities, indexed by j, from m processes, indexed by
i. We assume that there is at least one process capable of producing each
commodity, which means that m ≥ n. A process is described by the triple
(ai, bi, li), where

• ai is a commodity input row-vector for process i (aij is the amount of
commodity j required by process i),

• bi is a commodity output row-vector for process i (bij is the amount of
commodity j yielded by process i), and

• li is the amount of labor required by process i (we assume that every
process requires some labor, and hence, that li is positive).

The goal is to achieve a profit rate of r by deciding 1) prices for the commodities,
2) a price for the labor, and 3) a processing technique. We make the following
assumption throughout this section.

Assumption 3 There is no joint production, meaning that a process can only
produce a single commodity.

From Assumption 3 we have that each bi contains a single positive component.
Without loss of generality, we assume that the output of each process is one
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unit, which means that bij is 1 if process i yields commodity j, and 0 otherwise.
Let

A =


a1

a2

...
am

 , B =


b1

b2

...
bm

 , and l =


l1

l2

...
lm

 .

So, A is an m × n input matrix, B is an m × n output matrix, and l is an
m vector of labor requirements. We order the processes so that BT has the
following form,

BT =


1 1 . . . 1

1 1 . . . 1
. . .

1 1 . . . 1

 .

The decision variables for the economy are

• xi — the amount of process i to use (or how long process i runs),

• pj — the price of commodity j, and

• w — the labor cost.

The process and price vectors are pT = (p1, p2, . . . , pn)T and xT = (x1, x2, . . . , xm)T .
Two important quantities are Bp and (1 + r)Ap + wl; the former is a price
vector for the commodities we produce, and the latter is a price vector for
the amount we wish to recover (Ap prices the commodities used as inputs,
wl is the labor costs for the processes, and the multiple (1 + r) represents
the amount of profit we wish to recover). We say that commodity i has
extra costs if (Bp)i < ((1 + r)Ap + wl)i, and that it pays extra profits if
(Bp)i > ((1 + r)Ap + wl)i. Suppose that process i0 pays an extra profit.
Then, for xi0 > 0, xi0(Bp)i0 > xi0((1 + r)Ap+ wl)i0 , and as xi0 →∞, the gap
between these two quantities grows towards infinity. Since xi0(Bp)i0 represents
the revenue generated by selling the commodity produced by process i0, and
xi0((1 + r)Ap+wl)i0 is greater than our cost to run process i0 (the actual cost
is xi0(Ap+wl)i0), we see that we can achieve infinite profits by running process
i0. Because this is unrealistic, we assume there are no processes that pay extra
profits. That is we assume

Bp ≤ (1 + r)Ap+ wl.

The triple (x, p, w), where x ≥ 0, p ≥ 0, and w > 0, is called a long-period
solution if

xT [B − (1 + r)A]p = wxT l and xTB > 0.
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The first equality guarantees that the processes that are run have no extra costs
—i.e. they achieve the sought after profit. The second inequality guarantees
that at least one process is used for each commodity. Let d be a positive n-
vector, with dj being the demand for commodity j. Prices and demand are
related through the normalization constraint dT p = 1. So, the economy is
represented by

[B − (1 + r)A]p ≤ wl, (9)
xT [B − (1 + r)A]p = wxT l, (10)

xTB > 0, (11)
dT p = 1, (12)
x, p ≥ 0, and (13)
w > 0. (14)

Our first objective is to show that long period solutions may be generated by
solving a linear program. The following lemma provides conditions for a matrix
to be monotonic, meaning that the matrix is invertible and that its inverse is
non-negative.

Lemma 7 (See Theorem A.3.1 in [20]) If there exists a non-negative x and
a scalar λ such that xT [λI − A] is positive, then λ is positive and [λI − A] is
monotonic.

A technique, denoted by σ, is a collection of processes capable of producing
all n commodities such that no two processes produce the same commodity. In
what follows, we alter the set subscript notation so that Aσ is the collection
of rows, not columns, of A indexed by σ. The initial ordering of procedures
means that for any technique σ, Bσ = I. The proof of Theorem 3 can be found
in [20], but we include the proof because we extend it in the following section.

Theorem 3 (See Lemma 5.2 in [20]) System (9) - (14) is feasible if, and
only if, the following primal and dual pair of linear programs is well-posed
(meaning that both problems have an optimal solution),

LPecon min{xT l : xT [B − (1 + r)A] ≥ dT , x ≥ 0} and
LDecon max{dT y : [B − (1 + r)A]y ≤ l, y ≥ 0}.

Moreover, if x∗ and y∗ are optimal for LPecon and LDecon, then x = x∗, p =
(1/dT y∗)y∗, and w = 1/dT y∗ are long-period solutions to system (9) - (14).
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Proof: Consider the following equations,

[B − (1 + r)A]u ≤ l, (15)
xT [B − (1 + r)A]u = xT l, (16)
xT [B − (1 + r)A] ≥ dT , (17)
xT [B − (1 + r)A]u = dTu, and (18)

dTu > 0 (19)
x, u ≥ 0. (20)

Let x∗ and y∗ be optimal solutions to (LPecon) and (LDecon). Since optimal
solutions are complementary, we have that

dT y∗ = (x∗)T [B − (1 + r)A]y∗ = (x∗)T l.

So, x∗ and y∗ satisfy equations (15), (16), (17), (18), and (20). Since d and l
are positive, every feasible solution to LPecon yields a positive objective value.
Hence, (x∗)T l = dT y∗ is positive, and y∗ satisfies equation (19).

If x∗ and u∗ are solutions to system (15) - (20), equations (15), (17), and (20)
show that x∗ is feasible to (LPecon) and u∗ is feasible to (LDecon). Moreover, from
(16) and (18) we have that (x∗)T l = dTu∗, and the Strong Duality Theorem of
linear programming implies that x∗ is optimal to (LPecon) and u∗ is optimal to
(LDecon). So, the primal and dual pair of (LPecon) and (LDecon) being well-posed
is equivalent to the consistency of system (15) - (20).

We complete the proof by showing that system (9) - (14) admits a solution
if, and only if, system (15) - (20) admits a solution. Let x∗ and u∗ satisfy
system (15) - (20). Setting x̂ = x∗, p̂ = (1/du∗)u∗, and ŵ = 1/du∗, we
see that x̂, p̂, and ŵ satisfy equations (9), (10), (12), (13), and (14). Also,
x̂TB = (x∗)TB ≥ (1 + r)(x∗)TA+ d > 0, and equation (11) is satisfied. So, the
consistency of system (15) - (20) implies the consistency of system (9) - (14).

Let (x∗, p∗, w∗) be a solution to system (9) - (14). From equation (11) we
know that each commodity is being produced, which means there is a technique
σ such that x∗σ > 0. From Lemma 7 we know that [I− (1 + r)Aσ] is monotonic.
Set x̂Tσ = dT [I − (1 + r)Aσ]−1, and embed x̂σ into x̂ such that x̂ is nonnegative
and x̂T [I − (1 + r)A] = dT . Setting û = (1/w∗)p∗, we see that x̂ and û are
solutions to system (15) - (20).

There are numerous economic models similar to system (9) - (14), each
arising from a slightly different set of assumptions. A complete discussion
of these models is beyond the scope of this work, with our objective being the
demonstration of how a model of the economy can be transformed into the realm
of linear programming. The economic variations are ultimately equivalent to
system (15) - (20), the difference being the interpretation of the data. (see [20]
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for an explanation). As such, the pair of linear programs LPecon and LDecon is
essential to the analysis of these economies. The primal linear program is easy
to interpret as minimizing the amount of labor so that demand is satisfied,
and the dual problem calculates the rates at which the optimal amount of
labor changes with respect to changes in the demand —i.e. if (x∗(d))T l is the
minimum amount of labor for demand d, ∂(x∗(d))T l/∂di = y∗i (This follows
only because there is a unique solution to LDecon. This is not an obvious fact,
and we direct interested readers to Theorem 5.2 in [20]).

Let σ be a technique. As discussed in the proof of Theorem 3, the matrix
[I − (1 + r)Aσ] is monotonic, which means that (xσ)T = dT [I − (1 + r)Aσ]−1 is
non-negative. Consequently, (xσ, 0) is a basic feasible solution. Moreover, there
are no basic feasible solutions other than those induced by techniques. To see
this, let ν be a collection of processes that is not a technique. For ν to induce a
basic feasible solution, the matrix [Bν−(1+r)Aν ] must be invertible, and hence
square. Since ν is not a technique, this means that there is a commodity not
produced by any of the processes in ν. Subsequently, there is no nonnegative
solutions to xTν [Bν − (1 + r)Aν ] = dT , and ν does not induce a basic feasible
solution.

From the Fundamental Theorem of Linear Programming we know that some
basic feasible solution is optimal. A technique σ is optimal if (xσ, 0) is an
optimal basic solution, and we say that a process is optimal if it is used in some
optimal technique. An important result first proved by Samuelson [24] is that
there is a technique that is optimal independent of demand.

Theorem 4 (Nonsubstitution Theorem) Under Assumption 3 there is a
technique σ∗ that is optimal for every possible demand vector d.

A technique that is optimal independent of demand is called demand-independent,
and an optimal processes is demand-independent if it may be used regardless of
the demand. We point out that the Nonsubstitution Theorem does not say that
σ∗ is unique. For example, suppose that there are two identical processes with
low labor requirements. A demand-independent optimal technique can only
contain one of these processes, but since the two processes are identical, there
must be an alternative demand-independent optimal technique that contains
the other process. So, calculating a demand-independent optimal technique
does not guarantee that all demand-independent optimal processes are found.

This is where the idea of the optimal partition comes to the forefront, and
the result developed below captures the concept of partitioning the processes
into those that are optimal and those that are not. The difference is that we
allow the labor requirements, the profit, the input and output coefficients, and
the demand to be dynamic, meaning that they depend on time. To accommo-
date this, we let A(t) ≥ 0 be the matrix of material inputs for the processes at
time t, l(t) > 0 be the labor requirements for the processes at time t, d(t) > 0
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be the demand at time t, and r(t) ≥ 0 be the profit at time t. We let M(t) be
the partitioned matrix [B−(1+r(t))A(t) | −I] and m(t) be the partitioned row-
vector (dT (t) | 0), where the number of zeros augmented to dT (t) corresponds
with the size of the identity augmented to B − (1 + r(t))A(t). We use M(t)
and m(t) to get a “standard form” linear program, meaning that the primal is
stated with equality constraints, and this form is realized by including surplus
variables in LPecon (these variables correspond with the augmented identity).
We investigate the dynamic linear programs,

LPecon(t) min{xtl(t) : xTM(t) = m(t), x ≥ 0} and
LDecon(t) max{m(t)y : M(t)y + s = l(t), s ≥ 0}.

Notice that because every process may be run simultaneously to strictly satisfy
demand, we have that there is a positive x such that xTM(t) = m(t). Hence,
the strict interior of the feasible region of LPecon(t) is non-empty. Also, the fact
that l(t) is positive means that (y, s) = (0, l(t)) is in the strict interior of the
feasible region of LDecon(t). So, the strict interior of feasible region of LDecon(t)
is non-empty, and Assumption 1 is satisfied.

The following dynamic extension of the Nonsubstitution Theorem follows
directly from Theorem 1.

Theorem 5 Under Assumptions 2 and 3, the collection of optimal processes
stabilizes.

Comparing Theorem 4 to Theorem 5, we see that Theorem 5 only requires the
addition of Assumption 2, which immediately follows if A(t), d(t), l(t), and r(t)
are rational. While Theorem 5 is similar to the Nonsubstitution Theorem, it
is different. First, our result is stronger in the sense that it allows changes not
just in the demand, but also in the input matrix, the labor requirements, and
the profit. However, the result we have is that the the collection of optimal
processes becomes time-independent, not demand-independent. So, while we
allow all the data to vary with respect to time, we do not get a result that is
truly independent of all demands.

That Theorem 5 permits a dynamic profit is significant. This is because
“the assumption of a given rate of profit radically transforms the substance of
[neoclassical] theory” [20]. In fact, modern economists now understand that
it is the assumption of a fixed profit that is the underlying support of the
Nonsubstitution Theorem (this is because the concepts of “endowment” and
“scarcity” are not allowed, see [20]). However, Theorem 5 does not assume
a static profit, and hence, leads to the new economic question: Is it possible
to economically explain that a dynamic profit can still lead to a stable set of
optimal processes? The following Corollary shows that the collection of optimal
processes is stable for all sufficiently small profits.
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Corollary 1 Suppose that for a fixed A, l, and d, the economy represented
by system (9) - (14) is consistent for every profit r ∈ [0, r̄]. Then, under
Assumptions 2 and 3, there exists an r̂ ∈ [0, r̄], such that the collection of
optimal processes is stable for all r ∈ (0, r̂).

Proof: Setting r(t) = 1/t, we see that the proof follows immediately from
Theorem 5.

4.2 Allowing Joint Production

In this section we allow a process to produce multiple commodities. However,
we do not remove Assumption 3, but rather replace it with the following As-
sumption.

Assumption 4 We allow processes to produce multiple commodities, but only
if there is a process for each commodity that produces only that commod-
ity. Moreover, if process i produces commodities j1, j2, . . . jk, and processes
i1, i2, . . . ik each produce uniquely one of the commodities j1, j2, . . . jk, the com-
modity inputs for process i are the sums of the commodity inputs for processes
i1, i2, . . . ik —i.e. ai = ai1 + ai2 + . . . aik .

Assumption 4 allows processes that produce multiply commodities to be added
to the economy, but it does not allow single production processes to be removed.
The condition on the commodity inputs states that we are able to replace several
processes with one process, but that the single process does not alter the input
requirements to produce the commodities. As such, we are not allowed to
introduce processes that more efficiently use their input commodities. However,
we are allowed to introduce multiple output processes that make more efficient
use of labor.

We use Assumption 4 to guarantee that Theorem 3 remains valid. The
only place where Assumption 3 is used in the proof of Theorem 3 is in the last
paragraph, where we show that the consistency of system (9) - (14) implies
the consistency of system (15) - (20). Allowing processes to produce multiple
commodities means that a technique σ need not have the quality that Bσ is the
identity. Hence, we can not use Lemma 7 in the final paragraph of the proof of
Theorem 3 to calculate xσ —i.e. Bσ − (1 + r)Aσ is not necessarily monotonic.

Suppose that process i0 produces commodities j1, j2, . . . , jk, and suppose
that process i0 is running in technique σ0. From Assumption 4 we know that
there are processes i1, i2, . . . , ik such that each of these processes produces ex-
actly one of the commodities j1, j2, . . . , jk. We also have from Assumption 4
that we can assign values to xi1 , xi2 , . . . , xik such that xi0 =

∑k
α=1 xiα and

xi0 [B{i0} − (1 + r)A{i0}]p = xT{i1,i2,...,ik}[B{i1,i2,...,ik} − (1 + r)A{i1,i2,...,ik}]p.
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In other words, we can distribute the work load to the processes that only
produce a single commodity. Consequently, if σ is a technique such that Bσ
is not the identity, we may redistribute the work load to single commodity
processes to form a technique σ′, where Bσ′ is the identity. This means that
Assumption 3 can be replaced by Assumption 4 in Theorem 3 to obtain the
following result.

Theorem 6 Under Assumption 4, system (9) - (14) is feasible if, and only if,
the following primal and dual pair of linear programs is well-posed,

LPecon min{xT l : xT [B − (1 + r)A] ≥ dT , x ≥ 0} and
LDecon max{dT y : [B − (1 + r)A]y ≤ l, y ≥ 0}.

Moreover, if x∗ and y∗ are optimal for (LPecon) and (LDecon), then x = x∗,
p = (1/dy∗)y∗, and w = 1/dy∗ are long period solutions to system (9) - (14).

This leads to the following theorem and corollary, which are the first Non-
substitution type results for a dynamic economy that allows joint production.

Theorem 7 The collection of optimal processes stabilizes under Assumptions
2 and 4.

Corollary 2 Suppose that for a fixed A, l, and d, the economy represented
by system (9) - (14) is consistent for every profit r ∈ [0, r̄]. Then, under
Assumptions 2 and 4, there is an r̂ ∈ [0, r̄] such that the collection of optimal
processes is stable for all r ∈ (0, r̂).

5 Conclusions and Directions for Further

Research

We have shown under mild conditions that the optimal partition for linear pro-
gramming stabilizes under parameterization. This result allowed us to define
an asymptotic analytic center solution, which we have shown inherits the ana-
lytic properties of A(t) and b(t). Furthermore, the existence of the asymptotic
optimal partition implies significant extensions of the Nonsubstitution Theo-
rem.

There are many avenues for future research.

• Whether or not there is a demand-independent optimal partition remains
an open question.

• The authors of [6] have shown that there is an analytic center that is
defined independent of the representation of the polytope. This center is
called the prime analytic center, and it would be nice to know under what
conditions one could define an asymptotic prime analytic center.
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• Analytic centers can be defined for regions more complex than polytopes,
as in the area of Semidefinite Programming. The difficulty lies in the fact
that the optimal partition contains three sets, rather than two. How, and
if, these results extend to these broader problems statements appears to
be a challenging, yet potentially fruitful pursuit.

• The use of semimonotonic operators, meaning that A+ ≥ 0, might al-
low Theorem 6 to be stated under an assumption that is more general
than Assumption 4. Such adjustments would lead to further economic
extensions of Theorem 7.

• If the labor source is not homogeneous, the linear program LPecon becomes
a multiple objective linear program. An optimal partition for multiple
objective linear programming is introduced in [12]. If this partition were
shown to stabilize, one could allow non-homogeneous labor sources in the
economic results of the last section.
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