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Abstract

The central path is an infinitely smooth parameterization of the non-negative real line, and its convergence
properties have been investigated since the middle 1980s. However, the central “path” followed by an infeasible-
interior-point method relies on three parameters instead of one, and is hence a surface instead of a path. The
additional parameters are included to allow for simultaneous perturbations in the cost and right-hand side vectors.
This paper provides a detailed analysis of the perturbed central path that is followed by infeasible-interior-point
methods, and we characterize when such a path converges. We develop a set (Hausdorff) convergence property
and show that the central paths impose an equivalence relation on the set of admissible cost vectors. We conclude
with a technique to test for convergence under arbitrary, simultaneous data perturbations.
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1 Introduction

Interior point algorithms have “revolutionized” the field of mathematical programming [24], and a class of these
algorithms, known as path-following interior point algorithms, follow the central path toward the optimal set.
The central path has been studied extensively, and instead of citing the numerous articles on the subject, we
direct interested readers to the three texts of Roos, Terlaky, and Vial [17], Wright [25], and Ye [26], each of which
contains an extensive bibliography and a complete development of the central path.

With the amount of literature that studies the central path, one may perceive that there is little left to
understand. However, this is not the case, especially in semidefinite optimization, where the general convergence
of the central path has only recently been established [9]. One of the main goals of this paper is to characterize the
convergence of a central “path” that depends on multiple parameters. Several researchers have investigated such
convergence [1, 10, 14, 15], but none of these works completely characterized the convergence of the perturbed
central path followed by many interior-point algorithms. We approach the problem as a sensitivity analysis
question, and our analysis provides both a characterization of convergence, which subsequently provides an insight
into algorithm design, and information about the stability of solutions. Another strength of our analysis is that
it is relatively simple, requiring only an understanding of real analysis and linear programming (the down side
is that the notation is a bit cumbersome). In related work, Yildrim has investigated perturbed central paths in
semidefinite optimization to gain sensitivity information [27, 28].

Consider the primal and dual linear programs

(LP) max{cx: Az =b,z >0} and (LD) min{yb: yA+s=c,s > 0}, (1)

where A € R™*™ has full row rank, b € R™, ¢ € R", and y, s, and ¢ are row vectors. The primal and dual
feasible regions are denoted by P and D, respectively, and their strict interiors are P° = {x € P : ¢ > 0} and
D° = {(y,s) € D: s> 0}. The primal and dual optimal sets are P* and D*. We assume throughout that Slater’s
interiority condition holds —i.e. P° # ) and D° # (). The necessary and sufficient conditions for optimality are

Ar=b x>0, yA+s=c¢, s>0, ;8,=0,i=1,2,...,n.

The central path is formed by replacing the complementarity constraint, z;s; = 0, with =;s; = p > 0. The fact
that A has full row rank implies that for each positive p there is a unique solution, denoted (z (), y(p), s(u)), to
the system

Ar=b,22>0, yA+s=c¢, 5>0, xis;i =p, 1 =1,2,...,n. (2)

An important observation is that the equations in (2) are the necessary and sufficient Lagrange conditions for the
penalized linear programs

min{cm - piln(mi) 1z € ’PO} and max {yb+pzn:1n(s,-) 1 (y,8) € D"} . (3)

i=1 i=1

The logarithmic barrier function in these programs is unique, in that it is the only barrier function that yields
the Lagrange conditions in (2) [13]. The logarithmic barrier function is also used to define the analytic center of
a bounded polyhedron in the following way. Let S = {z : Az = b,z > 0} be a bounded polyhedron, and let I
index the components of z that are positive for some feasible element —i.e. I = {7 : z; > 0 for some x € S§}. The
analytic center of S is the unique optimizer of

max{Zln(wi):xES,xi>0,i€I}.

i€l

The analytic centers of P and D are denoted by Z and (7, 3), provided that either P or D is bounded. Frisch [4]
and Huard [11] were the first to develop algorithms using analytic centers, and Sonnevend re-introduced this
concept to the mathematical programming community in [18, 19, 20, 21, 22, 23].

A result first proven by McLinden [12] is that the central path converges to an optimal analytic center as u | 0.
(Note: We distinguish between a | and a —, the former indicating that the limit is approached from above.) To



make this precise, we first define the optimal partition, denoted by (B|N), as follows
B={i:z; >0 for somez € P*} and N ={1,2,3,...,n}\B.

Allowing a set subscript on a vector (or matrix) to be the subvector (or submatrix) comprised of the coordinates
(or columns) corresponding to the elements in the set, we have that the optimal partition characterizes the optimal
sets,

P {reP:axn=0}={r: Apxp =b,2 > 0,zxy =0} and
D* = {(y,8)€D:sp=0}={(y,3) : yAp =cp,yAn + sy =cn,sy > 0,55 = 0}.

It is well known that the strict interiors of the primal and dual feasible regions being non-empty is equivalent to
both P* and D* being bounded [17]. The central solution, written (z*,y*,s”), is the analytic center of P* and
D*, which means that * and (y*, s*) are the unique optimal solutions to

max{Zln(wi) iz € Pz > 0} and max{Zln(si) : (y,8) €D*,sn > 0} .

i€EB iEN

What McLinden showed in 1980 was that the central path converges to (z*,y",s™) as p } 0, a result that is stated
in Theorem 1.1.

Theorem 1.1 (McLinden [12]) We have that
lim(z(p), y(1); s(w)) = (27,97, 57).
0

Furthermore, if P is bounded, lim, . () = Z, and if D is bounded, lim,_, (y(p), s(p)) = (7, 5).

Originally, interior point algorithms assumed the existence of a strictly feasible primal and dual element.
However, subsequent interior point algorithms allowed infeasible starting points, with the idea being to start with
any (mo, 40, so) such that both z° and s° are positive, and define the following primal and dual residuals,

m=Az’ —b and r. =y°A+ " —c (4)
These residuals are scaled and added to b and ¢ in (2) to obtain
Ar=b+pre, >0, yA+s=c+71¢ §>0, Zisi=p, 1 =1,2,...,n. (5)

For p = 7 = 1, (2°4° 5% is a strictly feasible solution. The problem is that unless the residuals are zero,
the right-hand side and cost vector are different from those of the original problem. So, infeasible-interior-point
algorithms start with the perturbed data b+ pry and ¢+ 77, and then decrease p and 7 to zero while decreasing
u to zero. However, this means that the central path no longer relies on the single parameter p, but the three
parameters of y, p, and 7. Unfortunately, an example in [10] shows that convergence is not guaranteed as p, p
and 7 decrease to zero.

Explaining the convergence behavior of (z(u),y(p), s(1)) under data perturbations falls under the auspices of
sensitivity analysis, and this is precisely the perspective from which we approach the problem. Because we are
interested in how the central path relies on b and ¢, we extend our notation so that (z(u,b,c), y(u, b, ¢), s(u, b, ¢)) is
the unique solution to the equations in (2). We point out that because x(u, b, ¢) is the optimizer of the first math
program in (3), we have for any positive « that z(u, b, ¢) = z(ap, b, ac) (simply multiply the objective function by
«). Similarly, (y(p,b,c), s(u,b,¢)) = (y(au,ab,c), s(ap, ab, c)) for a > 0. For the data b and c, the central path,
primal central path, and dual central path are respectively,

CP(b,c) = {(m(l"'7ba c)vy(uv b7 C)7S(H7 ba C)) > 0}7
PCPh.y = {x(p,b,c):p>0}, and
wp(b,c) = {(y(llﬂ b: c)7 3(//’, b: C)) p > 0}

In general, we consider sequences b*® and c*, the use of which allows for arbitrary, simultaneous, and independent
perturbations in b and ¢. Obviously, these data perturbations encompass the linear changes found in (5). Because



y and s no longer depend on a single parameter, we are technically dealing with a surface and not a path. However,
for intuitive and geometric concerns, we refer to a perturbed central path and choose sequences m(uk, b*, ck) from
PCPk cky.

As we shall see, allowing nonlinear perturbations in the cost coefficients significantly increases the difficulty of
characterizing the convergence of the perturbed central path, and we often deal with linear changes. When this
is the case, we let b¥ = b(p*) = b+ p*® and c* = ¢(r*) = ¢ + 77&, where the direction vectors & and & are
understood. Other notational extensions are described in Table 1.

Notation Explanation Notation Explanation

Pe primal feasible region D, dual feasible region

Py strict interior of Py D? strict interior of D,
'P(*b’c) primal optimal set D’("b,c) dual optimal set
(Ply.e))° strict interior of Py, (Dfy,e))° strict interior of Df;
Z(b) analytic center of Py (g(e), 8(c)) analytic center of D,
z*(b, ¢) analytic center of P(y (y*(b,c),s*(b,c)) | analytic center of Dy )
(B(b,c)|N(b,¢c)) | optimal partition

Table 1: Notation that accounts for the dependence on b and ¢

All scalar sequences are in R} = {v € R : v > 0} U {oo}, which means that every scalar sequence has a cluster
point (one of which may be c0). The row, column, and null spaces of a matrix are denoted by row(A4), col(4), and
null(A), and the projection of v onto the vector space W is denoted by proj,v. The capitalization of a vector
indicates the diagonal matrix formed from the vector. So, X is a diagonal matrix whose diagonal components are
Z1,%2,...,Tn. The vector e is the all ones vector, where length is decided by the context of its use. The standard
Big-0O, o, Q, and © notations are used [16]. Other notation is consistent with that found in the Mathematical
Programming Glossary [5].

We have three primary goals for this paper. First, we characterize the convergence of z(u*,b*,c + 7%&) as
p® 10, 6% = b, and 7% | 0 by providing necessary and sufficient conditions on (u*,b*,7%). Notice that nonlinear
perturbations in b are allowed (but only linear changes in ¢). This result completely describes the convergence of
the perturbed central path followed by all infeasible-path-following-interior-point algorithms. Second, we provide
a set convergence result for the perturbed center path. This result shows that while the sequence m(uk, b*, 47" &)
may not converge, the sequence of perturbed central paths does converge. Third, we remove the restriction that
the perturbation in ¢ must be linear and develop a process to calculate the limit of m(,uk, b*, ck).

Before we begin, we point out that partial solutions are found in the literature. In [14], Mizuno, Todd, and Ye
provide necessary conditions for the cluster points of the perturbed central path to be contained in the interior of
the optimal set and the boundary of the optimal set. Bonnans and Potra [1] consider the case of a single shifted
center within a specific algorithm environment for the horizontal linear complementarity problem. However, these
results do not permit independent changes in b and ¢ because the single parameter that is used controls the
perturbation in both b and ¢. Monteiro and Tsuchiya [15] show that z*(u*,b, c + p*é&) converges as p* | 0, but
as in [1] this analysis relies on a single parameter. Holder, Strum, and Zhang [10] show that for any positive 7,
z(nuk, b+ p*®, c + ptéc) converges as (u¥, p¥) | 0 and that z(u*, b+ p*®, c) converges as (u*, p*) | 0. Moreover,
they prove that so long as 7% = o(u*) that z(u®*, b+ p*®, c+7"d&) converges as (u*, p*,7%) | 0. The results in [10]
and [15] provide the actual limit when convergence is guaranteed. As one can see, there are many sufficient
conditions that guarantee the convergence of z(p*, b+ p*®, c+ 7"&). Our goal is different in that we characterize
the convergence of z(u*, b*, c+7"&) by providing necessary and sufficient conditions. A strength of our analysis
is that we explain the entire set of cluster points of z(u*,b*, ¢ + 7%d).



2 Preliminary Results

This section contains foundational material for subsequent sections, and several of the results in this section are
simple to prove. While many of these results are used in the literature, some proofs are not readily available,
and we include such proofs for completeness. If a result is proven in another article, we simply cite the article.
Readers familiar with the central path literature will feel comfortable browsing through the notation and results
of this section.

We begin with a study of the data that we are allowed to operate over. We say that b and ¢ are admissible if
the strict interiors of the primal and dual are nonempty. The admissible data sets are denoted by

G = {(bo)eR™xR": Py #0,D: +#0},
G' = {peR™:P?+#0}, and
G = {ceR":D:#0}.

Our definition of admissible does not correspond with the traditional definition of admissible, which means that
(LP) and (LD) have finite optimal solutions. Our definition is more restrictive because only data for which Py and
D¢ are not empty is included. The first result shows that G is open, which subsequently implies that arbitrarily
small perturbations of b and ¢ remain admissible.

Theorem 2.1 G is an open set.

Proof: Let (b,é) € G. Then, there exists & and (4, §) such that A2 =b, & >0, JA+ 3 =¢, and § > 0. Let U be
an open set in IR™ that contains & and has the property that x € U implies z > 0. Since the rank of A is m, the
linear transformation T : R" — R™ : x — Az is onto. Furthermore, since T is a continuous mapping, the Open
Mapping Theorem implies that T'(U) is open. Let e = min{§; : ¢ = 1,2,..., m}, and define V = {c: ||c — ¢|| < €}.
Then, (b,é) € T(U) x V C G, and the result follows since T(U) x V is open. [ ]

If z(p*, b%, c*) — 2, we have that b* = Ax(pu*,b*, c*) — A%, which means that the convergence of b* is a necessary
condition of the convergence of z(u*,b*, c*). As such, we make the following assumption throughout.

Assumption 1 We assume throughout that (b,c) and (b*,c*) are in G. Moreover, we assume that b* — b (but
we do not necessarily assume that c* — c).

Also, for notational convenience we assume that when (b%,¢*) — (b,¢) that (B|N) is the optimal partition for
(b,c) —i.e. (B|N) = (B(b,c)|N(b,c)). The dependence that the optimal partition has on b and c is only indicated
for the perturbed data b* and ¢*. Sonnevend [18] showed that x(p,b,c) is an analytic function over Ryt X G
(where we abuse the notation so that the 2-tuple (u, (b, ¢)) is understood to be the 3-tuple (u,b,c)). Hence,

p’>0= e C)w(uk,bk, ) =a(u’,b,c). (6)

The next two results show that the primal objective function is either strictly decreasing along the central
path or that the central path degenerates to a single element.

Theorem 2.2 (Fiacco and McCormick [3]) For 0 < p' < p?, we have that ¢ € row(A) if, and only if,
cx*(b,c) < cx(u',b,c) < cx(p’,b,c) < ci(b).

Simalarly, for 0 < p* < p?, we have that b # 0 if, and only if,
y* (b,c)b > y(p',b,c)b > y(u”, b, c)b > F(c)b.

Theorem 2.3 (Roos, Terlaky, and Vial [17]) The following are equivalent:
1. cx is constant on Pp.
2. z(pt,b,c) = x(u?,b,c), for all 0 < p* < p?.
8. z(pt,b,c) = z(p?,b,¢), for some 0 < p' < p’.
4. c €row(A).



5. s(u,b,¢) = us(1,b,¢) for all 0 < p.

An observation that we use later is that if ¢ € row(A) and (b,¢c) € G, then P, is bounded. This follows because
Py is bounded if, and only if, there does not exist dr such that Adr = 0, dv > 0, and dr # 0. From Gordon’s
Theorem of the alternative (a variant of Farkas’ Lemma) this is the same as P; is bounded if, and only if, there
is a row vector y such that yA > 0. Suppose that ¢ € row(A), so that §A = ¢ for some §. Then, for any positive
u we have that 0 < s(u,b,¢) =c—y(p,b,¢)A = (§ — y(p, b,¢)) A, and hence Py is bounded.

We now direct our attention towards linear perturbations. Recall that for the understood directions of change
& and & we defined b(p) to be b+ pdb and ¢(7) to be c+ 7de. Directions of change for which the optimal partition
is invariant for sufficiently small p and 7 are of particular interest, and we define

H(b,c) = {(d,d&) : there exists p > 0 and 7 > 0 such that for all 0 < (p,7) < (p, T),
(Bb(p), c(r)IN(b(p), (7)) = (B, AIN(b, )},
H(b,c) = {&:(®,0)€ H(bc)}, and
Hi(be) = {&:(0,&) € H(b o)}

Properties of these sets are found in [6] and [7]. The next lemma shows that the optimal partition characterizes
H(b,c), H (b, c), and H2(b,c).

Lemma 2.1 We have that H'(b,c) = col(Ap) and that H?(b,c) = {& € R™ : & € row(Ag)}.

Proof: The partition (B|N) is optimal for the right hand side b(p) if, and only if, the following system is
consistent
Apzp =b(p), zB >0, yAp =cp, and yAn <cnw.

If & € col(Ag), there exists =’ such that Ag(pz’) = pd. Since x5 (b, c) — px’ is positive for sufficiently small p, the
above conditions remain consistent for arbitrarily small p. Hence, col(Ag) C H'(b,c). If the optimal partition is
invariant for sufficiently small p, then there exists g (p) such that Apzg(p) = b(p). Since Ap(zp(p) —zB) = pd,
we have that & is in col(Ap).

The argument for (b, c) is similar, the difference being that the optimality conditions are

Aprp = b, yAB = CB(T), yAN < CN(T), zp > 0.
|
The remainder of this section is concerned with establishing the existence of limits. Lemmas 2.2 and 2.4

provide bounds so that sequences have cluster points, and Lemma 2.3 and Theorem 2.4 use these bounds to
establish limits. Consider the level set

L(b,e,M) ={(z,y,8) € Po X Dc : sz < M}.

The next Lemma shows that the union over k£ of the level sets £(bk ek M ) is bounded, provided that c® is
bounded. The level set argument is similar to Theorem 1.4 in [17] and Lemma 4.2 in [10], the differences being
that ¢® need not converge and independent, arbitrary perturbations in the right-hand side and the cost coefficients
are allowed (Theorem I.4 does not permit data perturbations and Lemma 4.2 allows only linear changes in b and
¢ that converge).

Lemma 2.2 If ¢* is bounded, then for M > 0 we have that |J L(b*,c*, M) is bounded.
k

Proof: Let M >0 and p® > 0. Also, let z* = z(u°,b%,c*) and s* = s(u°,b*,c*). Then, for any & € P, and
(y,8) € D, we have that ¥ — 2 € null(A4), s* — s € row(A), and

0=(s" - s)(a" —z) = s*2* — sz — s*x + sz (7)
So, for any (z,y,s) € L(b*,c*, M) we have that

k k k k,k k, k
s;ixi<sx+sr =sx +sx<sx + M.



Since s* > 0 and s*2* = y%n, we have that z; < (M +pu°n)/s¥. A similar argument shows that s; < (M +pu°n)/z¥.
Since y relates to s in a one-to-one, linear fashion, we have for each k that ﬁ(bk, M ) is bounded.

To establish that U £L(b*, ¢*, M) is bounded, we first show that z(u°,b*, ¢*) and s(u°, b*, c*) are Q(1). Suppose
for the sake of attaining a contradiction that there is a subsequence (u°,b%,c*) such that a;(u®,b%,c%) | 0 for
some 4. Since ¢® is bounded, it contains a convergent subsequence, and we assume without loss of generality
that ¢*i — c. However, this provides a contradiction since from (6) we have that z(u®,b", c*) — x(u°b,c) > 0.
Hence, z(u°,b*,c*) = Q(1). An analogous argument shows that s(u®, b, c*) = Q(1). We now have that there is
a positive \' and A? such that z(u°,b%,c*) > A! and s(u®,b*,c*) > A%, So,

0 0
'<M—|—,un<2(M+/Ln)

M+ 2(M + p°
z; < and s; < +;Ln< ( +un).

sk A2 - gk Al

2 3

Since these bounds are independent of k, we have that | J, L(b*, c*, M) is bounded. [ |

The statement in Lemma 2.2 that bounds z(u*,b*, c*) does not require the convergence of ¢*, but only that
c* be bounded. From Lemma, 2.2 we have that if 4* | 0 and c¢* is bounded, then the sequence

(2 (u®, 6", ), y(u®, b, ), s(u*, 6%, )

has a cluster point. However, an example in [10] shows that these sequences need not converge, which means a
straight forward extension of Theorem 1.1 is not available. The next lemma shows that zny and sp approach zero
with p.

Lemma 2.3 If ¥ | 0 and ¥ — ¢, we have that znx (p*,b%,c%) = 0 and sg(p*,b*, ") — 0.

Proof: Lemma 2.2 implies that (z(u*,b*,c*), y(u", b*,c*), s(u*,b*, c*)) has a convergent subsequence, say

i (%, 6, 5), y (b, 6, ), s(u, 0%, ) ) = (8,5, 9)

71— 00

Set x® = x(ph, b, c), y' = y(p*i, 6%, %), and ' = s(u*i, b, c*4). Since

Azt = M, 2’ >0 Ai = b, >0
YA+s = M) s>0 p=>q JA+E = ¢ >0 ®)
szt = npbi sz = 0,

we have that £ € Py, ) = {x € Py : av = 0} and (9, 8) € Dy, ) = {(y,5) € D: : sp = 0}, which proves the result.
|

If u* 1 0, ¢® — ¢, and z(p®,b*,c*) — &, Lemma, 2.3 identifies a subvector of # that is zero. Unfortunately, this is
not necessarily the largest subvector of & that is zero, an issue that we address in Section 5.

The final objective of this section is to develop sufficient conditions for 2 (1*,b*, c*) to converge to the analytic
center of a polytope, a result that relies on Lemmas 2.4 and 2.5.

Lemma 2.4 (Caron, Greenberg, and Holder [2]) If Py is bounded, |J Py s bounded.
k

From Lemma 2.4 we have that a bounded polytope remains bounded under right-hand side perturbation. We
now introduce the concept of set convergence [8] (typically called Hausdorff convergence), an idea that we use
now to establish the existence of a particular sequence and later to show that the central path converges as a set.
We say that a sequence of sets H* converges to the set H if the following two conditions hold,

1. if h* € H* and h* — h, then h must be in H, and
2. if h € H, then there exists h* € H* such that h* — h.

From [8] we know that b¥ — b implies that Pyx — Py, which is important because we need the result that elements
within the strict interior of the feasible set may be approached by strictly positive elements. To see this that this



is true, let £ € Py. Then, since P,x — Py, there is a sequence z* € Py such that z*¥ — z, and because z is

positive, we have that z* is positive for sufficiently large k. We state this fact in Lemma 2.5.
Lemma 2.5 If z is in P?, there exists a sequence z* € Py such that converges ® = .
The next theorem provides sufficient conditions for x(uk , bk, ck) to converge to the analytic center of a polytope.

Theorem 2.4 Let Py be bounded. Then, if the vector sequence c® /¥ is bounded and has the property that every
cluster point is in row(A), we have that z(u*,b%, c*) — E(b).

Proof: From Lemma 2.4 we have that z(u*,b*, c*) is bounded. So, there exists a subsequence such that
a(phi bf cFiy 5 & and Fijpki e

Let o' = x(pb b %), y* = y(u®i,b% %), and s* = s(/{ki,'bki? c¥). Similar to (8), we have that # € Py. For
any 14, the necessary and sufficient conditions describing (z*, 3", s*) are

Az =b" >0, yA+s=c", s>0, and Sx:u’”e,

which means that

Azt = oM,
i ks
Y i\— c
_Nki A = (X ) t— Mki ) (9)
> 0

From the full row rank of A, we have that

k.
y iy—1 c
Tk, ((Xl) - )uki

-1
) A" (447) ",
We prove that & is positive, so that this last equality implies the sequence {yi / uk"} has a limit. Then, since ¢ is
in row(A), equation (9) implies that (X*)~! is in row(A). Subsequently, we have that there is a 4 such that
Az =b, jJA=X"" >0,

and because these are the necessary and sufficient conditions describing Z(b), the result is established once we
show that & is positive. ' _ 4
From Lemma 2.5 there is a sequence, £* € Py, such that ' — & € Py. The optimality of z* implies that

ki i ) ki n
%w’ - Zln(m;) < ck' z - Zln(a"c; ,
w j=1 w j=1
which is equivalent to
Y on(#) < S-@ -2+ ) In(a}). (10)
j=1 K j=1

Since #° is Q(1), the left-hand side of this last inequality is bounded below. Suppose for the sake of attaining a
contradiction that as ¢ — o0, :cj — 0, for some j. The boundedness of &* implies that 2?21 ln(xj) — —o00. Hence,
the inequality in (10) implies that (c* /u*)(#' — «*) = co. However, since é € row(A) and (& — &) € null(4), we
have that

(ck" /pk’)(i” - m’) —é&&—%)=0.

So, no such j exists, and £ > 0. ]

Corollary 2.1 If P, is bounded, c* — ¢, and p* — oo, then x(u*,b*,c*) = Z(b).



Proof: The proof follows immediately from Theorem 2.4 because ¢*/uf — 0 € row(A). |

While only providing sufficient conditions for the convergence of .’L‘(,LLk ,bF, ck), Theorem 2.4 is used in the next
section to develop necessary and sufficient conditions. We point out that none of pk ,c* or ¢ / uk had to converge
for z(u*,b*,cF) to converge. Because of this, Theorem 2.4 highlights the difficulty of allowing simultaneous
perturbations in p, b, and c.

3 Characterizing the Convergence of The Central Path Under
Simultaneous Parameterization

The goal of this section is to develop necessary and sufficient conditions on (¥, b, ¢(7*)) so that z(u*,b*, c(7*))
converges as p* | 0 and 7% | 0, and we assume throughout this section that 7% | 0. These conditions are stated
in Theorem 3.2, and they completely characterize the convergence of the perturbed central path followed by an
infeasible-path-following-interior-point algorithm. In this section, we allow arbitrary perturbations in b and linear
changes in ¢. The case of independent, arbitrary, nonlinear changes in both b and ¢ is addressed in Section 5. The
first lemma of this section shows that cpu is constant over the null space of Ap.

Lemma 3.1 We have that cgu =0 for all u € null(Ap).
Proof: Letu € null(Ag) and (z3,0) € (’P(*b’c))o. Then, there exists a positive a such that (x5 +awu,0) € (’P(*byc))o.
|

Since cp(xp + au) = cex i, we have that cpu = 0.

Lemma 3.1 is used to show that the objective function is constant on “cuts” of the feasible region, which are
defined for any k and positive p as

C(u, k) = {xp : Apzp = b" — Ay (u, 0", c(v")), 25 > 0}.

C(p, k) is the sub-polyhedron of P, formed by fixing xn to be zx (i, b*, c(r*)). Lemma 3.2 shows that cpxp is
constant on each C(p, k).

Lemma 3.2 For any k and positive i, cap is constant on C(p, k). Consequently, zp(p, b*, c(r)) is the unique
solution to

min{rk&BxB —uZln(xi) : Apzp = b" — Ayan (u,b*, c(%)), z5 > 0} . (11)

i€EB
Proof: By definition, x(u,b*, c(7%)) is the unique solution to
min {cx +hécx — piln(zi) txT € (Pbk)o} .
i=1
Holding the components of zx (1, b*, ¢(7*)) constant, we have that zp (i, b*, (7)) is the unique solution to
min {cB:vB +h&prn —len(mi) : Apzp = b — Ayan(p,b*,c(r%)), 25 > O} .
i€B

So, the result follows once we show that cgzp is constant on C(u, k). If the columns of Ap are linearly independent,
the result is immediate because C(p, k) contains a single element. Otherwise, let £} and 2% be in C(u, k). Then,
rh — 2% € null(4p), and from Lemma 3.1 we have for all a € [0,1] that

cp(zp +a(rh —2p)) = cpTp.

For a = 1 we have that cpzly = cpr’, which proves the result. |



The fact that 25 (u, b*, ¢(7*)) is the unique optimal solution to the math program in (11) is paramount in our
analysis. To aid our development, for any positive 1 we define zg(n, b, cs) to be the unique solution of

min {chB — nZln(zi) :Apzp = b,z > 0} , (12)

ieB
which means that {z5(n,b,cp) : 7 > 0} is the central path of the linear program
min{cpzp : Apzp =b,zp > 0}. (13)

Because {zB(n,b,cB) : 7 > 0} is a central path for a fixed b and ¢, 2(n, b, cr) has a limit as | 0, which is denoted
by 25(b,cp). The feasible region of the math program in (13) is equipotent to P, ., (just remove zn). Since (b, c)
being in G implies that P(, ., is bounded, we have that the feasible region of (13) is bounded, and subsequently
that zB(n,b,cr) converges as § — oo to the analytic center of {zp : Apzp = b,z > 0}. Since zx(b,c) is
this analytic center, we have that lim, . 2B(79,b,cB) = z5(b,¢). In addition to the convergence properties of
zB(n,b,cp), we have from Lemma 3.2 that

',I"B(/‘: bka C(Tk)) = ZB(H/Tka bk - ANxN(/": bka C(Tk))a&B)' (14)

The following example illustrates the relationship between z(u,b,c(7)) and zg(n,b,d&B).

Example 3.1 Consider the linear program
(LP') min{z3:0< 21 <1,0<22<1,0<z3 <1}

Allowing x4, x5, and xe to be the slack variables, we have that the optimal partition is ({1,2,4,5,6}|{3}). Let b* =
b, so there is no right-hand side perturbation, and & = (1,1/10,0,0,0,0), so c* = ¢+ 7%& = (r*,7%/10,1,0,0,0).
Figure 1 illustrates four central paths associated with perturbations of (LP'). The vertical line is the unperturbed
central path for (LPI), and the curve in the x1, x2-plane is the central path for

. . 1
(LP?) min{&pzp : & € Pl } = min{zs + 70?21 0<21<1,0<a < lag = 0}.

The curve from (1/2,1/2,1/2) to (0,0,0) is the perturbed central path for 7% = 1, and hence, corresponds to the
linear program
(LP?) min{xi 4+ (1/10)z2 +23:0 <21 <1,0< 22 < 1,0 < 3 < 1}.

The plane passing through the feasible region is C(1, k), where 7% is 1, and the curve on this sub-polyhedron is the
central path of

(LP*) min{z; + (1/10)z2 : 0 < 21 < 1,0 < zp < 1,z3 = x3(1,b,¢(1))}-
The x1, T2, T4, T5, and Te values of this central path form the z variables defined by (12). Notice that the only
difference between (LP?) and (LP*) is the value of z3. In (LP?), x3 is zero, and in (LP*), x3 is x3(1,b,c(1)).
This means that the central paths for (LP?) and (LP*) are the same except for the shift in x3. Equation (14)
shows how the shifted central path of (LP*) intersects the perturbed central path of (LP®).
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Central Path:{x(M, b, )}
Central Path:{X(U, b, ¢ + (1)&c)}

~ v

X3

Centra\l Path:{zg (., b,3cy)}

Figure 1: Four central paths associated with (LP!) and how they intersect.

The equality in (14) is important because z has the perturbations in both b and ¢ modeled as right-hand
side perturbations —i.e. there is no perturbation of the cost vector &p that is used to describe zp. This
observation indicates that we need to understand the convergence properties of a central path under right-hand
side perturbation. Lemma 3.3 states that the central solution is continuous with respect to b, and Lemma 3.4
shows that a perturbed central path converges to the analytic center of the unperturbed optimal set so long as
there is no movement in c¢. We note that Lemma 3.4 is similar to Theorem 4.1 in [10], the difference being that
our result allows arbitrary perturbations in b.

Lemma 3.3 (Caron, Greenberg, and Holder [2]) The analytic center of a bounded polyhedron is a contin-
uous function of the right-hand side. That is, if b* — b and Py is bounded, limy_, o Z(b*) = Z(b) (NOTE: this
result is true whether or not Py is non-empty).

We note that since the central solution (b, c) is the analytic center of the polytope P(, ., we have that z* (b, c)
is a continuous function of b. This is stated in the following Corollary for future reference.

Corollary 3.1 The central solution x*(b,c) is continuous with respect to the right-hand side b.
Lemma 3.4 If ¥ | 0, we have that z(u*,b*,c) = z*(b,¢).

Proof: From Lemma 2.3 we have that zx (u*,b",¢) = 0, and from Lemma 3.2 we have that zz(u",b*,¢) is the
unique solution to

max{Zln(mi) : Apzp = b" — Ayan(p*, 0%, ¢), 28 > 0} .
ieB
This means that zg(u",b%, c) is the analytic center of {zp : Aprp = b* — Ayxn (¥, 0%, ¢), x5 > 0}, and
from Lemma 3.3 we have that this analytic center is a continuous function of b* — Anzn(u*,b% ¢). Since

b— Ayzy(u®,b%,¢) — b, we have that zp(u*,b*,c) converges to the analytic center of P; = {z : Apzp =
b,xp > 0}. |
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We take a moment to summarize what we have. If 4* has a positive limit, we have from (6) that 2z (u*, b*, c(7%))
converges. The more difficult situation is if ;¥ decreases to 0. From Lemma, 2.3 we have that zx (p*,b*, c(7%))
decreases to zero as well. So, what is left to know is whether or not z5(u*,b*, c(7%)) converges. Since

xB(Pkabkzc(Tk)) = ZB(Hk/Tk:bk - ANmN(Hk’bka C(Tk)):&B):

we have from Lemma 3.4 that zp converges so long as p* /7% and b* — Ayzn (¥, b, c(")) converge. Again, since
o (uF,bF, ¢(r*)) decreases to zero, we have that b* — Ayzn (u*,b*, c(7%)) — b. This means that z(u*,b*, c(7%))
converges so long as p* /T* converges, a result that is stated in Theorem 3.1. This condition is “nearly” necessary
and sufficient for the sequence z(u”,b* c(7%)) to converge, the problem being that if & is in HZ(b,c), then
x(p®,b%, ¢(r*)) may converge even though u* /7% does not converge.

Theorem 3.1 Let 7% | 0 and p* > 0 be such that p* — p°. Then,

z(u,b,c) if p°>0
. z* (b, c) if pu®=0and p* /7" = oo
Jim AN AN 0 ko k
o (z5(n,b,d),0) i 4®=0and /7" =7 >0
(z3(b,c),0) if p®=0andpt/r* = 0.

Proof: The case of z° > 0 is an immediate consequence of (6). Assume p® = 0. From Lemma 2.3 we have that
zn (¥, b, ¢(1%)) = 0. Consider the situation of p* /7% — n > 0. Since, /7% is bounded away from zero, we
have from (6) that

mB(/'Lka bk: C(Tk)) = ZB (Mk/rk7 b — ANmN(ILk, bka C(Tk))a &) — 2B (n,b, &),
which establishes the third case. Suppose that p* /7"c — 0. We have from Lemma 3.4 that
mB(ﬂk: bk’ C(Tk)) = ZB(Mk/Tkﬁ bt — ANmN(/’*ky bka C(Tk)):&:) — zp(b, &).

So, the fourth case is established. Lastly, suppose that u* /7% — co. Then, &/(u*/7*) = rF&/p* — 0 € row(AB),
and since P, ) is bounded, we have from Theorem 2.4 that

ea(p* 6", c(t")) = 2p (" /75,6 — Avan (uF, 6", c(7*)), 8) = ZB(b,c) = 23 (b, ).
||

As previously stated, the reason that the conditions in Theorem 3.1 are not necessary conditions is that if &
is in (b, c), then z(p*,b*, ¢(r*)) may converge even if u* /7% does not. Lemmas 3.5 and 3.6 address this issue.

Lemma 3.5 Let p* | 0 and & ¢ H>(b,c). Suppose that the sequence p¥ /1% does not converge. Then, if p*é [r%i
and p*i 7% are two convergent subsequences, we have that

lim i /r% # lim gt T4 = dim a(uh 64 () # lim a(ut, b4, (7)),
12— 00 J—o0 71— 00 J—oo
Proof: Without loss in generality, we assume that
lim p*i /7% < lim phd jr%i
i— 00 j—oo
From Theorem 3.1 we have that

. P & (z5(b, &), 0) if uk"/rki -0
lim (p", 0%, c(77)) =
imeo (z8(n*,b,6),0) if phi/r* st >0
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and
2 . kj /. k; 2
z ,b,0c),0) if ilthi 5 n® < oo
lim (9,1 o)) = PO B RO /T
Jree z*(b,c) if  pkijrki o co.
Since & ¢ H?, we have from Lemma 2.1 that &p ¢ col(Ap). The result follows because from Theorem 2.2 we
have that for any ' < 7> that

depzy(b, &) < depzp(nt,b,d&) < &pzp(n®,b,&) < dkpzZp(b,c) = &epxiy(b,E).

|

Lemma 3.6 If & € H>(b,c), we have for all positive n that

ZB (b: &) = ZB (77: b, &) =25 (ba ‘SC) .
Proof: From Lemma 2.1 we have that &g € row(Ag), and from Theorem 2.3 we have that zg(n',b,d&) =
zp(n?,b, &), for all positive ' and 5. Hence, for any positive 7°,
25(b, &) = lim 2(n, b, &) = z5(n°,b,¢) = lim 2(n,b, &) = 25(b, &).
nd0 n—00

|

Theorem 3.2 states the necessary and sufficient conditions for the convergence of z(u*, b%, c(7%)).

Theorem 3.2 Let 7F | 0 and p* | 0. If & € H2(b,c), then x(u®,b%, c(7%)) = x*(b,c). Otherwise, & & H(b,c),
and z (¥, 0%, c(1%)) converges if, and only if, u* /7" converges.

Proof: Suppose that & € H?(b,c). From Lemma 2.3 we have that zn(u*,b*, c(7*)) = 0. Also, from Lemma 3.6
we have that

xB(I/’kabka C(Tk)) = zB(uk/Tk,bk - ANmN(I/'k;bka C(Tk))aéc) = z;;(bk - ANmN(//’k’bka C(Tk))a&)'

From Lemma 3.3 we know that 2z} is a continuous function of the right-hand side 8* — Ayxzn (p*, %, ¢(7*)). So,

lim ot e(r) = lim (250" — Axan (a5, (), &), o (4,0 e(r)))
k— o0 k— o0

= (2B(b,&),0)

= z"(b,c).

Assume that d ¢ H2(b, c). If u* /7% converges, Theorem 3.1 shows that z(u*, b, ¢(7¥)) converges (and provides
the limit). If p* /7"c does not converge, this sequence has at least two cluster points, and hence, there are two
convergent subsequences, say p" /7% and p* /7%i | such that lim;_ e p*i /7% # limj_eo p*i /7% . Theorem 3.1
implies that both
lim z(p*, 6% c(7%)) and JIEEO x(uhi bk e(rF))

i—00

exist, and Lemma 3.5 implies that these limits are different. Hence, x(u*,b*, c¢(7*)) does not converge. [ ]

We conclude this section by classifying the convergence of the perturbed central path followed by infeasible-
path-following-interior-point algorithms. We require the dual counterpart of Theorem 3.2, which we state without
proof.

Theorem 3.3 Let p* | 0, p* 1 0, and & — c. If & € H(b,c), then (y(u*,b(p"),c"), s(u®,b(p"),*)) —
(" (b,0), 5" (b,¢)). Otheruise, & ¢ H'(b,c), and (y(u*,b(p"),c*), s(u*,b(p*), c*)) converges if, and only if, u* /p*
converges.

As mentioned in Section 1, the perturbed central path followed by infeasible-path-following-interior-point algo-

rithms has linear perturbations in b and ¢, with the directions of change defined by the residuals. Table 2 shows
the sequences whose convergence characterizes the convergence of the perturbed central central path.
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Cost Perturbation
& & H?(b, c) & € H2(b,c)
[} (3

Right-Hand Side Perturbation | &p ¢ row(Ap) | &p € row(4p)

b EH (bc) & b col(Ap) || u*/p* & p* /T "/ p*
& € H2(b,c) & & € col(Ap) uk )k

Must Converge

Table 2: Let & and & be defined by the residuals in (4). Depending on whether or not & is in #'(b,c) and & is in
H2(b, c), we have that the convergence of the indicated sequences is required for, and guarantees, the convergence of

(@(*,b(p*), (%)), y (1", b(p*), (%)), s (1*, b(p), e(7*))).

4 Set Convergence

The objective of this section is to establish a set (Hausdorff) convergence property for the perturbed central path,
and Theorem 4.1 shows how the central path behaves as a set under simultaneous changes in b and ¢, provided
that the change in c is linear. We illustrate the set convergence result with the following example.

Example 4.1 As in Ezample 3.1, consider the linear program
min{zs: 0<z:<1,0< 2z, <1, 0<z3 <1}

Let x4, x5, and z¢ be the slack variables, b* = b (so there is mo right-hand side perturbation), and & =
(1/4,1/2000,0,0,0,0). The central paths corresponding to b and c(t*), for 7™ = 1,0.8,0.6,0.4,0.2, are shown
in Figure 2. The vertical line is the central path for the unperturbed problem —i.e. the vertical line is PCP ..
The curve in the 1 and x2 plane is the central path for the linear program

min{1/4z1 +1/2000z2 : 0 < 21 <1, 0 < 32 <1, 3 =0} = min{depzp : T € P*}.

Observe that the perturbed central paths converge to these two central paths.

Example 4.1 indicates, and Theorem 4.1 proves, that the perturbed central paths converge to the union of two
central paths. The first of these paths is PCP; ) —i.e. the central path of the unperturbed linear program. The
second of these paths is denoted by fCP(*b,C,&) and corresponds to minimizing dcz over the optimal face. Hence,
PCP(, . &) is defined by the linear program

min{dprp : Apzp =b,xp > 0,zny = 0}.

The elements of PCP(, . &) have the form of (z5(n,&),0), and hence PCPj, . 4, is equipotent to {z5(n,b,&) :
n > 0}. The closure of PCP ) is PCP ) and is either PCP ) U {z"(b,c)} U {Z(b)} or PCPy oy U {z* (b, ¢)},
depending on whether or not the feasible region is bounded. The closure of PCP(j , 5 is POP* (4 c,&) = PCP(}, ; 5)U
{(25(b,¢),0)} U{(zB(b, ), 0)}.

Theorem 4.1 If 7* | 0, we have that POP 4 ,(,kyy = PCPy o) UPCP* (4 . ).

Proof: We begin by establishing that

.PC’P(bk kY)) — FCP(b,c) U PCP~ (b,c,dc) -

se(r

Let z* € PCPk o,y be such that x® — &. Then, for each k there is a p* such that =¥ = z(u*, 0% c(7")). Let
p® be a convergent subsequence of ¥ (remember that co is a possible cluster point). We consider three cases to

se(r
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Figure 2: The central paths of the perturbed data converge to the union of two central paths.

show that & € PCP(,,,C) U PCP* (bye,bc)+
Case 1: If u*i — i > 0, we have from (6) that

a(p® 6%, o(m*)) = z(i,b,¢) = & € PCP 4.0,
Case 2: Suppose that p® | 0. If & € #2, Theorem 3.2 shows that
z(p®, 0% e(r%1)) = 2 (b, ¢) = & € PCP.0).
Otherwise, & ¢ H?, and Theorem 3.2 shows that p*¢ /7% must converge. From Theorem 3.1 we have that
z*(b,c) if  pki/rh 00
o(pt, b5, (") > &= (28(n,b,&),0) if pri/rF s >0

(25 (b, &), 0) if uki /Tk,- 0.

Since z*(b,c) € PCP.), and both (z5(n,b,%),0) and (z5(b,d),0) are in POP* (. &), We have that & is in
PC’P((,’C) U PCP* (b,c,6¢) -

Case 3: Suppose that p*i — co. Then, ¢(%)/u* — 0 € row(A). If we knew that P, were bounded, we would
have from Theorem 2.4 that

e, 0% o(r")) = & = &(b) € POP 3 0.

So, our goal in this case becomes to use the fact that x(u*i,b% (%)) converges as p* — oo to show that
Py is bounded. Let z* = z(p®i,b%, c(v%)), y* = y(uF, b5, c(7%)), and s° = s(u¥ 0%, c(r%)). From Gordon’s
Theorem of the alternative we have that P, is bounded if, and only if, there is a row vector y such that yA > 0.
For j =1,2,...,n, we have that xjs} = uk", :c; — &5, and uk" — 00. Consequently, we have that sj- — 00. From
the dual constraints we have that (—y*)A = s — ¢(7%$) — oo, and hence the system yA > 0 is consistent. So, P
is bounded.
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At this point we have established that if z* € PCPk o(,+yy converges, then the limit of this sequence is in
PCP 0y U PCP* (4 c,&)- We now show that any element in PCP; .y U PCP* (¢ &) is the limit of a sequence in
PCPk (,+y)- Let x be in PCP( oy U PCP* (¢ &)- Then, x is one of Z(b) (if P, is bounded), z(f1,b,c) (for some
positive fi), z*(b,c), (z8(n,b, &), 0) (for some positive 1), or (25(b, &), 0). From Theorem 2.4 and Lemma 2.3 we
have for 7% = 1/k that

2(p+1/k, 0", e(r%)) = 2(i,b,e),  @(Vrk, b8, c(r")) = 27 (b, ),
z(nr*,b",e(r%)) = (28(n,6,&),0),  2((r*)%,8",¢(r*)) = (25(b,&),0), and
z(k,b*, c(r%)) = Z(b) (if P, is bounded)..
Since all four of these sequences are in PCPk ,(,&)), we have that

PCP(,,k’C(T)) — PCP(,],C) @] _FCP*(,,,C,&).

What remains to be shown is that if the sequence z* € PCP 4k o(,yy converges and contains either z* (%, c(7%)),

se(r

or in the case that P} is bounded, 'I:(bk) infinitely many times, the limit of this sequence is in PCP (3 c) UPCP* (3, &)-
If Py is bounded, we have from Lemma 2.4 that Py« is bounded for sufficiently large k. Furthermore, Lemma 3.3
shows that Z(b) is a continuous function of b. So, if z* € PCP 4k o(rkyy contains Z(b*) infinitely many times

e(r

and converges to &, we have that £ = Z(b) € PCP(;.). Suppose that z* € PCP 4k (,+yy converges to £, and

,e(r
that this sequence contains z*(b*, c(7*)) infinitely many times. Without loss in generality we assume that z* =
z*(b*,c(7%)). First, because (B|N) need not be the same as (B(b*, c(7%))|N (6", c(*))), we do not automatically
know that =¥, = zy (b*, ¢(7*)) = 0 (Lemma 2.3 does not apply). However, % does converge to 0 as the following
argument shows. Let € > 0. For each k& we have that

oy = 2 (0, () = lim o (.0 o))
"
So, there is a i* > 0 such that p € (0,/") implies that ||zy (u,b*,c(7%)) — z% (", c(7*))|| < €/2. Choose
p® € (0, i*) so that p* | 0. From Lemma 2.3 we have that zn (u*,b*,c(7%)) — 0. Hence, there exists a natural
number K, such that for £ > K we have that ||z (u*,b%,c(7%))|| < £/2. Hence, for k > K,
len (b, (T DIl < llan (b, e(r*)) — an (1,65, (T DI + llen (1", 85, e(v"))]| < e

So, z% =z (b*,c(7*)) = 0. Using this fact, Lemma 3.3 to establish the 5th equality, and Lemma 3.4 to establish
the 4th equality, we have that

Zp = lim m*B(bk,c(‘rk)) = lim (lim zB(u, bk:C(Tk))>
k— oo k—oo \ #d0

= lim (lim ze(p/T*, 0" — Anen (u, bkac("'k)):&))
k—oo \ pnl0

= lim Z%(bk — ANx}kV(bk: C(Tk))vdc)
k—o0

= zp(b,&).

Hence, we have that * = z* (b%, ¢(%)) = (25(b, &),0) € PCP* (3 ¢,), which completes the proof. |

A corollary to Theorem 4.1 is that the perturbed central path is continuous over H?(b, c), meaning that so long
as & € H2(b, c), PCP 4k o(rky) = PCP(y o). This follows because if & € H%(b, ¢), we have from Lemma 3.6 that

FCP*((),C,&) = {(ZB(b, &),0)} = {x*(b, C)} C mP(b,c)-

This result is stated in the following corollary.
Corollary 4.1 We have that if & € H(b,c) and 7" | 0, then PCP . ,(;ry) = PCP.c).

16



We conclude this section by showing why our results are stated from the primal perspective. This is because
it is possible for b*, ¢(r*), and z(u*, b*, ¢(7*)) to converge, while the dual elements diverge. For example, suppose
that ¢ € row(A), which implies that

e P, is bounded,

(BIN) = ({1,2,...,n}{0),

z(pf, % c(t?)) = x5 (p*, 0%, c(t%)) = z5(u* /7", b%, &), and

z*(b,c) = T(b) = zp(b, &).

Let 7% | 0 and p* be the sequence 1,2,1,2,1,2,.... Then, pk/'rk — 00, and we have from Corollary 2.1 that
z(p®, b% c(t?)) = zp(u* /7% 0%, &) — zZB(b,&) = x*(b,c) = Z(b). However, Theorem 2.3 implies that the cor-
responding dual sequence s(u,b%, ¢(7%)) has the two cluster points of s(1,b,¢) and s(2,b,¢) = 2s(1,b,¢). The
problem here is that s;(u*,b*,c(7%)) = pF/zi(u*, b*, c(7%)), and we see that the dual elements fail to converge
because the sequence p* diverges. To guarantee the convergence of s(u*, %, c(7%)) one needs to guarantee the con-
vergence of pu* [x;(u*, b, c(7%)), i = 1,2,...,n (which is not implied by the convergence of u* and z(u*, b%, ¢(*))).
While Theorem 4.2 does not completely resolve this issue, it does show when the convergence of p* is guaranteed.

Theorem 4.2 Let 7% | 0. Then, the convergence of x(u*,b*, c(r%)) implies the convergence of p* if, and only if,
c ¢ row(A).

Proof: Assume that ¢ € row(A4). Then, as discussed on page 6, Py is bounded. Let pf = 1,2,1,2,...
and 7" = 1/k. Then, u*/7% — oo, and as just discussed, z(u",b* c(7*)) — z(b). Hence, the convergence of
x(uk , bk, C,») cannot guarantee the convergence of uk.
Assume that ¢ ¢ row(A), and suppose for the sake of attaining a contradiction that p* does not converge.
Then there are subsequences, uk" and pkj, such that
0 < lim g% < lim p* < oo.

i— 00 Jj—oo

If p* — p' > 0, we have from (6) that z(p",b% c(7*)) = @ (u',b,c). From (6) and Corollary 2.1 we have that

z(p?,b,0) if pb o p? < oo
2,04 () § PEORO I e
Z(b, c) if ki = oo,

However, Theorem 2.2 shows that cx(u',b,c) < cx(p?,b,c) < cZ(b,c), where the last inequality is included only
when z exists. This is a contradiction since this implies that

im (5, 0%, or)) # lim 2(4*,5%, o(r)).
i—00 j—oo

The only situation left is when p** | 0. However, if p*¢ | 0, we have the contradiction from Lemma 2.3 that

0= lim oy (p*, 0% c(ki)) # lim zn(u*9,0%,c(7%9)) > 0.
j—oo

11— 00

In this section, we have shown that while the limit of a central path is not continuous in b and ¢, the perturbed
central paths are well behaved if viewed as a set. Moreover, from Corollary 4.1 we have that the central path is
continuous over H?2(b,c).

5 Independent, Nonlinear Perturbations

In this section we remove the restriction that the perturbation in ¢ be linear. The analysis increases in difficulty,
and characterizing the convergence of the perturbed central path under arbitrary, simultaneous, and independent
perturbations in b and ¢ remains an open question. We provide sufficient conditions to guarantee the convergence
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of z(uF,b*,c*) and develop a process to find the limit. An example illustrates the difficulties of establishing
exactly when z(u¥, b*, c*) converges.
The sufficient conditions require that G> be partitioned into equivalence classes. For any b € Gy, we say that

¢! and ¢? in G? are “A-similar”, denoted by ¢! 2 e, if PCP, .1y N PCP, .2y # 0. The first goal of this section is

to show that & is an equivalence relation on G>. We begin by showing that central paths may not intersect unless
they are equal. The first lemma provides sufficient conditions for two primal central paths to be equivalent.

Lemma 5.1 Let ¢} = projnuu(A)c1 and ¢t = projnuu(A)cz. Then, I:C’P(b’cé) = PCPy .1y and PCP(,,,Cg) =
PCPy c2y. Moreover, if ¢y = ack for some a > 0, PCPy 1y = PCPy 2.

Proof: Let ck = projrow(a)¢’ and ¢k = Projrow(a)c’; 80 that ¢! = ¢§ + ck and ¢ = ¢ + ck. Let a > 0 be such
that ¢§ = acg. Since ¢k and ¢% are in row(A), we have from Theorem 2.3 that ckz and c%2x are constant on Pj.
This means that z(u, b, ¢') and 2(u, b, ¢) are respectively the unique solutions to

min {c(l)x - len(xi) ‘x € ’P{,’} and min {cgm - len(wi) ‘x € PE} .
i=1 i=1
Hence, PC’P(b,Cé) = PCP .1y and PCP(b,cg) = PCP, .2y. Multiplying the objective function of the first math
program by a shows that z(u,b,¢') = z(apu, b, c?), which implies that PCP .1y = PCP c2). |
The following corollary is stated for future reference.

Corollary 5.1 If projmlu(A)c1 = aprojnuu(A)CQ, for some a > 0, then

(E(/,t, b, cl) = w(p’v b, p’f‘Ojnull(A)Cl) = x(ap'7 b, projnull(A)c2) = w(au, b, 02) .

Proof: The result is immediate from the proof of Lemma 5.1. |

The next theorem establishes that the central paths within a polyhedron are either the same or disjoint. Since
PCP .y contains only those elements that correspond to a positive y, this does not say that two different central
paths may not terminate at the same point. However, it does say that two different central paths may not cross
en-route to either z* (b, c) or Z(b).

Theorem 5.1 If PC’P(b’C1) n 'FCP(b,c2) # @, PCP(,,,C1) = .FCP([,,C2).

Proof: From Corollary 5.1 we know that there is no loss of generality by assuming that ¢* and ¢* are in
null(4). Let ' and p” be positive such that z(u',b,c') = 2(u?,b,¢”). Since s(u',b,c")X(u',b,c") = p'e” and
s(u?,b,c )X (u?,b,c') = p?e”, we have that s(u!,b,c') = pleT X1 (pt, b, c!) and s(p?,b,c') = p2eT X 1(u?, b, ct).
From the dual feasibility constraints we have that

ct _HleTXil(lj’libacl) _y(ul,b,cl)Az() and ¢’ _NQeTXil(F?:b’cz) _y(I‘Qab’CQ)AZ 0.
Multiplying the first equation by 1/u', the second equation by 1/u?, and subtracting yields
(1/uh)e = (1/u*)e = ((1/u")y(u' b, ¢t) — (1/u)y(u?, b, %)) A.

Since the left-hand side is in the null(A) and the right-hand side is in the row(A), both must be zero. Hence,
c' = (p*/p?)c?, and from Lemma 5.1 we have that PCP, .1y = PCP, 2. [ ]

Two important corollaries follow.
Corollary 5.2 Ifc' ~ ¢?, POPy, 1) = PCP ).

Corollary 5.3 We have that projnull(A)c1 = aprojnuu(A)c2, for some positive v if, and only if, PCPy .1y =
PCP .2
(b,c?)

18



Proof: The sufficiency is established by Lemma 5.1. The necessity follows because if PCP;, .1y = PCP, .2y, then
there is a positive p' and p? such that z(p',b,c') = z(u?, b, ¢?), and from the proof of Theorem 5.1 we have that
projnuu(A)c1 = aprojnu]l(A)c2 for some positive a. |

Theorem 5.2 states that < is indeed an equivalence relation.

Theorem 5.2 % is an equivalence relation on G2. Furthermore, the equivalence class of ¢t is,
1 . 1 . .
[c']a={c: PTOJnullayC = QPT0inyll a6 for some positive a}.

Proof: Clearly ¢! 2 ¢!, and if ¢! 2 c2, then ¢? 2 ' So £ is reflexive and symmetric. From Corollary 5.2 we
have that if ¢! 2 ¢ and 2 & 3, then PCPy, o1y = PCPy, .2y = PCP, ;3), which implies that A e Hence, 2 is
transitive and an equivalence relation. From Theorem 5.1 and Corollary 5.3 we have that the equivalence classes
are as stated. |

Our conditions that guarantee the convergence of x(u*,b*,c*) rely on two new types of convergence. For a
sequence ¥, we let C(2*) be the set of cluster points of 2¥. Furthermore, for any sequence c*, we set d* = c¥/||c*||
so long as ¢* # 0, and we define F(c*) to be

F(*) = c(F)yuch.

In addition to the cluster points of c¥, the set F contains the “limiting directions” of the cost vectors. For example,
if ¢* is (1/k,1/k) for k even and (k, k?) for k odd, C(c*) = {(0,0)} and C(d*) = {(1/v/2,1/v/2),(0,1)}. We say
that ¢® is class convergent if the cluster points of ¢* and the limiting directions of ¢” are contained in the same
equivalence class.

k

Definition 5.1 The sequence c* is class convergent to [c]a if F(c*) C[c]a.

Definition 5.2 The sequence (u*,c*) is proportionately convergent if for any two subsequences, say
c® and ¥, having the property that

H - ki ki . . k. I’
Hm. projnullca)® /el = ajll)rgo Projugllay¢ /el

we subsequently have that
lim % /[l || = o Tim /"]
i— 00 j—oo

We point out that a proportionately convergent sequence may have the property that c® contains a subsequence
of zeros, it is just that this subsequence is not a candidate for either ¢® or ¢*i. Proportional convergence imposes
an interesting property on subsequences of c* that converge to elements in C(c*/||c®||) N row(A). Suppose that
(u*, c*) is proportionately convergent and that ¢ is in both C(c*/||c*||) and row(A). Then Projpyli(a)¢ = 0, and we

have that projnun(A)c = aprojnull(A)c for any positive a. Consequently, if c*i — ¢, we have that p*i /||| — 0,
which establishes the following result.

Theorem 5.3 If (u*, c*) is proportionately convergent and c* — ¢ € row(A), then p*i = o(||c¥i||)

The next theorem provides sufficient conditions for m(pk ,bF, c* ) to converge to an element of a central path.
The sequence ¢* is not required to converge, but is instead required to be class convergent. As Example 5.1
demonstrates, this weaker condition on ¢” is still too restrictive for necessity.

Theorem 5.4 We have that x(pk,bk,ck) converges to an element of PCP, .y provided that
1. c* is class convergent to [c]a,
2. (p*,c*) is proportionately convergent,
3. cF#0 fork=1,2,3,..., and
4 18l = eq).
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Proof:  Since p*/||c¥|| = ©(1) and z(p*,b%,c*) = z(u®/||c*||, 8%, c*/||c*||), we have from Lemma 2.2 that
x(u®,b%, c*) is bounded. The result is established by showing that all cluster points of z(u*,b*,c*) are equal.
Consider the subsequences

o(pt b, M) @, w(ut b, M) 5 8%, MY et and Pl || — &

From the class convergence we have that there is a positive o' and o? such that,

im o'proj &N = alproj é
i—00 null(a) nullca)
PIOJpyll(a)€
2 . A2
= @ Projpylla)®

_ li 2 . kj kj .
j;r{oloa pro.]null(A)c /”C ”

From the proportional convergence of (¥, c*) and the assumption that p*/||c*|| is bounded away from zero, we
have that
0<fi= lim ol /|5 = lim o /||c™ ]|
i—00 j—oo

From Corollary 5.1 we see that

ki pki kiy _ 1 ki gy kig) pei 1o ki gpp ki
2(p™, b7, ) = x(arp™t /|, 07, o projpygy aye™ /lle 1)

and  z(p'7,6",¢") = 2(a’p" /|| ||, 6%, @” projpypy 4" /1€ ).
We now have from (6) that

= .llmm(ll1,b1,c')
i—00

— : 1 k; k; ki 1 . k; k;
- zll}’gow(au /”C ||)b , & prOJnull(A)C /”C ”)
= x(p'v b7 projnull(A)c)

. 2 k; k. k; 2 : k; k.
= Jim a0 I 1,8, 0 projyiy a1 1)
= lim a(u",6",c")

j—oo

A2
= I .

Hence, x(p*,b%,c*) converges to an element in PCPy ). |

We point out that Theorem 5.4 only guarantees convergence to an element of PCP ), and hence every
component of the limit is positive. This is guaranteed in the proof by the condition that u*/||c*|| = ©(1).
The situation is more complicated if u*/||c*|| | 0, and we illustrate the increased complication in the following
example. This example has the desirable property that ¢ converges, but even with this property the convergence
of z(u®,b*, c*) requires the analysis of several nested linear programs. The example shows how we construct the
induced sequences of (u*,b*, c*).

Example 5.1 Consider the linear program
min{(1/k)z1 + (1/VEk)z2 + (1/VE)z3 : 0 <21 <1, 0< 22 <1, 0< w3 < 1}

Let pk = 1/k, and let x4, x5, and xe be the slack vectors. We point out that Theorem 5.4 does not apply because
pR/ck | = 1/V/T+ 2k | 0. We consider a sequence of linear programs to analyze the convergence of x(u*,b%,c?).
The idea is to iteratively “reduce” the original problem by linearizing the cost-coefficient perturbations and then
using the results from Section 3 to identify a collection of variables that must be zero. The data related to the jth
step of the procedure is indicated by the first superscript. For example, the initial sequences uk and b* are the

same as p®% and bOF) . We set (B°|N°) to be ({1,2,...,n}|0). The notational convention is slightly different
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for the cost coefficients, where we set c* to be &2(0 k)
Let ¢ cBo be the limit of &gjok). The ‘root’ problem is defined by this limit and is

(LP°) min{é}oxho : AgoxBo < b, xR > 0},
where the superscript 0 on the = indicates that these are the decision variables for the root problem. The optimal
partition for (LP°) is (B'|N') = ({1,2,3,4,5,6}| @), and we point out that (B'|N') partitions B°, and hence
B! C BY. To define the first subproblem, we set

= 1% — el = V2R + 1/k,

pt =y OR rR ok,
bMF = b — Al (P, 60N Oy = (1,1,1)7, and

&0 = 1/ r OGP — e0) = (1/V2k + 1)(1, VE, VE).

The sequence (@ (LE) p(LE) &(l’k)) is the first induced sequence of (u*,b%, c*), and it is this sequence that defines

(1,1@)&:5;0,@

the first subproblem. We “linearize” c( k) by rewriting it as 6030 + 7 , from which we have that

@ go (1, 6%, *) = 2% (H(O k) p(0.k) 60(0 k)) = 2% (s (0k) p(0k) 0 4 (L. k)&(l k)) (15)
The constant term éOBo is used in the root problem to identify the optimal partition (B*, N'), and from Lemma 2.3
we know that the variables indexed by N' are zero for every cluster point of x(u®,b*,c*). Unfortunately, these
may, or may not, be the only variables that are zero (and in this example none of the zero variables are indexed
by N° because it is empty). These variables are essentially removed from the problem because they are moved to
the right-hand szde whzch reduces the dimensionality of the problem and places us on a shifted optimal face of the

root problem. If&c ) had been constant, we could have established the limit of z(u®,b*,c*) from Theorems 3.1
0

and 8.2, and this limit would have been on the central path defined by minimizing &:(lok)acBo over the optimal face
of the root problem. However, &;( F) s not constant, and we repeat the process by linearizing the linear programs
defined over the optimal face of the root problem. Notice that the sequence &gak) does not converge to zero, but
rather &(l’k) (0,1/+/2,13/2). Furthermore, from Lemma 2.3 we have that b"F) — b (this also follows in this

case because N° = (). Defining & CBl to be the limit of 60( ; ), we have that the first subproblem is
(LP") min{épizp : Agrizp <b,zp >0},

or equivalently
min{(1/v2)zy 4+ (1/vV2)z} : 0 <z} < 1,i=1,2,3}.
The relationship between LP® and LP' is the same as the relationship between our standard linear program in (1)
and the linear program in (12). So, from (14), (15), and the definition of p*®, we have that
o (pF, bR ) = 2%, N(O,k) p(0:F) &(O,k))
(0,k) b(o k) 04+ 7@ k)éc(l k))
(16)

(O,k)/,’_(l,k),b(l,k),&:(B}lk))

B (
= ap(p
Tp (p
B (

= Tpi l”‘(l’k)’b(l,k))&gl’k))-

The optimal partition for LP' is (B*|N?) = ({1,4,5,6}|{2,3}), which partitions B'. As before, we have from
Lemma 2.8 that the components indezed by N2 are zero in every cluster point of x}31 (u(l’k),b(l’k),écgl’k)), and
we move these variables to the right-hand side (this is the first ‘reduction’ for this emample) The remaining
components are indezed by B> C B, and we have from (16) that zg>(u®,b%,c*) = zlo(utF (1) &(1 k))
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Similar to the first subproblem, the second subproblem relies on

T30 = (G e
u(2’k) — u(l)k)/T(zrk)
b = R g (w000 UMY, and

&SR = (/r) (&SP — éh).

The second induced sequence of (u¥,b",c*) is (u(z’k),b@’k),&:g{k)), and as before, we have that (5011931 = 61191 +
T(z’k)&:gl’k). Hence,

wp1 () 00R) 0By = gy (uP) 6R) ay 4 2O,

It is easily checked that p>® = \/2/(2 +2/(V2k + 2k + 1)2) = 1, which is important because p>® does not
5"
check that &g;k) — (1,0,0,0) (the zero components follow because x4, x5, and x¢ are slack variables). Setting é5o

to be the limit of chék)

converge to zero. The second subproblem requires only the B? components of the limit of & , and it is easy to

, we have that the second subproblem is
(LP?) min{éhoayhe : Ap2age < b,xpe >0} = min{z] : 0 < 27 < 1}.
Similar to (16), we have that

wp2(pf, 05,0 = 2l (WO, 6O, &)

NCUR RN PPN

Il
8

Ok) 7 1.k) (10 g, (1100

Il
8

2 (p

B2 (
B2 (
B2 (
Lo (o), b(1,k),&§311,k))
B2 (
B2 (
B2 (

Il
8

2

) pAR) gLy () (2
(1k) /7 (20) (210 (2200

Il
8

2 (p

- (2:’9), p(ZF) , 50(;2,76)).

2(p
Since p>® — 1, we have from (6) that szl(p@’k),b(Q’k),écgik)) — 251 (1,b,1), and a straight forward calculation
shows that £3(1,b,1) = (3 — V/5)/2. We conclude that

x(p®,b", ) = (3-v5)/2,0,0,(v5—1)/2,1,1)".

The technique used in Example 5.1 suggests an algorithmic manner to calculate the limit of z(u*,b*, k).
Instead of trying to calculate this limit directly, we instead calculated the limit of ¢® and use this limit to form
a root problem. The N set of the corresponding optimal partition indexes a collection of variables that must go
to zero, and in fact, this is the entire collection of zero variables if u(**) has a positive limit. However, if p(1*)
decreases to zero, the variables whose value must be zero are moved to the right-hand side, and the limit of &g{k)
is calculated to form the first subproblem. Again, we know that any variables listed in the corresponding N set
of the optimal partition are zero in the limit. The process repeats until either all variables are found to be zero,
or until 4Y"*) does not converge to zero for some j.

Example 5.1 has the property that ch;k) converges for j = 0, 1,2, but the proof of Theorem 5.4 shows that this
need not be the case. Instead, at each step of the procedure we need for &:g;k) to be class convergent. As long as
this is true, we continue to form the induced sequences until we have a criteria that guarantees convergence. The
process in Table 3 describes how to construct the induced sequences, and Theorem 5.5 shows that z(u*, b*, c*)
converges if this process terminates with an exit code of 0.

Lemma 5.2 Let (B|N) be the optimal partition for min{éx : Az = b,z > 0}. If c¥ is a non-zero sequence that is
class convergent to [c|la and p* /||cF|| | 0, then zn (u*,b%,cF) | 0.
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Step 1 Set j =0, (B°|N°) = ({1,2,...,n}|0) and (u*,b",c*) = (u®®), ) &)y,
Step 2 Stop with exit code 0 if any of the following are true,
e B = 0,
. (p(j’k),b(j’k),&g;k)) satisfies conditions (1) — (4) of Theorem 5.4, or
o j>1and poP /||| - oo,
Step 3 If we have that ||&:g1k)|| #0, u(j‘k)/H&g;k)H 4 0, and that there exists a éfgj such that &g;k) is class
convergent to [¢']4;, then continue with Step 4. Otherwise, stop with exit code 1.

Step 4 Solve the linear program
(LP7) min{é;a’; : Agjal; =b,al; >0}

and let (BY*1|N7*!) be the optimal partition.

Step 5 Set
7_(H—l,k) — ||5c(j’k) _ éJ”
pIHLR =GR G L)
BUTLR = p0R A g (O bR &0 and
YR = (/70RO .

Step 7 Let j = 7+ 1 and go to step 2.

Table 3: The process to construct the induced sequences of (u*,b%, c*).

Proof: We have from Theorem 5.2 that there is no loss in generality by assuming that c¢ is in null(A). Since

x(uk 0%, cF) = x(u¥/|Ic*|, 6%, ¢*/|Ic¥|)) and ¢*/||c¥|| is bounded, we have from Lemma 2.2 that z(u*,b*,c*) is
bounded. So, there is a subsequence (p*¢, 5%, c¥i) such that

ki pki kiy _ ki ki ki ki ki A

a(p™, 0%, ) = a(u /L0, Nl ) = 2,

ki o kil vk ki g ki N

y /Nl L, 0% T Nl ) = g,
sl 0%, ¢/l = 8, and

ks k; ~

et — e

For notational ease, we let

@' = a(u® /)|, 0%, M /N,y =y e B0 R ), and st = s(u /e ], B e

From the assumption that c* is class convergent to [c]4 we have that there is a positive o such that aprojnuu( A)é =

c. Since
At = M Az = b
yA+st = M =>4 gA+E = ¢
szt = npkif|Ich| & = 0,

we have that & is an optimal solution to min{éz : Az = b,z > 0}. Let § be such that §4 = projrowa)¢, from

which we have that ¢ = projnull(A)é + Projrow(a)é = projnull(A)é + §A. Substituting this into A + § = ¢, we

have that

~

Az =b, £>0, a(f—9)A+ad= aprojnuu(A)é =c¢, a§>0,and 3§z =0.
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Hence, # is also an optimal solution to min{cx : Az = b,z > 0}, which implies that z(u"*,b*,cf) = iy =0. ®H

Theorem 5.5 If the process in Table 3 stops with an exit code of 0, then m(pk, bk,ck) converges.

Proof: If the process terminates with j = 0 and an exit code of 0, then we have that (¥, b, c*) = (p(o’k), b(OF), 6055?5’“))
satisfies conditions (1) — (4) of Theorem 5.4, which implies that z(u*,b"*,c*) converges. Suppose that the pro-
cess in Table 3 terminates with an exit code of 0 and that the induced sequences are (u(j ’k), bU ’k),&cg;-k_)l), for
j=1,2,...,J. The proof follows with a careful inspection of how the sequence z(p*,b*, c*) partitions itself as
the process continues. From the definition of the first induced sequence we have that

xOBl(H(O,k),b(O,k),éO + T(l,k)é-cg(,)k))
x(ﬂky b, Ck) = 33?30 (N(OJC)’ b(O,k)7 &g)ék)) —

0,k
l'?vl (I/'(O’k), b(O,k), &25.30 ))
From (14) we have that
i (O 6O, &0 4 ER&CE) = gy (u9, 500 5.
Using the second induced sequence we have that

.’6}32 (H(l’k): b(l,k), &+ 7-(2,79)50%’0))
@pr (0,60, 6 = ,
Ziva (00, &)

which implies that
$}32 (M(l,k),b(l,k)’ &+ T(2,k)&(§ik))

k 1k k
st B = | a0, 500, )

20 (4,09, 5:5)

Again, from (14) and the definition the third induced sequence we have that

sz3 (M(z,k)7 b(2,k)’ o + T(3,k)&:(§2,k))
xiﬁ(u(l,k), b(l,k)’ &+ 7(2"“)&:531’“)) _ 9”232 (M(Zk)’b(l’,k)’&gz,k)) _

(TN el S )
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The process continues until

Jk
m‘éJ (M(J,k)’ b(J,k)’ &%J ))

- . . J—1,k
xéJl(ll(J l’k):b(J l,k)a&(BJ—ll ))

a(u® bk, ) =

@2 (u), 500, &)

ok
2 (0,60, &)

The fact that the first induced sequence was created implies that (kg)(’,k) # 0, p " /|ldego|| 4 0, and &g){,k) is
class convergent to [é%o]ABO. By assumption we have that 5% = b* — b. So, from Lemma 5.2 we have that
%1 (u(o’k),b(o’k),&g{,k)) 10, which subsequently implies that 5% = p®F) — 4, %4 (,u(o’k), b(o’k),écg){)k)) — b.
By the same logic, and repeated applications of Lemma 5.2, we find that SN b, for j=1,2,...,J, because

- - - J-1,k
x]JVJ1(N(J 1,k)7b(J 1,k),(5c53]_11 ))

Lo.

x%\ﬂ (/j’(l,k) ) b(l,k)a é‘C(B}l’k))

K
2 (9,600, &)

At this point we have that if the process terminated because B’ = (), then x(pk,bk,ck) 1 0. Suppose that
(u(J’k),b(J’k),écg}k)) satisfies conditions (1) — (4) of Theorem 5.4, then we have that xéJ(u(J’k),b(J’k),ch}k))
converges, and hence, so does z(u*, b*, c*).

(J,k) (J.k) : ; : (J.k) 4, (J,k) i

Suppose that p'""/[|dc;5"|| — oo, which subsequently implies that 5" /u — 0 € row(A). Since

{#gs—1 : Apgjwgs = bxgs > 0,xys = 0} is the optimal set of (LP’~'), we have from Lemma 2.2 that
{€ps : Agizgs =b,xps > 0} is bounded. So, from Theorem 2.4 we have that 5 (u'"*), b(J*)| (ch}k)) converges.
|

We conclude by pointing out that z(u*,b*, c*) can converge if the process in Table 3 terminates with an exit
code of 1. As an example, let b* =1, u* = 1/k, A =[1,1], and c* be (1,1) if k is even and (1/k, 1/k) if k is odd.
Then, for all k¥ we have that ¢* € row(A), and from Theorem 2.3 we know that z(u*,b*, c*) = (b)) = (1/2,1/2)T.
However, p* /||c*|| is 1/kv/2 if k is even and 1/+/2 is k is odd. Hence, the sequence p*/||c*|| does not decrease to
zero and is not ©(1), and the process terminates with an exit code of 1.

6 Conclusions and Future Research
We have accomplished three main goals with the analysis developed in this paper. First, we have completely

characterized the convergence of the perturbed central path followed by many infeasible-interior-point methods.
This result is succinctly depicted in Table 2. Second, we have shown that the perturbed central path converges
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as set, so long as the cost vector perturbation is linear. In fact, the central path is continues over the set of
cost directions for which the optimal partition is invariant. Third, we provided sufficient conditions for the
perturbed central path to converge under arbitrary, simultaneous changes in b and c¢. These are the first results
in the literature that deal with this complicated situation, and characterizing the convergence under such data
perturbations remains an open question.
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