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Abstract

Define a conic blocking set to be a set of lines in a Desarguesian projective plane

such that all conics meet these lines. Conic blocking sets can be used in determining

if a collection of planes in projective three-space forms a flock of a quadratic cone. We

discuss trivial conic blocking sets and conic blocking sets in planes of small order. We

provide a construction for conic blocking sets in planes of non-prime order, and we

make additional comments about the structure of these conic blocking sets in certain

planes of even order.
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1 Introduction

Let Q be a quadratic cone in PG(3, q) with vertex V . Traditionally, a flock of Q is a

partition of the points of Q\{V } into q conics. Equivalently, we can say that a flock

of Q is a set of q planes which intersect the quadratic cone in q disjoint conics. The

simplest example of a flock is a linear flock, which is a flock consisting of q planes

passing through a fixed line skew to the cone.

One of the most interesting features of flocks is that a large variety of other struc-

tures are related to flocks. For instance, independently, in 1976 M. Walker [7] and J.

A. Thas [2] discovered that to each flock of an irreducible quadric of PG(3, q) there

corresponds a translation plane of order q2. In 1980, S. E. Payne [5] showed that given

a set of q upper triangular 2 × 2 matrices over GF(q) of a certain type, known as a

q-clan, there exists a generalized quadrangle of order (q2, q). Then, in 1987 J. A. Thas

[6] proved that to a q-clan there corresponds a flock of a quadratic cone of PG(3, q), and

conversely. Hence, with each flock of a quadratic cone of PG(3, q) there corresponds

a generalized quadrangle of order (q2, q). The following year, Gevaert, Johnson, and

Thas [3] showed that flocks of quadratic cones can be used to define translation planes.

The strong connection between flocks and other geometrical structures leads us to in-

troduce a new structure in the projective plane that may be used to determine the

existence of certain flocks of quadratic cones.

In PG(2, q), a conic blocking set (CBS) is a set B of lines which meets every conic of

PG(2, q). A CBS B is called irreducible, if for any line of B there is a conic intersecting

B in just that line. A conic blocking set is a geometrical structure in the plane that

is useful in determining if a collection of planes in projective 3-space form a flock of

a quadratic cone. For instance, let F be a collection of q planes of PG(3, q) and V a

point not in any plane of F . If the projection from V into any plane of F of the lines

of intersection of the planes of F forms a CBS, then there does not exist a quadratic

cone with vertex V having F as a flock. On the other hand, if this same projection

does not form a CBS, then there exists a quadratic cone with vertex V having F as a

flock.

For the remainder of this paper, we make the restriction that all CBSs consist

of a set of concurrent lines through a specified point P . Then the complement of



a CBS B, denoted Bc, consists of the remaining lines through the point P . In the

next section, we give some general results concerning existence of CBSs and CBSs of

smallest size (minimum CBSs) in PG(2, 2) and PG(2, 3). In Section 3, we provide a

nontrivial CBS construction that relies on results by J. A. Thas [6]. Section 4 identifies

an irreducible CBS in PG(2, 22n) given by the construction in Section 3. Also, we show

that this irreducible CBS is projectively equivalent to a set of concurrent lines in the

Baer subplane PG(2, 2n). Finally, we end with open questions and concluding remarks

related to the CBS construction given in Section 3.

2 General Results

Observe that in PG(2, q), the q + 1 lines through any point form an extremely trivial

and uninteresting CBS. Furthermore, the set of lines, retained after removing a single

line from this CBS, is still a CBS. The following lemma offers an existence of a less

trivial CBS of smaller size.

Lemma 2.1 Any set of q+3
2 (resp. q+2

2 ) concurrent lines in PG(2, q) with q odd (resp.

q even) form a CBS.

Proof:

A simple counting argument shows that no conic can exist in q + 1 − q+3
2 = q−1

2

concurrent lines. Therefore, any set of q+3
2 concurrent lines must be a CBS when q is

odd.

A similar argument gives the desired result in PG(2, q), q even.

We describe the CBSs in planes of orders 2 and 3, since they are completely classi-

fiable.

Proposition 2.2 A minimal CBS in PG(2, 2) consists of any pair of lines.

Proof:

Trivial.

Proposition 2.3 Any three concurrent lines form a minimal CBS in PG(2, 3).
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Proof:

By Lemma 2.1, any set of three or more concurrent lines form a CBS. If B is a CBS

consisting of only two lines, then Bc also consists of two lines for which we can pick

four points, two on each of the complement lines, no three collinear. These four points

form an oval which is a conic. Since Bc contains a conic, B is not a CBS and no pair

of lines in PG(2, 3) will form a CBS.

For p a prime, we let F denote GF(p), the prime subfield of an extension field

E = GF(pe) = GF(q) with subfield K = GF(pd). In general, K is assumed to be a

proper subfield of E , unless otherwise specified. Let Tr denote the relative trace map

TrE/K from E onto K given by Tr(t) = t+ tp
d

+ · · ·+ t(p
d)k−1

where e = dk and t ∈ E .

3 The Trace-Flock Construction

Finding CBSs consists of identifying a set of lines through a point such that all conics

in PG(2, q) have at least one secant or tangent in this set. For the CBS construction

given in this section, we coordinatize PG(2, q) (from GF(q)) so that P = (0, 1, 1) is

the point of concurrency. Although, x = 0 is a line through P , we are able to insure

that x = 0 is not a line of the CBS. We will determine the slopes, m̄, of the lines with

equation y = m̄x + z such that every conic in PG(2, q) meets these lines. Since the

Kantor-Knuth flocks [6] are a nuisance to the CBS construction given in this section,

we discuss some important properties of these flocks that cause the interference.

The q planes of a Kantor-Knuth flock have the equations

πt : xt−mtσz + w = 0,

where m is a fixed nonsquare in E and σ is a non-identity automorphism of E . The

projection of the line of intersection of any two distinct planes, πs and πt of the Kantor-

Knuth flock, to the plane with equation w = 0 is the line with equation x = m(t −

s)σ−1z. We refer to these projections as the KK-lines, and we observe that the number

of KK-lines is equal to the size of the image set of g(t) = tp
k−1, 1 ≤ k ≤ e− 1, t 6= 0.

The following lemma determines the exact size of a set of KK-lines.
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Lemma 3.1 If h : E∗ → E∗ is given by h(t) = tp
k−1 1 ≤ k ≤ e− 1, then |Image(h)| =

pe−1
pd−1

, where d = gcd(k, e).

Proof:

For 1 ≤ k ≤ e − 1, let d = gcd(k, e) and define f
k
(t) = tp

k
so that h

k
(t) = f

k
(t)

t =

tp
k−1, for t 6= 0. Since f

k
is an automorphism of E , f

k
has a fixed field K = GF(pd).

For λ 6= 0, it is easily seen that h
k
(t) = h

k
(λt) if and only if λ ∈ K. That is, if and

only if λ is in the fixed field of f
k
(t). Since there are pe − 1 nonzero elements in E , for

each h
k
, E∗ is partitioned into blocks of size pd − 1. Therefore, there are pe−1

pd−1
distinct

values in the Image(h
k
).

In 1987, J. A. Thas classified those flocks of a quadratic cone all of whose planes

contain a common point. We restate his theorems in terminology useful for this paper.

Theorem 3.2 [6] In PG(3, 2e), if the 2e planes of a flock of a quadratic cone contain

a common point, then the flock is linear.

Similarly,

Theorem 3.3 [6] In PG(3, pe), p an odd prime, if the pe planes of a flock of a cone

contain a common point, then the flock is either a linear or a Kantor-Knuth flock. The

latter case occurring only if the common point is an exterior point of the cone.

Lemma 3.4 If g : E∗ → E is given by g(t) =
TrE/K (t)−t

t = Tr(t)−t
t for t 6= 0, then

|Image(g)| = pe−d + 1.

Proof:

To show that the size of Image(g) is pe−d+1, we show E∗ is partitioned into pe−d+1

blocks: one of size pe−d − 1 and pe−d blocks of size pd − 1, such that g is constant on

each block.

Observe that g(t) = g(λt) if and only if λTr(t) = Tr(λt). If λ ∈ K∗, then the

condition is immediately satisfied. If λ 6∈ K∗, then since the trace function is a homo-

morphism of E onto K, the condition can only be satisfied if Tr(t) = 0. Indeed, we

have g(t) = −1 if and only if Tr(t) = 0.
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Since the relative trace function is an additive homomorphism from E onto K,

| ker(Tr)| = |E|/|K| = pe−d. Let T0 = ker(Tr) \ {0}, so |T0| = pe−d − 1. We note that

g is constant on the block T0. If t 6∈ T0, then there are pd − 1 elements s such that

g(t) = g(s), namely the elements s = λt with λ ∈ K∗. As |E∗\T0| = pe−1−(pe−d−1) =

pe−d(pd−1), we see that g is constant on pe−d blocks of size pd−1. These blocks together

with T0 give the required partition of E∗.

We use the function g described in Lemma 3.4 to construct a set of concurrent lines

{y = g(t)x + z | t ∈ E∗}, which we refer to as the set of trace-flock lines (TF-lines).

Lemma 3.4 gives us that there are pe−d + 1 lines in a set of TF-lines, and in Lemma

3.1, we determined that there are pe−1
pd−1

lines in the set of KK-lines. Observe that the

number of KK-lines equals the number of TF-lines only when e = 2d. In the next

lemma, we show that when e = 2d, the KK-lines are projectively equivalent to the

TF-lines.

Lemma 3.5 Let q be an odd prime power and g
f

: GF(q2)∗ → GF(q2) be given by

g
f
(t) = f(t)

t , where f is any nontrivial additive function of GF(q2) over GF(q). Then

the set of lines {y = g
f
(t)x+z | t ∈ GF(q2)∗} through (0, 1, 1) is projectively equivalent

to the KK-lines, that is, projectively equivalent to the set of lines {x = msq−1z | s ∈

GF(q2)∗, m a nonsquare} through (0, 1, 0).

Proof:

Any nontrivial additive function of GF(q2) has the form f(t) = αt + βtq with α,

β ∈ GF(q2), β 6= 0. Let g
f
(t) = f(t)

t and h(t) = tq−1, t 6= 0. Clearly, Image(g
f
) has the

same size as Image(h), which is a cyclic subgroup of GF(q2) of order q + 1. Let m be

a fixed nonsquare in GF(q2). It is straightforward to show that the projectivity given

by

M =


1
βm

α
βm 0

0 1 1

0 1 0


maps {y = g

f
(t)x + z | t ∈ GF(q2)∗} to {x = m(1/t)q−1z | m a fixed nonsquare}, as

required.

By setting α = β = 1, we see from Lemma 3.5 that the set of TF-lines generated by
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g(t) =
Tr

GF(q2)/GF(q)
(t)−t

t = tq−1 is projectively equivalent to the set of KK-lines. The

significance of this fact is highlighted in the proof of the next theorem and in Remark

3. We now have all the tools necessary to give the CBS construction.

Theorem 3.6 If d|e and e > d, then the set of lines through the origin with slopes in

the set
{

TrE/K (t)−t
t | t ∈ E∗

}
is a CBS of size pe−d + 1 in PG(2, pe), unless p is odd

and e = 2d.

Proof:

Embed PG(2, pe) into PG(3, pe) as w = 0. Let f(t) = TrE/K(t) − t and observe

that f is an additive function. We have shown that the set of TF-lines given by

B := {y = g(t)x + z | g(t) = f(t)
t , t ∈ E

∗} contains pe−d + 1 lines, and observe that B

is a set of lines in the plane w = 0 through the point (0, 1, 1, 0). Consider the pe − 1

planes of the form:

πt : − f(t)x+ ty − tz + w = 0,

with t ∈ E∗.

Clearly, the point (0, 0, 0, 1) does not lie on any of these planes, and the point

(0, 1, 1, 0) lie on all of these planes. Together with the plane w = 0, we have a set of

pe planes all passing through (0, 1, 1, 0) such that every pair of these planes meet in a

line which projects to a line of B. If there exists a conic C that misses B, we can form

a cone with vertex (0, 0, 0, 1) and base C. These pe planes then form a flock of this

cone, and the planes of this flock contain the common point (0, 1, 1, 0). We examine

this putative flock to show that B is a CBS. The cases of p = 2 and p an odd prime

are handled separately.

If p = 2, Theorem 3.2 implies this flock is linear, that is |B| = 1. But, |B| =

2e−d + 1 > 1, so C does not exist and B is a CBS.

If p is an odd prime, we consider the two cases of (0, 1, 1, 0) being a common

interior point to the cone and a common exterior point to the cone. If (0, 1, 1, 0)

is a common interior point, then Theorem 3.3 implies that this flock is linear and

therefore, |B| = 1, contradicting |B| = pe−d+1 > 1. So, C cannot exist and B is a CBS.

If (0, 1, 1, 0) is a common exterior point, then the same theorem implies that this flock

is projectively equivalent to a Kantor-Knuth flock. But, we have shown that any flock
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equivalent to a Kantor-Knuth flock produces a set of KK-lines of size pe−1
pd−1

. Observe

that pe−d + 1 = pe−1
pd−1

only when e = 2d. Hence, when e 6= 2d, C does not exist and

again B is a CBS.

Thus, the trace-flock lines {y = [(TrE/K(t)− t)/t]x+ z | t ∈ E∗} form a CBS of size

pe−d + 1 in PG(2, pe), unless p is odd and e = 2d.

Remark 1. We used the specific function g(t) =
TrE/K (t)−t

t to give the slopes of the

lines in the CBS obtained by this trace-flock construction. It should be evident that

this function is not unique for this type of CBS construction. When g′ is an additive

function divided by t, we can imitate the proof in the trace-flock construction by using

g′ instead of g, to form a CBS, as long as 1 < |Image(g′)| 6= pe−1
pd−1

.

Remark 2. The trace-flock construction, and even a generalized construction, such

as the one described in Remark 1, does not give CBSs in PG(2, p), p prime. This can

easily be seen by observing that the only additive function, up to scalar multiplication,

is the identity. Hence, a generalized construction of the trace-flock construction fails

to yield a CBS, since g′ generates only one line for the CBS.

Remark 3. We showed in Lemma 3.5 that the trace-flock lines were projectively

equivalent to the KK-lines when E = GF(p2d) and K = GF(pd). Although the CBS

construction provided in Theorem 3.6 does yield CBSs in PG(2, p2d), it cannot be used

to generate CBSs of size pd + 1 in PG(2, p2d).

Table 1 gives an indication of the sizes of the CBSs obtained by the trace-flock

construction described in Theorem 3.6.

q p = 2 p odd
p
p2 3
p3 5 p2 + 1
p4 5, 9 p3 + 1
p5 17 p4 + 1
p6 9, 17, 33 p4 + 1, p5 + 1
p7 65 p6 + 1
p8 17, 65, 129 p6 + 1, p7 + 1
p9 65, 257 p6 + 1, p8 + 1
p10 33, 257, 513 p8 + 1, p9 + 1

Table 1: Sizes of CBSs given by the Trace-Flock Construction
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Finally, we remark that the size of the CBSs produced by the trace-flock construc-

tion is an improvement over the size of the trivial CBSs described in Lemma 2.1. For a

fixed q = pe, when p is odd, the largest size of a CBS obtained by the trace-flock con-

struction is always smaller than those CBSs constructed in Lemma 2.1. On the other

hand, when p is even, the largest size of a CBS obtained by the trace-flock construc-

tion is the same as those CBSs constructed in Lemma 2.1. Now, when the exponent,

e, on the order of the plane is prime, the trace-flock construction yields exactly one

CBS. However, when e is composite, a variety of CBSs are obtained, always yielding

an improvement over the sizes of the CBSs obtained by the construction described in

Lemma 2.1. To emphasize this improvement, consider CBSs in PG(2, 53). The trace-

flock construction gives a CBS of 26 lines whereas the trivial construction requires 64

lines for a CBS in PG(2, 53). Tables 2 and 3 highlight the CBS sizes constructed thus

far.

q Trivial Trace-Flock

2 2

4 3 3

8 5 5

16 9 9, 5

32 17 17

64 33 33, 17, 9

128 65 65

256 129 129, 65, 17

512 257 257, 65

1024 513 513, 257, 33

Table 2: CBS sizes - q even

q Trivial Trace-Flock

p (p+ 3)/2

p2 (p2 + 3)/2

p3 (p3 + 3)/2

p4 (p4 + 3)/2 p3 + 1

p5 (p5 + 3)/2 p4 + 1

p6 (p6 + 3)/2 p5 + 1, p4 + 1

p7 (p7 + 3)/2 p6 + 1

p8 (p8 + 3)/2 p7 + 1, p6 + 1

p9 (p9 + 3)/2 p8 + 1, p6 + 1

p10 (p10 + 3)/2 p9 + 1, p8 + 1

Table 3: CBS sizes - q odd

4 Irreducible CBSs in PG(2, 22n)

In this section, we restrict ourselves to the case where n ≥ 2 and α is a primitive

element of E = GF(22n), with K = GF(2n) a proper subfield of E and F = GF(2) is
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the prime subfield of E . We show that the trace-flock construction yields an irreducible

CBS in PG(2, 22n), and this CBS is projectively equivalent to the set of lines through

a point in the Baer subplane PG(2, 2n).

With n ≥ 2, we have that |K| ≥ 4. Hence, there is an element β ∈ K such that

TrE/F (β) = 1, and for 0 ≤ i ≤ n−1, β2i = β2n+i
. Now, with g(t) =

TrE/K (t)−t
t = t2

n−1,

as defined in Lemma 3.4, the Image(g) is a cyclic subgroup of E∗, with any element in

Image(g) expressible as δk = α(2n−1)k, k ∈ Z2n+1. Using the fact that δk(2n+1) = 1, it

is simple to prove the following observation, which aids in the proof of Theorem 4.2.

Observation 4.1 For i a positive integer, we have that (1+δk)−2i +(1+δk)−2n+i
= 1.

Using the projectivity given by,

A =


1 0 0

0 1 0

0 1 1

 ,

it is straightforward to show that the CBS given by the trace-flock construction is

projectively equivalent to the CBS, B′ := {y =
TrE/K (t)−t

t x | t ∈ E∗} = {y = t2
n−1x | t ∈

E∗}, with point of concurrency (0, 0, 1). We show B′ is irreducible by showing that for

every line l in B′ there is a conic, with equation Ax2 +Bxy+Cy2 +Dxz+Eyz+z2 = 0,

that meets only l.

Theorem 4.2 The CBS, B′ = {y = t2
n−1x | t ∈ E∗} = {y = δkx | 0 ≤ k ≤ 2n, δ =

α2n−1}, is irreducible in PG(2, 22n).

Proof:

Let β ∈ K such that TrE/F (β) = 1. Consider the quadrics Qm(x, y, z) with equa-

tions:

x2 + δ−mβ−1/2xy + β−1/2xz + δ−mβ−1/2yz + z2 = 0,

where m ∈ Z2n+1. The nucleus of Qm is
(
δ−mβ−1/2, β−1/2, δ−m

)
and observe that

Qm(δ−mβ−1/2, β−1/2, δ−m) = δ−2m 6= 0. Hence, Qm is nondegenerate and therefore is

a conic. We show that when k = m, the line y = δkx is a tangent line to Qm, and for

all k ∈ Z2n+1 \ {m} the line y = δkx is exterior to Qm. For the line y = δkx of B′ to
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meet Qm, we must have that

(1 + δk−m)x2 + β−1/2(1 + δk−m)xz + z2 = 0 (1)

has a solution.

When k = m, there is exactly one solution to (1), and the line y = δmx is a tangent

line to Qm.

Let k −m = j 6= 0. To show that the line y = δkx does not meet Qm, we examine

the absolute trace of
1 + δj[

β−1/2(1 + δj)
]2 =

β

1 + δj
.

Equation (1) has a solution if and only if this absolute trace is 0. Assume, for the sake

of attaining a contradiction, that TrE/F ( β
1+δj

) = 0. Then

TrE/F (β(1 + δj)−1) = 0 ⇔ β(1 + δj)−20
+ β2(1 + δj)−21

+ · · ·

+β2n−1
(1 + δj)−2n−1

+ β2n(1 + δj)−2n +

β2n+1
(1 + δj)−2n+1

+ · · ·

+β22n−1
(1 + δj)−22n−1

= 0

⇔
2n−1∑
i=0

β2i
[
(1 + δj)−2i + (1 + δj)−2n+i

]
= 0

⇔
2n−1∑
i=0

β2i = 0

⇔ TrE/F (β) = 0.

However, β was chosen so that TrE/F (β) = 1. Thus, TrE/F ( β
1+δj

) = 1 and all lines of

the form y = δkx, k 6= m, are exterior to Qm. Since the removal of any line l from B′

results in B′ no longer being a CBS, B′ is an irreducible CBS in PG(2, 22n).

With the aid of the following lemma, we can show that the CBS B′ = {y = δkx | k ∈

Z2n+1} is projectively equivalent to the set of lines in the Baer subplane PG(2, 2n) of

PG(2, 22n) through the point (0, 0, 1).

Lemma 4.3 The element

ω =
(δj + δ)(1 + δ2)
(1 + δ)(δj + δ2)

∈ E∗

with j 6= 1, 2, lies in the subfield K.
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Proof:

Observe that δk = α(2n−1)k where α is a primitive element of E , and so
[
δk
]2n = δ−k.

Using this observation and a series of algebraic manipulations, it can be shown that

ω2n−1 = 1. Hence, ω ∈ K∗.

Theorem 4.4 The lines B̄ := {y = mx | m ∈ K} ∪ {x = 0} form an irreducible CBS

in PG(2, 22n).

Proof:

We show that B̄ is an irreducible CBS in PG(2, 22n) by finding a projectivity in

PGL(3, 22n) that maps the irreducible CBS B′ given in Theorem 4.2 to B̄. Consider

the element

M =


1

1+δ
δ

1+δ 0

1
1+δ2

δ2

1+δ2 0

0 0 1


in PGL(3, 22n). It is straightforward to verify that M fixes (0, 0, 1). It is also simple

to verify that M maps the line y = x in B′ to the line y = x in B̄, the line y = δx in

B′ to the line y = 0 in B̄, and the line y = δ2x in B′ to the line x = 0 in B̄.

For j 6= 0, 1, 2, we denote the remaining lines in B′ by


δj

1

0

. Now,


1

1+δ
δ

1+δ 0

1
1+δ2

δ2

1+δ2 0

0 0 1



δj

1

0

 =


(δj+δ)(1+δ2)
(1+δ)(δj+δ2)

1

0

 =


ω

1

0

 .

From Lemma 4.3, ω ∈ K∗, therefore ω is of the form α(2n+1)k, k 6= 0. Hence, M

maps the lines in B′ to distinct lines in B̄, which are the Baer lines through the point

(0, 0, 1) in PG(2, 2n). Thus, B̄ is projectively equivalent to B′, and we have that B̄ is

an irreducible CBS in PG(2, 22n).

By using two projectivities, we have shown that the CBS given by the trace-flock

construction is irreducible and projectively equivalent to the set of lines through a

point in a Baer subplane of PG(2, 22n).
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5 Concluding Remarks

In this section we elaborate on a few open questions brought to light during this

research and highlight some results brought to life during our stint of working with

conic blocking sets.

The sizes of the smallest conic blocking sets have been determined for planes up

to order 27 and 53, when q is even and odd respectively. By utilizing optimization

techniques, L. D. Holder and G. Kochenberger [4] have also identified CBSs of small

size for planes of order less than 199 and 210, for q odd and even, resp. In a forthcoming

paper, we present a CBS construction for planes of order q2n, which gives an upper

bound on the size of minimum conic blocking sets. These preliminary results pertaining

to conic blocking sets can be found in [4].

In the introduction, we mentioned that CBSs can be used to determine if a collection

of planes form a flock of a quadratic cone. In this paper, we explored the structure

and construction of a CBS rather than focusing on using CBSs to identify flocks of

quadratic cones. W. E. Cherowitzo explores the concept of building a star flock using

the function given in Lemma 3.4 in his Flocks of Cones Web Page [1].

In Remark 1, we commented that the trace-flock CBS construction could be gener-

alized to an additive-flock CBS construction. This generalization is made by modifying

the function g used in the trace-flock construction to be of the form f(t)/t, where f

is an additive function of t. A computer search in fields of order ≤ pe, for p small

and e ≤ 5 generated all possible image sets of such f(t)/t. In all the fields checked,

the function f(t)/t used in the trace-flock construction yielded the smallest image set.

It seems reasonable to conjecture that the trace-flock construction yields the smallest

CBS of all possible additive-flock constructions.

In Remark 3, we discussed the Kantor-Knuth flocks interfering with the trace-flock

construction yielding CBSs of size pd+ 1 in PG(2, p2d). It is doubtful that generalizing

the trace-flock construction in PG(2, p2d) will generate a CBS smaller than pd + 1.

Another matter is the open problem of the irreducibility of the conic blocking sets

given by the trace-flock construction. We showed that when q = 22n, then the CBSs

in PG(2, q) formed by the trace-flock construction were irreducible. It remains to be

determined if the CBSs, given by the trace-flock construction, in the remaining planes
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are irreducible.
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