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Intensity modulated radiotherapy treatment (IMRT) design is the pro-
cess of choosing how beams of radiation will travel through a cancer
patient to treat the disease, and although optimization techniques have
been suggested since the 1960s, they are still not widely used. Instead,
the vast majority of treatment plans are designed by clinicians through
trial-and-error. Modern treatment facilities have the technology to treat
patients with extremely complicated plans, and designing plans that
take full advantage of the technology is tedious. The increased technol-
ogy found in modern treatment facilities makes the use of optimization
paramount in the design of successful treatment plans. The goals of this
work are to 1) present a concise description of the linear models that
are under current investigation, 2) develop the analysis certificates that
these models allow, and 3) foreshadow future research avenues.

Mathematical Programming, Intensity Modulated Radiotherapy Treat-
ment

1. Introduction

Fast proliferating cells, such as those found in cancerous and displasiac
tissue, are more sensitive to radiation than healthy cells, and this fact has
allowed tremendous strides in the fight against cancer. Chemotherapy
uses this property by injecting radioactive substances into the blood
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stream, with the goal being to administer enough radiation to kill the
cancerous cells but not enough to kill the healthy cells. Because the
substances are injected into the blood stream, chemotherapy treats the
entire anatomy, and hence, all fast proliferating cells are attacked (such
as hair cells). Intensity modulated radiotherapy treatment (IMRT) is a
similar cancer treatment where external beams of radiation are focused
on the cancerous regions. Since the radiation is not injected into the
blood stream, IMRT is a local treatment. In fact, the radiation beams
can be focused within sub-millimeter precision, giving a medical physicist
precise control of how the radiation travels through the anatomy.

IMRT design is the process of deciding how the beams of radiation
will travel through the patient so that they deliver a tumoricidal dose of
radiation to the cancerous region. At the same time, the critical struc-
tures surrounding the cancer are to receive a limited dose of radiation
so that they can survive the treatment. It is the struggle between the
tumor, which we want to receive a high level of radiation, and the criti-
cal structures, which we do not want to receive a high level of radiation,
that makes IMRT design a complicated process. Moreover, this pro-
cess is further complicated because modern treatment facilities have the
technology to deliver extremely intricate treatment plans. The amount
of flexibility that is permitted makes optimizing treatment plans be-
yond the scope of human comprehension, and future technology will
only increase the degree of complication. If our planning process does
not advance with the technology, the benefits of the new technology will
not be realized, and patients will not receive the added benefits that the
advanced technology allows. So, the development of appropriate opti-
mization models that can take full advantage of the new technology is
critical.

There are three groups of specialists that are important to the suc-
cess of improved treatment design: 1) the oncologists, who attend to
the needs of the patients, 2) the medical physicists, who know how to
model the deposition of radiation, and 3) the operational researchers,
who are experts in the field of applied optimization. One of the dif-
ficulties of working in this field as an operational researcher is to find
an oncologists and/or a medical physicist to work with, for a continued
dialog between these three groups is important. Historically, the bulk
of the research was accomplished by the oncologists and the medical
physicists, and only in the last few years have operational researchers
become interested in these problems. Because optimization is playing
an ever increasing role in treatment design, it makes sense that opera-
tional researchers need to be included, as they are accustomed to inves-
tigating algorithms and performing solution analysis. The goal of this
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chapter is to encapsulate the modern research directions so that opera-
tional researchers can quickly become familiar with the interdisciplinary
field of designing IMRT plans. Before we continue, we mention two In-
ternet resources. The Operations Research € Radiation Oncology web
site at http://www.trinity.edu/aholder/HealthApp/oncology/ has
a depository of recent papers and a list of interested researchers. The
other resource is PubMed, the index to the National Library of Medicine,
located at http://www.ncbi.nlm.nih.gov/. A recent search on “opti-
mization” and “radiotherapy” found 905 related citations, so the medical
literature is immense. Most of these articles are case studies about spe-
cific types of cancer and are not directly related to operations research.
The bibliography at the end of this chapter is designed to get those who
are interested started in the field.

2. Modeling Dose Deposition

To understand how and why linear optimization models appropriately
model the planning of IMRT design, one needs to have a basic under-
standing of how radiation is deposited into the anatomy. The basic
question is how does a focused beam of radiation deposit energy as it
travels through a patient. The question has two perspectives. A forward
problem is one in which we know the amount of energy being transmit-
ted along the beam, and we want to know how much energy is deposited
at a point in the anatomy. An inverse problem is when we know how
much energy is to be deposited in the anatomy, and we want to know
what beam energies attain the desired amounts. IMRT planning is an
inverse problem because we limit the amount of radiation received by
certain tissues and find a collection of beam intensities that adhere to
these bounds. While a complete discussion of the physics describing the
dose deposition is beyond the scope of this article, we briefly explain a
continuous model and its discrete counterpart (see [Censor, 1991] and [
Cormack and Quinto, 1990] for more complete details).

We begin our model development with a description of the equipment
found in a standard treatment facility (see Figure 1.1). The beams of ra-
diation are formed by a linear accelerator, and once formed they travel
through a gantry that is capable of rotating around the patient (the
center of the rotation is called the isocenter). The fact that the gantry
can rotate around the patient is important because this allows the beam
of radiation to be directed at the patient from any angle. The head
of the gantry is designed to accommodate one of several focusing ap-
paratuses, with most modern facilities using a multileaf collimator (see
Figure 1.2). This device can ‘shape’ the beam of energy by blocking por-
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Figure 1.1. A gantry is capable of ro- Figure 1.2. A multileaf collimator is
tating around the patient as he or she used to ‘shape’ the beam of radiation so
lies on the couch. The head of the that surrounding tissues are shielded.

gantry contains a multileaf collimator,
see Figure 1.2

tions of the beam. Shaping the beam has tremendous benefits because it
allows sensitive regions to receive relatively low levels of radiation, while
nearby tumorous regions receive a higher amount of radiation. A plan-
ning model must take into consideration that the beams can be focused
on the patient from any angle and in about any shape.

Consider the geometry depicted in Figure 1.3, where we want to calcu-
late the dose at (r,0). The gantry in this figure is located at angle a, and
the sub-beam from angle a that passes through (r,0) is i. The amount
of energy that is to be transmitted along sub-beam (a,?) is p(a,%). How
far the cell is from the surface of the body, denoted by d in the dia-
gram, affects the radiation dose received by the cell. This is because the
beam attenuates as it travels through the body, meaning that it deposits
more radiation when it first enters the body and ‘decays’ as it travels
through the tissue. This attenuation is modeled as exponential decay
~i.e. by e where 1 depends on the particular beam of energy formed
by the linear accelerator. We now have that the radiation deposited
at location (r,0) by sub-beam (a,i) is p(a,i)e 4. To calculate the to-
tal, or integral, dose at point (r,6) we need to accumulate the amount
deposited from every possible sub-beam that passes through (r, ). Al-
lowing L = {(a,1) : sub-beam (a,7) passes through (r,0)}, we find that
the integral dose is

D(r,0) :/Lp(a,i)e“dda.

Again, we point out that if we know p(a, ) and want to calculate D(r, ),
then we are dealing with a forward problem. However, IMRT planning is
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Figure 1.3. The geometry of a contin- Figure 1.4. A discretized approxima-
uous dose deposition calculation. tion to the continuous dose deposition

calculation.

an inverse problem because we want to specify limits on the dose and use
these limits to calculate the amount of energy to deliver along each sub-
beam —i.e. we bound D(r,6) and want to calculate p(a,i) to satisfy
the bound. So, for continuous IMRT planning we need to invert an
integral transformation. There are a variety of techniques to accomplish
this task, but the difficulty lies in the fact that the calculation of p(a, )
must keep it non-negative, which is not guaranteed by these techniques.
The hidden assumptions on the integrand are what often make inverse
problems more difficult than forward problems.

In the continuous model we are integrating with respect to the angle
a, so in the discrete model there are a fixed number of angles, denoted
ai,ag,...,a0. We assume that each angle is comprised of 7 sub-beams,
which may be elementary beams or pencils, the difference being that
pencils radiate from a point source and elementary beams run parallel
to each other. Our development does not depend on whether pencils
or elementary beams are chosen, only that there are a finite number of
them. The patient image is divided into N x M pixels (or voxels in the 3D
case), and we want to measure the amount of radiation that is deposited
into each pixel. We let z(, ;) be the dose along the ith sub-beam of angle
a, and d, 4 4) be the distance from where sub-beam z(, ;) enters the image
to where it reaches the center of pixel p. We further define A, 4, to

be the product of e #4®a:) and the geometric area common to both the
sub-beam z(, ;) and pixel p. For example, in Figure 1.4 we have a 2 x 2
patient image surrounded by 4 angles, each with 4 sub-beams (in this
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case they are elementary beams). The elementary beam corresponding
to z(1,2) intersects one-half of pixel 3, and the distance to the center
of this pixel along this elementary beam is 31/2/2 (assuming that each
pixel has a width of one). Hence, Apio) = %63‘/5“/ 2. The components
of the dose deposition matriz, denoted by A, are A, , ;), where the rows
of A are indexed by p and the columns are indexed by (a, 7). Similarly, a
treatment plan, or more succintly a plan, is a non-negative vector x whose
components are z, ;), where the order corresponds to the columns of A.
So, x is the vector of energies at the gantry, and the linear transformation
z +— Az deposits the radiation into the anatomy.

Let pixel p contain point (r,8) from the continuous model. The dose
calculation at (r,#) is approximated by

D(r,0) = Ap(a,i)e_“dda ~ E A(p,a,z')l'(a,i) = [Az]p,
(as8)

where the last notation indicates that the integral dose to pixel p is
the pth component of Az. We point out that both the continuous and
the discrete models are linear in the energy transmitted along the sub-
beams —i.e. the continuous model is linear in p and the discrete model
is linear in . Physical measurements show that the integral dose to
a cell is a linear function of the amount of energy transmitted along
the sub-beams. So, the linear models are not crude approximations,
but rather they accurately measure how radiation is deposited into the
anatomy. With that said, the linear operator x +— Az that we use
only approximates the dose deposition because it does not take into
account the effects of scattering. The problem here is that some radiation
‘bounces’ off cells and scatters into areas where it was not intended.
There are non-linear models that measure scattering, see [Bartolozzi
et al., 2000] and [Cormack and Quinto, 1990], but once the scattering
for a particular patient is understood, the dose to a cell is linear in
the energy transmitted along the sub-beams. Because each patient is
unique, the linear coefficients depend on the patient, and in a clinical
setting these linear coefficients are decided during an initial planning
appointment. For the purposes of this article, we use the technique
discussed above to calculate the dose deposition matrix.

The rows of A are partitioned into the rows that represent the can-
cerous regions, the critical structures, and the remaining healthy tissue.
This reordering is represented by the submatrices Ar, Ac, and Ag, as
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indicated below,

A, | ¢— Tumor
A=1| A <— Critical Structures

A, <— Remaining Healthy Tissue.

Sub-beams that do not intersect the tumor are removed from consider-
ation by eliminating the columns of A that have a corresponding zero
column in A,. For notational brevity, we keep the A notation for the
sub-matrix with these columns removed. In what follows, A € IR™*",
A, e R"m*" A, € R™*" and A, € R™*". Because radiation
is measured in Grays (Gy), the right-hand sides of the constraints are
given in units of Gy. Allowing e to be the vector of ones, where length is
decided by the context of its use, we can guarantee that the tumor pix-
els receive 80Gy, that the critical structures receive no more than 40Gy,
and that the remaining tissue receives no more than 90Gy by finding a
non-negative x that satisfies

A,z > 80e, A,z < 40e, and A,z < 90e.

If these were the only treatment goals, the design process is a feasi-
bility problem, meaning that any non-negative vector satisfying these
constraints would be a suitable plan, see [Censor et al., 188] and [Powlis
et al., 1989].

3. Treatment Concerns

The primary goal of IMRT design is to construct a treatment plan
that delivers a tumoricidal dose to the cancerous region and at the same
time delivers low enough radiation levels to the surrounding tissues so
that they maintain functionality. However, there are several issues that
make this overriding objective difficult to translate into an optimiza-
tion model. When first presented with the problem, most operational
researchers believe that the objective function should be to deliver as
much radiation as possible to the tumor. This naively makes sense be-
cause killing the cancerous cells is the purpose of the treatment. There
are two reasons why maximizing the amount of radiation deposited into
the tumor is not an appropriate objective. First, healthy and cancer-
ous cells are often interspersed, and there is a limited range of radiation
that will kill a cancerous cell and allow a healthy cell to survive. So, it
is important to deliver enough radiation to kill the cancerous cells, but
not so much radiation that the dose also kills the healthy cells within
the tumor. This is usually accomplished by the dosimetrist stating that
he or she wants the cancerous regions to attain a specified amount of ra-
diation plus or minus some percentage. For example, the tumor should
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receive 80Gy + 2% means that the tumor should receive between 78.4Gy
and 81.6Gy. Second, if any region of the anatomy receives an unreason-
ably high amount of radiation, the cells within this region are killed. If
the area is large enough, the human physiology is disrupted, causing a
condition known as neucrosis. For these two reasons, it is paramount
that the tumor receives a uniform, tumoricidal dose of radiation and not
simply as much as possible.

Treatment planning is further complicated by the fact that different
organs react to radiation in different ways. For example, the liver can
receive a large amount of radiation over a substantial portion of its tissue
and maintain its functionality. However, if the entire liver receives a
relatively low dose of radiation, the organ will fail. The colon is in stark
contrast because it can handle a relatively high uniform dose, but the
organ will fail if a small region receives a high dose. Organs like the
liver that can successfully receive a high level of radiation over a portion
of their tissue, but fail under a relatively low, uniform dose, are called
rope organs. A chain organ is one that can handle a relatively high
amount of radiation over its entirety but will fail when a small amount
of the tissue is destroyed (see [Goitein and Niemierko, 1988; Raphael,
1992; Withers et al., 1987; Wolbarst, 1984] for more complete details on
rope and chain organs). So, in addition to making sure that the tumor
receives a uniform, tumoricidal dose, the dosimetrist must make sure
that the treatment plan delivers radiation to the critical structures in a
suitable manner.

The hope that every patient receiving IMRT is cured of cancer is unre-
alistic, and because of this, patients and physicians must routinely make
difficult decisions about a course of treatment. The best of all situations
is when the type and stage of cancer being treated has a high proba-
bility of cure with standard treatments. The “best” treatment plan in
such a case is one that delivers a tumoricidal dose to the cancerous re-
gions and as little radiation as possible over the critical structures. The
treatment goals change if a patient’s illness is terminal or the standard
treatments are not promising. For terminally ill patients, destroying the
cancer is not the primary objective, but rather it is often the case that
the treatments are designed to increase the patient’s quality-of-life. In
some instances, this means that some nearby regions should receive no
radiation. For example, in the case of a brain tumor it may be best
to minimize the radiation deposited into adjoining regions that control
speech and memory. However, minimizing the amount of radiation that
is received by these regions can subsequently imply that the tumor is
not treated with a uniform, tumoricidal dose, but because the patient’s
illness is terminal, this is not considered a detriment to the treatment
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plan. In cases where the standard treatments do not provide a high
probability of success, the question becomes to what degree are the pa-
tient and physician willing to risk the nearby regions to treat the tumor
with higher amounts of radiation.

The point of highlighting these situations is that the objective of treat-
ment is not the same for all patients and is decided by the ethics and
values of the patient and physician. This ethical perspective of the ob-
jective is different from the modeling perspective of the objective, which
is concerned with how we measure and penalize deviation from the physi-
cian’s demands. The fact that ethical concerns often make it difficult
to clearly state a primary objective means that the optimization model
needs to be flexible enough to accommodate several scenarios.

Before continuing with the mathematical models, we take a moment
to discuss a couple of treatment concerns that are not readily discussed
in the literature, but that are beginning to receive some attention. First,
radiation therapy is not delivered in a single session, but rather it is frac-
tionated into several treatments (usually 20 to 30). So once a plan is
developed, it is divided into a number of treatments and the patient
receives these fractionated treatments daily. The idea here is to accu-
mulate the radiation in a slow enough manner so that the healthy tissue
has an increased chance of survival. This fractionization is the difference
between radiotherapy and radiosurgery, the latter of which is delivered
all at once and is often used to prevent strokes. A natural, but virtually
unexplored, question is whether or not it is beneficial to deliver the over-
all dose in non-uniform increments. The optimization model associated
with such a question turns out to be a challenging optimal-control prob-
lem, with the only work being the recent paper of Ferris and Voelker [
Ferris and Voellker, 2002]. While the computational burden of solving
their model makes it impossible to develop a patient specific course of
treatment, their work clearly indicates that delivering a uniform, frac-
tionated dose is not typically optimal. There are many related questions
that are open for investigation, such as deciding the number of fraction-
ated treatments that maximize the success of the treatment.

The second treatment question that is relatively new is how to move
the gantry and adjust the multileaf collimator so that the plan is de-
livered in as little time as possible, see [Boland et al., 2002]. This is
an extremely important question because typical treatment times are
about 15 minutes, and if treatment plans can be delivered more effi-
ciently, more complicated plans can be used. In general, plans with
more than 5 to 7 angles are considered complicated because of the time
it takes to administer them. Hence, the number of angles in a treat-
ment plan is restricted, and the flexibility of the design is limited. The
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restriction on the number of angles becomes less of a concern as we find
more efficient ways to move the gantry and adjust the multileaf colli-
mator, which follows because we can incorporate more angles and more
beam shapes in the alloted 15 minutes. So, there is more flexibility in
designing a plan, and hence, increasing the efficiency of how treatment
plans are delivered translates into a benefit for the patient

4. Optimization Models

In this section we develop a class of linear programs that are intended
to aid a dosimetrist design IMRT plans, see [Holder, 2001 and Holder,
2000]. The first optimization model that was developed to aid IMRT
design was linear and appeared in the literature in 1968 [Bahr et al.,
1968]. Since then, many researchers have experimented with linear mod-
els [Hodes, 1974; M. Langer, 1987; Langer et al., 1990; Legras et al.,
1982; Lodwick et al., 1998; Morrill et al., 1990; Rosen et al., 1991; Son-
derman and Abrahamson, 1985].

While linear models are natural because dose deposition is experi-
mentally linear, these models have been the focus of several complaints,
and many other researchers have investigated nonlinear models [Legras
et al., 1982; Morrill et al., 1991; Rosen et al., 1991]. The first complaint
about linear models is that the physician’s demands often produce an
empty feasible region. For example, the physician may desire that the
cancerous tissue receives 80Gy + 2% and that the surrounding critical
structures receive no more than 20Gy. This translates into the following
constraints,

78.4 < A,z < 81.6, A,z <20, z > 0. (1.1)

and this system may not be consistent. If the physician’s demands
are not possible, the optimization routine simply states that the un-
derlying optimization problem is infeasible and provides no information
about how to adjust the physician’s desires. Finding and explaining a
source of infeasibility is a difficult question, and there is a substantial
amount of literature that deals with this issue, see for example [Chinneck,
1997; Chinneck, 1995; Greenberg, 1996; Greenberg, 1993]. Since we can
not ask the physicians or the physicists to become experts in mathemat-
ical programming, this is a problem that needs to be addressed. The
linear models that we develop overcome this difficulty by using elastic
constraints.

The second major complaint about linear models has nothing to do
with the linearity of the problem but rather the solution technique. The
problem here is that the simplex algorithm terminates with an extreme
point solution, which means that some of the inequality constraints are
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guaranteed to hold with equality at the solution. For example, in (1.1)
we are guaranteed that either some of the cancerous regions are going
to receive their upper bound of 81.6Gy, or that some of the cancerous
regions are going to receive their lower bound of 78.4Gy, or that some
of the critical structures are going to receive their upper bound of 20Gy.
The problem here is that we are guaranteeing that some regions are go-
ing to attain the limits are placed on them, and this is alarming because
these limits are rules-of~thumb. We address this issue in two ways. First,
we use a path-following interior point algorithm to solve our problems,
and this algorithm terminates with a solution that strictly satisfies as
many inequalities as possible. So, we find an optimal plan that does not
attain the limits placed on the regions, provided that such a plan is pos-
sible. Second, the elastic constraints that we use allows the physician’s
desires to ‘float’ during the optimization process, and the objective is to
better them as much as possible.

From the dimensions of A, A,, A,, and A, we have that m is the
total number of pixels, mr is the number of tumorous pixels, m¢ is
the number of critical structure pixels, and mg = m — mp — mg is the
number of remaining pixels. A prescription is comprised of a physician’s
aspirations for the tumor, usually a tumoricidal dose, and upper bounds
for the non-tumorous tissue. Specifically, a prescription is the 4-tuple
(TUB,TLB,CUB,GUB), where

s TUB is a mg vector of upper bounds for the tumor,
m TLB is a mr vector of lower bounds for the tumor,

s CUB is a m¢ vector of upper bounds for the the critical structures,
and

m GUB is a mg vector of upper bounds for the remaining good tissue.

We make the realistic assumptions that 0 < TLB < TUB, 0 < CUB,
and 0 < GUB. Because a uniform, tumoricidal dose is to be delivered to
the tumor, the lower and upper bounds for the tumor pixels are a fixed
percentage of the physician’s goal for the tumor. So, if the physician’s
goal for a tumorous cell is T'G, values for TU B; and T LB; are (1+tol)TG
and (1 — tol)T'G, respectively. Here, tol is the percentage of variation
permitted over the cancerous region and is called the tumor uniformity
level. Typical values of tol found in the literature range from 0.02 to
0.15. The vector GUB describes the highest amount of radiation that
any single pixel is allowed, and in general no tissue should receive more
than 10% of the tumor’s desired dose. Hence, we set GUB = (1.1)TG.
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The model that we use allows many ways for us to measure and penal-
ize any deviation from the physician’s goals. This generality is permit-
ted through the use of semimonotone matrices, which are matrix whose
Moore-Penrose generalized inverse is non-negative. (for more informa-
tion see [Berman and Plemmons, 1979]. For the remainder of this paper,
the following semimonotone matrices are assumed to have full column
rank: [ € R, ug € R, ug € R, L € R™T*7 Uy € R™¢*9¢ and
Ug € R™¢*9%¢, We further assume that [, uc, and ug are positive, and
that L, Ug, and Ug are nonnegative with no row sum being zero —i.e.
Le > 0, Uge > 0, and Uge > 0. Any collection of I, uc, ug, L, Uc,
and Ug satisfying these assumptions defines a set of elastic functions.
The feasible region, denoted by F, is the collection of z € R", a € R?”,
B € R, and v € R that satisfy

TLB—La < A,z < TUB )
A,z < CUB+UgB
A,z < GUB+Ugy
0 < La < TLB } (1.2)
~CUB < Ucp
0 < Ugvy
0 < =

7/

We note that it is easy to show that because L and Ug are semimonotone,
« and y are nonnegative.

The constraints TLB — La < Az, A,z < CUB+ Ucf, and A,z <
GUB + Ugry are called elastic because the bounds are allowed to vary
with the vectors «, 8, and v, respectively. The matrices L, Uz, and Ug
define how we measure the amount of elasticity, and with this in mind, we
see that the assumption that Le > 0, Uge > 0, and Uge > 0 makes sure
that each constraint is elastic. The elastic constraints are incorporated
for two reasons. First, Lemma 1 shows that F is not empty for any
collection of L, Ug, and Ug. Hence, the complaint that linear models are
often infeasible does not apply to this model. Second, the different lower
bounds on the elastic functions allow us to embody different treatment
aspirations.

Each of L, Ug, and Ug correspond with a vector, denoted by I, uc,
and ug, that decides how discrepancies are penalized. For example, Lo
measures how deficient a plan is with regards to meeting the minimum
tumor dose, and [T« is the total penalty assigned to these discrepan-
cies. Similarly, UsfB and Ug~y measure a plans deviation from CUB and
GUB, and uga: and uga: are the aggregated penalties assigned to these
deviations. The separation of how we measure and penalize deviation
is convenient because it allows us to consider one set of constraints, de-
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cided by L, Ug, and Ug, and at the same time we can manipulate the
objective function to address different situations. So we can design a
patient-specific objective function that takes into account their ethical
desires.

The objective functions that we consider are comprised of the three
penalty functions [T«, ucf, and ugy, and we consider variants of the
following three optimization problems,

IP, : min{w-Ta+ulp+uly:(z,0,8,7) € F},
MOLP : min{(I"a, u&B +uby)' : (z,0,8,7) € F}, and
MOLP('T’C,G) . min{((Ta, ulB, uty)T : (z,0,8,7) € F}.

The first math program, LP,,, is a linear program where the three pe-
nalization functions are accumulated, with the weight w deciding the
importance of the tumor uniformity. If w is small, we are indicating
that finding a treatment plan that attains the lower bound on the tu-
mor is not that important. As w increases, we increase the emphases
of finding a plan that achieves a uniform, tumoricidal dose. The second
math program is a multiple objective linear program, where the two ob-
jectives are 1) to attain a uniform, tumoricidal dose and 2) to minimize
the radiation received by all other structures. The third optimization
problem is another multiple objective linear program, where the three
objectives are to 1) minimize any deficiencies in the cancerous regions, 2)
make sure that the critical structures receive as little radiation as possi-
ble, and 3) eliminate hot spots by minimizing the amount the remaining
tissue is over CUB.

We point out that each of the mathematical programs is capable of
addressing different ethical situations. In LP,, we adjust the relative
importance of the tumor receiving its desired amount of radiation by
adjusting the value of w. In Section 5.1 we show that the minimum
amount of tumor deficiency is uniformly bounded by the inverse of w,
and we use this result to construct an w that guarantees that the tumor
receives a uniform, tumoricidal dose.

Because the other two mathematical programs have multiple objec-
tives, we need to define the sense of optimization that we are going to
use. For MOLP we are interested in the set of pareto optimal, or effi-
cient, solutions. We say that (z, a, 8,7) is pareto optimal if there exists
a 6 strictly between 0 and 1 such that (z,«, 3,7) is optimal to

min{(1 — H)ZTa +0- (ugﬁ + ug'y) (z,a,B,7) € F}. (1.3)

Since 6 is positive, we have that dividing the objective function by 6
transforms this problem into LP,,, where w = (1 — 60)/6. So the set of
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pareto optimal solutions to MOLP is the same as the collection of all
optimal solutions to LP,,, where w is positive. While this means that
LP,, and MOLP are variants of each other, in the results that follow we
use LP, to show that we can chose w large enough to guarantee that
there is no tumor deficiency and MOLP? to find a collection of beams
that are not used in any pareto optimal solution. Because these two
goals are different, we consider these as separate, but related, problems.

We use lexicographic optimization, instead of pareto optimization, for
the third optimization problem. For example, for MOLP(’T’QG) we min-
imize "« first, and then minimize ug,ﬁ over argmin{lTa : (,a,8,7) €
F}. Similarly, the third objective of minimizing ugfy is undertaken with
only the solutions of the second problem. Because the three objectives
are treated individually, we can easily alter their importance. In the
case of a terminally ill patient, we may decide that attaining a uniform,
tumoricidal dose is the least important objective, and hence we might
order the objectives by 1) guaranteeing that the critical structures are
underneath their bounds, 2) making sure that there are no unusually
high depositions of radiation, and 3) attempt to deliver a uniform, tu-
moricidal dose. In such a case, we use the subscript (C, G, T) to indicate
that the critical structures have the highest importance, that the normal
(good) tissue has the second highest priority, and that the tumor has the
lowest priority. So, the first objective is to minimize ugﬂ, the second
objective is to minimize ugfy, and the third objective is to minimize
ITa. To make sure that the consequences of lexicographic optimization
are understood, suppose for MOLP(T ¢, that there are treatment plans
that achieve a uniform, tumoricidal dose. This means that the set of
optimal solutions found by minimizing I o are exactly those plans that
achieve a uniform, tumoricidal dose. When the second objective is min-
imized, we are only going to consider those treatment plans that achieve
a uniform, tumoricidal dose, and it is possible that none of these plans
adhere to the bounds placed on the critical structures. However, there
may be a plan that delivers sufficiently low levels to the critical struc-
tures and only has the slightest tumor deficiency, but we would not find
such a plan because it would not be optimal to the first problem. This is
the nature of lexicographic optimization, and this type of optimization
is appropriate only if a hierarchy of the objectives is clear.

Different elastic functions lead to different interpretations of the so-
lution, and the following two collections are of particular interest.
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Average Analysis
l:mLTe uC:mLce 'u,G:mLGe L=1 UC:I UG:I
Absolute Analysis

=1 uc=1 ug=1 L=e Ug=e€e Ug=c¢

Suppose that average analysis is chosen. Then (La), = ¢ tells us how
deficient a plan is with regards to meeting the minimum tumor dose for
pixel p, and I o = (1/mr)el « is the average amount of such deficiencies.
The interpretation of Uc8 = 8 depends on the sign of the component. If
(UcPB)p = Bp > 0, pixel p, which is contained in some critical structure,
is receiving more radiation than the physician intended. However, if
Bp < 0, pixel p is receiving less radiation than is allowed. We now see that
the objective term ugﬂ = (1/m¢)e’ B expresses the desire to decrease
the average dose to the critical structures; in fact the desire is to have the
critical structures receive no radiation. Similarly, (Ug)7y, = 7, indicates
how much pixel p is over its alloted upper bound, and uly = (1/m¢)ely
is the average amount of radiation the normal tissue is over its prescribed
dose. The roles of 8 and « differ because of the different lower bounds.
Since 0 < +, any plan satisfying Agz < GUB contributes zero to the
objective function. However, the lower bound of —C'U B on 8 means that
plans with a low integral dose to the critical structures are preferred. So,
for the average analysis case we see that the objective function is three
tiered in its goals:

®» minimize the average amount that the tumor is under its prescribed
dose,

®» minimize the average amount of radiation that the critical struc-
tures receive, and

= minimize the average amount that the remaining pixels are over
their upper bounds.

If absolute analysis is chosen, the interpretation is similar to that
of average analysis, with the difference being that the elastic functions
are each controlled by a single parameter. So instead of minimizing an
average discrepancy, the goal is to minimize the maximum amount of
discrepancy. Hence, when absolute analysis is chosen, the three goals of
the objective function are to

® minimize the maximum amount that the tumor is under its pre-
scribed dose,
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Citations Models Investigated |
Rosen et al., 1991; Shepard et al., 1999 | reviews linear and nonlinear models
M. Langer, 1987; Langer et al., 1990 mixed integer models

Morrill et al., 1991; Raphael, 1992 probabilistic models

Table 1.1. Research papers that investigate and review optimization models that are
used to aid IMRT design.

®  minimize the maximum amount of radiation that the critical struc-
tures receive, and

® minimize the maximum amount any remaining pixel is over its
upper bound.

There are several models in the literature, ranging from linear to
mixed integer to nonlinear models. While our concentration is on the lin-
ear models developed above, it is important for operational researchers
that want to work in the field to have an awareness of these models. We
direct researchers to the works listed in Table 1.1.

5. Mathematical and Computational Results

As mentioned in the introduction, the medical literature associated
with IMRT design and optimization is immense. The history of the med-
ical research is to design a specific treatment plan for a specific type of
cancer, and then show that it is appropriate through several examples.
So in the medical literature, the methodology of treatment is verified
through examples —i.e. this technique works because it has favorable
properties on these examples. While this verification approach is impor-
tant, and indeed the great strides we have made in medicine are a direct
result of such work, this type of research is foreign to a mathematician.
For the field of mathematics is concerned with statements that can be
universally proved and not ones that can simply be shown to hold for a
few examples. This means that an applied mathematician’s perspective
of a problem is different from the perspective held by a practitioner. An
applied mathematician, such as an operational researcher, approaches a
problem by finding the mathematical language needed to describe the
essence of the problem and then proceeds to prove statements about the
situation at hand. The proofs provide a theoretical certificate for what
can and can not be stated about the problem. So instead of stating that
a technique works because we can show that it does on a few examples,
we can guarantee that a technique does or does not work because the
proofs establish that they will, or will not. The benefit of this theoreti-
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cal approach is that it is not example dependent, so we do not have to
wonder if there are examples where the technique fails.

In this section we are interested in developing theoretical statements
about the linear models presented in Section 4. Unfortunately, mathe-
matical rigor is scarce in the literature. Consequently, this field of re-
search has not benefited from a sound mathematical development, and
this author hopes that the operational researchers working in this field
feel a sense of responsibility to provide the needed theoretical basis (ar-
eas in telecommunications and geosciences have benefited greatly from a
similar mathematical foundation). The results of this section are divided
into three subsections, each related to one of the three models presented
in Section 4. The proofs of the mathematical results are excluded for
brevity, but a citation is provided where a proof can be found.

The numerical results in each of the following sections rely on the
optimal partition of a linear program. Consider the standard form linear
program, min{c’z : Az = b,z > 0}. Allowing P* to be the optimality
set, we have that the optimal partition (B|N) is defined by

N={i:z;=0forallz € P*}, and B={1,2,...,n}\N.

The reason that the optimal partition is important is that it provides
an algebraic characterization of the optimal set. We do not have the
space in this article to rigorously develop this representation, but it is
well known that P* = {z : Az = b,z > 0,2; = 0,7 € N}, see [Roos
et al., 1997].

The optimal partition was not easily computed until path-following in-
terior point algorithms became viable alternatives to the simplex method.
Path-following interior point algorithms terminate with a solution that
induces the optimal partition, which means that if * is an optimal so-
lution that is found by such an algorithm, then B = {i : 7 > 0} and
N = {i : 27 = 0}. Having this type of solution is important for us
because it strictly satisfies as many inequalities as possible —i.e. the
B set indexes the entire collection of inequalities that can be strictly
satisfied by an optimal solution. So for IMRT design, we have that if
we use a path-following interior point algorithm, the plan that we find
strictly satisfies as much of the prescription as possible.

A path-following interior point algorithm is appropriate only if the
strict interior of the feasibility set is non-empty. For us this means
that there must be an (z, o, §8,7y) that strictly satisfies the inequalities
in (1.2). Fortunatly, Lemma 1 states that we are guaranteed that a
path-following interior point algorithm is applicable.

Lemma 1 (Holder, 2001) We have for any collection of elastic func-
tions that the strict interior of F is non-empty.
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5.1 Analysis Certificates for LP,

The objective function of LP,, is a weighted sum of three goals, and
while a common criticism of such objective functions is that the weights
are difficult to understand, we show that choosing w appropriately pro-
vides a meaningful interpretation. The positive scalar w weights the
importance of a plan achieving the minimum tumor dose —i.e. large
values of w encourage [« to be as small as possible. We would like to
have the property that there exists a finite w > 0 such that the optimal
value of I"« is zero. This follows because the tumor is then guaranteed
to receive its minimum radiation level. Such an w would serve as a cer-
tificate of a tumoricidal dose. The bad news is that there are simple
examples where the optimal value of T« is not zero for all w > 0. How-
ever, the good news is that we can calculate an w that certifies that the
discrepancy between the amount delivered to the tumor and the tumor’s
lower bound is sufficiently small.

We say that a prescription allows tumor uniformity if there is a treat-
ment plan z such that TLB < A,z < TUB. Moreover, a prescription
is attainable if there is an (z, @, 8,7) in F such that La = 0, UgB < 0,
and Ug~y = 0. Obviously every attainable prescription allows tumor uni-
formity, but it is not the case that every prescription that allows tumor
uniformity is attainable. Theorem 1 shows that if the prescription al-
lows tumor uniformity, then the tumor deficiency is uniformly bounded
above by the inverse of w. In what follows, we let rs(M) be the mini-
mum row sum of the matrix M, and we use the standard big-O order
notation —i.e. f(z) = O(g(z)) if, for the non-negative functions f and
g, there exists a positive constant s, such that f(z) < kg(z). Also,
we use the standard notations for the 1-norm, ||z||; = >} |z;|, and the
infinity-norm, ||z|/c = max{|z;|:i=1,2,...,n}.

Theorem 1 (Holder, 2000) Let (z*(w), o*(w), 8*(w),v*(w)) be an op-
timal solution to LP,. For any collection of elastic functions we have
that 1T o (w) = O (%), provided that the prescription allows tumor uni-
formity.

From Theorem 1 there is positive scalar x such that ITa < & /w, which
is useful because an upper bound on & is easily found if either average
or absolute analysis is used. In particular, setting

ITU Blloo

- (?grg){A(p,a’i) : Apay) 7 0,p is a tumor pixel}’
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we have from [Holder, 2000] that « is no greater than

14¢ (we) = CUBllos|luch  1Ag (ue) = GUBlocllug

T
5(00) 5(00) +ucCUB,

if average use is used, and

14¢ (ue) = CUBlslluclh | [IAg(ue) = GUBlcllugl | ucUcCUB
1s(Uc) 15(Ug) me

if absolute analysis is used. We let ' be the greater of these two bounds
so that regardless of the type of analysis, we have that [T o*(w) < &' /w.

Recall that T'G was the goal dose for the tumorous region and that we
originally set TLB = (1 —tol)T'Ge. To utilize the upper bound provided
by k', we slightly increase each component of TLB by ¢ > 0 —i.e we
instead let TLB = (1 — tol)T'Ge + ee. After calculating ', we choose
w = k' /e and solve LP,,. Theorem 1 now implies that the optimal value
of I" o is less than €, and hence the sought after uniformity is guaranteed.
So using only the optimal objective value, we have from Theorem 1 the
analysis found in Figure 1.5. Of course a more detailed interpretation
of the solution is possible by examining the individual components of
(o (W), B* (w), 7" (w)).

A prototype treatment system called Radiotherapy optim.Al Design,
or RAD, has been developed using MATLAB®. This system is available
from http://www.trinity.edu/aholder/research/oncology/, and re-
quires MATLAB’s optimization toolbox. RAD uses a 64 x 64 grid, and
allows angles evenly spaced at every 15, 5, or 1 degree(s), with each
beam being comprised of 10, 32, or 32 pencils, respectively. In addition
to allowing the user to choose from different angle geometries, RAD has
the following features.

s Either absolute or average analysis can be used.

m A prescription window allows the user to easily set the tissue type,
the prescription levels, and the tumor uniformity level.

= A simplex based solver is available.

m  After the optimization routine is complete, three figures are pre-
sented. The first and second figures are a contour plot and a 3-D
image of the radiation levels delivered by the plan. The third figure
provides an explanation of the solution that depends on whether
absolute or average analysis was chosen.

In the examples that follow there were 360 equally spaced beams, and
each beam contained 32 sub-beams. The amount by which T'LB is
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Interpreting The Solution: Average Analysis

[Case 1: el'a*(w) > €] We conclude that on average the prescrip-
tion does not allow tumor uniformity.

[Case 2: el'a*(w) < €] We conclude that on average the prescrip-
tion does allow tumor uniformity. This situation contains two
important sub-cases.

[Case 2a: e!B*(w) + el'y*(w) > 0] The conclusion here is
that an average tumor uniformity is achievable, but only
at the expense of some of the non-tumorous tissue receiv-
ing more radiation than desired.

[Case 2b: el 5*(w)+ely*(w) < 0] The conclusion is that an
average tumor uniformity is allowed, and at the same time
the average amount of radiation over the non-tumorous
tissue is at least as good as desired.

Interpreting The Solution: Absolute Analysis

[Case 1: a*(w) > €] We conclude that the prescription does not
allow tumor uniformity.

[Case 2: a*(w) <e] We conclude that the prescription does allow
tumor uniformity. This situation contains two important sub-
cases.

[Case 2a: [*(w) + 7*(w) > 0 ] The conclusion here is that
tumor uniformity is achievable, but only at the expense of
some of the non-tumorous tissue receiving more radiation
than desired.

[Case 2b: [*(w)+7*(w) < 0] The conclusion is that tumor
uniformity is allowed, and at the same time the amount of
radiation over the non-tumorous tissue is at least as good
as desired.

Figure 1.5. Interpreting the solution for either average or absolute analysis
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Figure 1.6. A contour plot showing Figure 1.7. The vertical height is the
how the deposition pattern ‘bends’ amount of radiation delivered by the
around the critical structure. plan over the image.

increased is internally set at 10~*, so TLB = (1 — tol)TG + 10 %e. The
problems were solved on a 1.5 GHz PC with 1G of RAM.

The first example is found in Figures 1.6 and 1.7. In this example a
tumor has grown half-way around a critical structure. The tumoricidal
dose was 80Gy, and the critical structure was restricted to no more than
30Gy. The tumor uniformity level was 2%, and an absolute analysis was
used. The value of T o* was less than 10~%, from which we conclude
that the prescription allows tumor uniformity. Indeed, the maximum
and minimum doses were 78.42Gy and 81.57Gy, which are within the
80Gy +2%. Not only does this plan strictly satisfy the tumor uniformity
bounds, but it also does not deliver any radiation to the critical structure.
So we have designed a plan that delivers a uniform, tumoricidal dose to
the tumor and does not deposit any radiation in the critical structure.

The example in Figure 1.8 is significantly more complicated because
the tumor is nearly surrounded by critical structures. The tumoricidal
dose was 78Gy, with a uniformity level of 4%. The plan depicted in Fig-
ures 1.9 and 1.10 attained the tumor uniformity with the minimum and
maximum doses inside the cancerous region being 75.17Gy and 81.1Gy.
However, there is no plan that achieves a uniform, tumoricidal dose that
does not violate the bounds placed on the critical structure. We know
this because the value of [T «*, which is simply o* for the absolute anal-
ysis used, is less than 10~* and the value of ugﬂ*, which is simply £*,
is 6.62. So we know that some critical structure tissue must receive
6.62Gy over its prescribed bound to attain a uniform, tumoricidal dose.
Depending on the type of critical structure, this may or may not be
acceptable, and if not, the planners need to reconsider their desires for
the tumor.
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Critical Structure: Restricted to 20Gy

. A

Critical Structure: Restricted Tumor: Desire is 78 £ 4%
ol t030Gy.

Figure 1.8. A difficult geometry to
plan because the tumor is almost sur-
rounded by low-dose critical struc-
tures.

Figure 1.9. A contour plot of an op-
timal plan. Notice that each angle is
used in an attempt to accumulate the
required tumoricidal dose and satisfy
the critical structure bounds.

Figure 1.10. The amount of radia-
tion over the image. The amount over
the tumor is fairly uniform, but there
is a spike between the tumor and one
of the critical structures.

5.2 Evaluating an Angles Value with MOLP

We see from the examples in Section 5.1 that the plans developed
by a path-following interior point algorithm tend to design plans that
use many angles. In fact, these plans use so many angels that they
are not practical —i.e. the time that it would take to deliver such a
plan is well beyond the 15 minutes of a typical treatment. The problem
here is that a path-following interior point algorithm terminates with
a solution that strictly satisfies as many inequalities as possible, and
as already mentioned, this is favorable because we design a plan that
strictly satisfies as much of the prescription as possible. However, this

DRAFT

September 12, 2002, 12:33pm

DRAFT



Radiotherapy Treatment Design and Linear Programming 23

is bad news because we also design a plan that uses as many angles
and sub-beams as possible. What is needed is a technique to prune the
collection of possible angles so that the ‘best’ angles remain in the pruned
collection. This and the following section develop ways to measure how
important an angle is when the priorities of the treatment are uncertain.

The set of pareto optimal solutions of MOLP, called the efficient fron-
tier, induces an optimal partition for the multiple objective program that
is similar to the optimal partition, see [Holder, 2001].

Definition 1 Let £ be the efficient frontier of MOLP. The MOLP op-

timal partition, denoted (%I)ﬁ{fm), is defined by
N = {i:z; =0 forallze&} and

molp

= {1,2,3,...,n}\N.

The definition of the MOLP optimal partition retains the quality that
an index being in N indicates that the component is zero in every
pareto optimal solution. Likewise, an index in B demonstrates that
the component is allowed to be positive on the efficient frontier. A
property that is unfortunately lost is that the MOLP optimal parti-
tion is not capable of characterizing the efficient frontier —i.e. & #

mol;

{(z,a,B,7) € F: (z,a,B,7); = 0,i € Np} However, we do have that

molp

€ C{(z,,8,7) € F:(x,0,8,7)i =0,i € N}.
An algorithm to compute the MOLP optimal partition is found in
[Holder, 2001]. This algorithm uses the parameterization in 1.3 by find-
ing the linear programming optimal partition for every value of 6 be-

mol;

tween 0 and 1. The set B is the union of all the linear programming B

molj molj mol,]
sets, and N is {1,2,...,n}\ B. So N indexes the sub-beams that are
not used for any 6 € (0,1). Recall that the value of 8 is a measure of
how important it is to deliver a uniform, tumoricidal dose, with small
values of 6 giving the cancerous regions a high importance and values
near 1 giving little importance to the cancerous regions. This means

mol;

that N contains the sub-beams that are not used in any weighting of
the objectives, and hence, these sub-beams should never be used in a

mol;

treatment plan. The other side of this is that B indexes the sub-beams
that are used for some collection of weights, and hence, there is at least
one circumstance where each of these sub-beams is used.

Because of the way the algorithm works, we actually acquire more
information than just described. Consider the situation depicted in Fig-
ure 1.11, where a tumor is surrounded by three critical structures. This
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experiment was run with 72 equally spaced angles, each with 32 sub-
beams. The tumor uniformity level was +4% and an average analysis
was used. Figures 1.12 and 1.13 provide information about which angles
are used, and not used, as @ traverses the interval (0,1). We saved the
optimal partition for each # and used this information to calculate how
often an angle is used. We say that an angle is used at level k if there are
k sub-beams from that angle with positive amounts of radiation in the
optimal plan. Furthermore, we say that an angle is on provided its level
of use is at least 1. In Figure 1.12 we calculated each angle’s level of
use, and then added these together for each of the 399 different optimal
partitions. These values are recorded above the circle around the image.
The highest peak is at 90° and has a value of 1,424, which means that
1,424 sub-beams were used from this angle as 6 traversed the interval
(0,1). Figure 1.13 is similar, but instead of accumulating sub-beams
from each angle, the percentage of times an angle is on is displayed over
the circle. Angle 85° was on in 100% of the optimal partitions, and while
90° had the highest amount of sub-beam usage, it was not on in each
optimal partition (it was used in 99.75% of the optimal partitions).

The point of Figures 1.12 and 1.13 is that a dosimetrist can easily
decide which angles are, and are not, important. The most definitive
information lies in the angles that are never used, which follows because
there is no situation where these angles are used. Similarly, any angle
whose use is 100%, which is only 85° for this example, is used in every
situation. The graphs provide a measure of an angles usefulness in other
situations. For example, if a dosimetrist wants a 3 beam plan, then he
or she might decide to use angles 85%, 40°, and 205°, all of which have
higher peaks in Figure 1.13.

5.3 Using MOLP’ to Reduce the Number of
Angles

Recall that we use lexicographic optimization for MOLP' and that
the order in which the objectives are considered is indicated by the
subscript. Lexicographic optimization has its own optimal partition,
which is easily calculated for our problem, see [Holder, 2001]. As an
example, consider MOLP('C,T,G), where we calculate the lexicographic
optimization as follows.

Step 1 Solve min{ulpB: (z,a,B,7) € F} and let (B|N') be the opti-
mal partition.

Step 2 Solve min{{"«a : (z,0,8,7) € F,(z,,8,7); = 0,i € N'} and
let (B%|N?) be the optimal partition.
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Restricted to no more Restricted to no more

than 20 Gy than 40 Gy
/

vl

50

Restriced to no more Tumor: Goal Doseis
than 60 Gy 80Gy * 4%
Figure 1.11. A tumor sur- Figure 1.12. Accumulative to-
rounded by 3 critical structures. tals of sub-beam usage along

each angle.

Figure 1.18. Percent totals for
each angle.

Step 3 Solve min{uly : (z,a,8,7) € F,(z,,8,7)i = 0,i € N*} and
let (Br|Nr) be the optimal partition.

The last partition, (Br|NL), is called the lezicographic optimal partition.
If we rearranged the priorities, to say (G, C,T), the only difference would
be that the objective function in step 1 would be ugﬁ, in step 2 it would
be ug'y, and in step 3 it would be {Ta.

Similar to the MOLP optimal partition, the lexicographic optimal par-
tition provides an insight into the usefulness of an angle. As an example,
consider the problem in Figure 1.14, where a tumor has gown around a
critical structure. There were 72 equally spaced angles, each containing
32 sub-beams. The tumor uniformity level was +4%, and an average
analysis was used. We calculated the lexicographic optimal partition
for each of the 6 possible orderings of the objectives, and Figures 1.15
through 1.20 show each angles level of use in corresponding optimal plan.

DRAFT September 12, 2002, 12:33pm DRAFT



26

Restricted to no Tumor: Goal Doseis
more than 20 Gy 80Gy ¥ 4%

Restricted to no
more than 50 Gy

Figure 1.14. A tumor that
has grown around a critical
structure.

Figure 1.16. FEach angles
use for priority list (T, G, C).

Figure 1.18. FEach angles
use for priority list (G, T, C).

Figure 1.15. Each angles
use for priority list (T, C, G).

Figure 1.17. Each angles
use for priority list (G, T, C).

Figure 1.19. Each angles
use for priority list (C, T, G).

Figure 1.20. FEach angles
use for priority list (C, G, T).
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Again, the most definitive information comes from the angles that
have a zero level of use, for these angles are not to be considered for
that priority list. As an example, angle 170° has a zero level of use for
the priority list (T',C, G), but has a level of use of 2 for the priority list
(T, G, C). There were 9 angles whose level of use was zero in all 6 priority
list: 552, 75°, 120°, 125, 205°, 225°, 250°, 310°, and 355°. These are
the angles that can be excluded from consideration regardless of how the
dosimetrist orders the priorities (which means we have removed 12.5%
of the angles from consideration).

6. Conclusion

We conclude this article with a plea to the operations research com-
munity. Operations Research has successfully been used in many dis-
ciplines, but one of the few areas that has not witnessed the benefits
of the field is clinical medicine. Of course, the statistical training that
most operational researchers posses is useful in drug trials and other
data intensive medical applications. However, many of the medical pro-
cedures that are used in practice have not been mathematically modeled
and optimized, which means that any improvement in the treatment is
found by trial and error. The area of IMRT design is starting to benefit
from the optimization process, and we are now at a point where the op-
erational researchers can make a substantial improvement in a patient’s
treatment. The author urges those who work in the field of operations
researcher to consider working on a problem that involves some clinical
treatment, for all of humankind benefits from this work.
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