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1 Introduction

This paper is motivated by a conjecture due to the first author and A. Yakubu
[6] concerning the Ricker’s model [10] [4]. It was conjectured that the basin
of attraction of an attracting 2k-cycle is (0,∞)\E, where E is the set of all
eventually 2r-periodic points, 0 ≤ r < k [6]. In this paper we prove this
conjecture and much more. In fact we prove the same result for continuous
maps on compact intervals. The results are then easily extended to bounded
continuous maps on closed intervals. Our results cover the Ricker’s map
R(x) = xep−x on [0,∞) [10] as well as the ever popular logistic map Fµ(x) =
µx(1 − x). The importance of our results stems from the fact that while
fixed points of continuous maps can be globally attracting, it is not the
case for periodic points. Elaydi and Yakubu [7] have shown that there are
no globally attracting r-cycles, r > 1, in a connected metric spaces. For
example, in the Ricker’s model the fixed point x∗ = p is globally attracting
for 0 < p < p1, where p1 = 2. However, for 2 < p < p2, where p2 ≈ 2.5264,
the attracting 2-cycle is not globally attracting and in fact it is shown here
that the basin of attraction of the attracting 2-cycle is the complement of the
set of all eventually fixed points. This period-doubling bifurcation occurs at
the infinite sequence of parameters pn, with lim

n→∞

pn = p∞ where p∞ ≈ 2.6294.

A similar analysis holds true for the logistic map. In section 3 we extend this
analysis to a class of maps we call quasi-unimodal maps.

The Ricker’s map R(x) and the logistic map Fµ(x) are examples of one-
dimensional maps f that give rise to a difference equation

xn+1 = f(xn) (1.1)
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where xn may represent a population size in generation n. Equation (1.1)
models a simple population with seasonal breeding whose generations do not
overlap such as orchard pests, temperate zone insects, invertebrate popula-
tions, a variety of fish and much more [9], [10].

We now introduce some definitions and preliminaries.
Standing Notation: In this paper Z

+ denotes the set of non negative
integers and fn = f ◦ f ◦ . . . ◦ f is the nth composition of f.

Definition 1.1. Let x∗ be a fixed point of a map f . Then z is said to be an
eventually fixed point relative to x∗ if f r(z) = x∗, for some r ∈ Z

+ . The set
of all eventually fixed points of x∗ is denoted by EFx∗.

Eventually k-periodic points are defined similarly . If x̄ is a k-periodic
point, then z is said to be an eventually k-periodic point relative to x̄ if
f s(z) = x̄, for some s ∈ Z

+. The set of all eventually k-periodic points
of an k-periodic point x̄ is denoted by EPx̄. Notice that for a k-cycle
{x̄1, x̄2, . . . , x̄k},

EPx̄1
= EPx̄2

= . . . = EPx̄k
.

Definition 1.2. Let x∗ be a fixed point of a map f . Then the basin of at-
traction (or the stable set) W s(x∗) of x∗ is defined as

W s(x∗) = {x : lim
n→∞

fn(x) = x∗}.

For a k-periodic point x, the basin of attraction is the basin of attraction
W s(x) of x under g = f k. The basin of attraction of a k-cycle c(k) =
{x1, x2, ..., xk} is given by

W s(c(k)) =

k
⋃

i=1

W s(xi)

2 Main Results

In the sequel, I denotes the compact interval [a, b] and f : I → I is assumed
to be continuous. Clearly if I = [a,∞) and f is bounded and continuous,
f(I) ⊂ K ⊂ I, where K is a compact interval, then f : K → K.

The following lemma is an immediate sequences of the Intermediate Value
Theorem.
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Lemma 2.1. Let f : [a, b] → [a, b], (b = ∞ allowed) be continuous and let
compact [c, d] ⊂ [a, b] be such that either

(i) f(c) > c and f(d) < d, or

(ii) f(c) < c and f(d) > d

Then f has a fixed point in (c, d).

Corollary 2.2. If in Lemma 2.1, f(d) > d and (c, d) is fixed point-free then
f(x) > x for all x ∈ (c, d).

Theorem 2.3. The following statements are equivalent.

(i) f has no points of prime (minimal) period 2.

(ii) For all x0 ∈ I, {fn(x0)} converges.

Proof. (ii) ⇒ (i) If {x̄1, x̄2} is a 2-cycle, then {fn(x̄1)} does not converge as
it oscillates between x̄1 and x̄2.

(i) ⇒ (ii) Assume that there exists x0 ∈ I such that fn(x0) does not
converge. In particular x0 is not a fixed or eventually fixed point. Then its
orbit O(x0) = {x0, x1 = f(x0), x2 = f 2(x0), . . . } can be partitioned into two
sequences A = {xk : f(xk) > xk} and B = {xk : f(xk) < xk}. We claim
that A is strictly monotonically increasing, i.e. l < j ⇒ xl < xj. So assume
that there exist xl, xj ∈ A such that l < j and xl > xj. This means that
f l(x0) > f j(x0). Let j = l + r. Then f r(xl) < xl. Since f r(a) ≥ a, it follows
from Lemma 2.1 that there exists a fixed point z ∈ [a, xl), f r(z) = z. Since
there are no 2-cycles, by Sharkovsky’s Theorem there are no cycles of periods
greater than one. Hence f(z) = z and z is thus a fixed point. Since xl is not
a fixed point, there exists δ > 0 with (xl − δ, xl) free of fixed points. Thus
one may conclude that there exists a largest fixed point in [a, xl]. Without
loss of generality, let z be such a point. From corollary 2.2, f(x) > x for all
x ∈ (z, xl).

Since z is fixed and f is continuous it follows that exists a point y ∈ (z, xl)
sufficiently close to z such that f(y), f 2(y), . . . , f r(y) ∈ (z, xl). But then we
have f r(y) > y. This together with f r(xl) = xm < xl and Lemma 2.1 implies
the existence of a fixed point in (y, xl), a contradiction which establishes the
above “claim”.
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Similarly, one may show that the subsequence B is monotonically de-
creasing. Thus define

x∗

1 = sup A, x∗

2 = inf B.

Since A ∪ B = O(x0), {x
∗

1, x
∗

2} contains all the limit points Ω of O(x0). If
{x∗

1, x
∗

2} = Ω then f(x∗

1) = x∗

2 and f(x∗

2) = x∗

1, and thus {x∗

1, x
∗

2} is a 2-cycle
which is ruled out by hypothesis (i). The only remaining case is that Ω is a
singleton which contradicts our initial assumption that the orbit of x0 does
not converge thus proving the theorem.

We remark here that a special case of this theorem was proved by Cull
in [2] for one-dimensional population models. Theorem 2.3, however, applies
to all continuous maps on closed intervals.

Corollary 2.4. Suppose that f has a 2k-cycle but no 2k+1 cycles. Then every
orbit in I converges to a periodic point (including fixed points).

Proof. Let g = f 2k

. Then g has no 2-cycles. By Theorem 2.3, lim
n→∞

gn(x0)

converges to a fixed point x̄ of g in I. Thus x̄ is 2r-periodic with 0 ≤ r ≤
k.

The following definition and theorem are not restricted to the real line
and will be stated for general metric spaces.

Definition 2.5. Let (X, d) be a metric space and f : X → X be a continuous
map. A fixed point x∗ of f is repelling if there exists ε0 > 0 such that for
all ε, δ, 0 < δ < ε < ε0 and x such that 0 < d(x, x∗) < δ, there exists
n = n(x0, x, δ, ε) ∈ Z

+ such that

d(fn(x), x∗) > ε

A repelling k-periodic point is a repelling fixed point for f k.

Clearly, a repelling fixed point is isolated, not only as a fixed point but it is
maximal in the sense that it is the largest invariant set in some neighborhood
of itself, Sacker [11]. The next theorem is a direct consequence of the above
definition and says that the only “approach” to a repeller is a collision.

Theorem 2.6. Let (X, d) be a metric space and f : X → X be a continuous
map. Let x0 ∈ X be such that lim

n→∞

fnk(x0) = x̄ where x̄ is a repelling k-

periodic point. Then x0 is an eventually k-periodic point.
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Corollary 2.7. Under the assumptions of Collary 2.4, the basin of attrac-
tion of a unique asymtotically stable 2k-cycle is

I\E

where E is the set of all eventually 2r-periodic points for 0 ≤ r < k.

3 Quasi-Unimodal Maps

In this section we define a class of maps which is closely related to unimodal
[3] [1] and which includes the logistic map and Ricker’s map for certain values
of their respective parameters.

Definition 3.1. A bounded continuous map f : [0, b]→ R
+, b ≤ ∞, is called

Quasi-Unimodal (QU) if

1. f(0) = 0, and f(x) > 0, 0 < x < b

2. sup f on [0, b] is attained: f(xm) = max f on [0, b].

3. f is strictly increasing on [0, xm] and strictly decreasing on [xm, b].

4. f(x)→ 0 as x→ b.

5. f(x) > x for some x ∈ (0, xm) and f(p) = p for a unique point p ∈
(0, b).

The presence of multiple interior fixed points is precluded by Assumption
5. This is only assumed for convenience since only one pair of fixed points
can be separated by xm and it is this separation property that is essential.

The following property of QU maps is useful and can be ascertained by
direct inspection of the graph of the map.

Lemma 3.2. Let f be a QU map. Then for all y ∈ (0, f(xm)), f−1(y)
consists of exactly two points, y− and y+, which we call conjugate points,
with y− < xm < y+. Further, if 0 < z < y then

z− < y− < xm < y+ < z+

Definition 3.3. A start point [5] is a point x such that f−1(x) = ∅.
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Notice that if a map f is quasi-unimodal, then every x > f(xm) is a
start point.In particular, for the Ricker’s model R, with p > 0, every point
x > ep−1 is a start point. Moreover, for the fixed point p, if 0 < p < 1
then p−1

.
= R−1(p) \ {p} is a start point. Our aim is to define the notion of a

negative semi-orbit. Clearly, if a ∈ X and f is one-to-one then defining a−n =
f−n(a) one has a unique negative semi-orbit O−(a) = {. . . , a−2, a−1, a}.

For many-to-one maps we have the following:

Definition 3.4. Let a ∈ X. If there exists a sequence {. . . , a−2, a−1, a0 = a}
such that f(aj) = aj+1 6= aj then

O−(a) = {. . . , a−2, a−1, a0 = a}

is called a full negative orbit of a.

Note 1: O−(a) is just an element in the inverse limit [5], [8].

lim←−(X, f)

of the inverse system of spaces and maps

· · ·
f
→ X

f
→ X

f
→ X

after one identifies all sequences {aj} with a−j = a0, for all j ≤ M for some
M .

Let p be a fixed point of the map f . We wish to explore those points that
are eventually fixed at p. There are two cases to consider.

Case 1 p ≤ xm

Then the point p+ conjugate to p satisfies p+ > xm. Then from the last
two properties of QU maps, f(x) < x for all x > p and in particularf(xm) <

xm < p+ which implies p+ ∈ S. Thus no full negative orbit exists. If p = xm,
then p is a start point.

Case 2 p > xm

We shall define O−(p) by a recursive process which along the way yields
a uniqueness criterion. By Lemma 3.2

f−1(p) = {p−1, p}, p−1 < xm < p (3.1)

Deleting the “right hand” point we form

f−1(p−1) = {p−2, q−2}, p−2 < p−1 < xm < p < q−2 (3.2)
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Before continuing we note that at this stage we can give a condition which
guarantees uniqueness of the full orbit

Condition U : q−2 > f(xm) This condition implies that q−2 ∈ S and
therefore cannot seed any further negative orbits. Continuing to ignore the
right hand point

f−1(p−n+1) = {p−n, q−n}, q−n ∈ S

we thus have constructed

O−(p) = {. . . , p−2, p−1, p} (3.3)

We now state this as a theorem.

Theorem 3.5. Let f : [0, b] → R
+, b ≤ ∞ be a quasi-unimodal map with

fixed point p and maximum attained at xm. Then if p > xm, we have

1. p generates a full negative orbit (3.3) and p−n → 0 monotonically.

2. If q−2 defined by (3.1) and (3.2) satisfies Condition U then (3.3) is
unique and we have further

(a) For each n ∈ Z
+, there exists a unique monotonically increasing

sequence of n-eventually fixed points q−n such that lim
n→∞

q−n = b

and f(q−n) = p−n+1

(b) The set of eventual fixed points EFp = O−(p) ∪ {q−n : n ≥ 2}

We now turn to a specific example.

4 The Ricker map

If xn represents the population size of a certain fish at time period n, then
the difference equation

xn+1 = R(xn),

where R(x) = xep−x on [0,∞) [10], is the model used by Ricker to study a va-
riety of fish and invertebrate populations including Pacific herring, the pink
salmon, the haddock, the fruit fly, the water flea, and the starfish among oth-
ers. The Ricker’s map is bounded and attains its maximum value b = ep−1.
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Thus we may consider R : [0, b] → [0, b]. Hence Corollary 2.7 applies to the
Ricker’s model. We have thus proved Elaydi-Yakubu Conjecture [6]. How-
ever, we are going to prove the conjecture using more elementary techniques
and at the same time delve more deeply into the fine structure of the basin
of attraction. There are two fixed points: x∗

1 = 0, x∗

2 = p. We now discuss
the stability of these fixed points [4].

1. R′(x) = (1− x)ep−x, R′′(x) = (x− 2)ep−x, R′′′(x) = (3− x)ep−x

2. R′(0) = ep > 1 and thus 0 is unstable

3. R′(p) = (1−p) and thus p is stable if 0 < p < 2. For p = 2, R′(p) = −1
and we need further analysis to determine the stability of p.

The Schwarzian derivation of R is given by

SR =
R′′′(p)

R′(p)
−

3

2

[

R′′(p)

R′(p)

]2

=
−x2 + 4x− 6

2(1− x)2
< 0

for all x. Hence x∗

2 = 2 is asymptotically stable [4]. When p > 2, x∗

2 loses its
stability and an asymptotically stable 2-cycle {x̄1, x̄2} is born which in turn
loses its stability past p2 ≈ 2.5264. It is important to note that the new born
2k-cycles are unique.

4.1 Eventually fixed points

If 0 < p < 1, then R−1(p) = {p, q−1}, where q−1 is a start point. And if p = 1,
then R−1(p) = p. Finally, let us now consider the case where 1 < p ≤ 2 . It
is easily checked that Ricker’s map is quasi-unimodal.

It only remains to verify that Condition U is satisfied.

Lemma 4.1. For 1 < p ≤ 2, Ricker’s map satisfies Condition U .

Proof. For R(x) = xep−x we must verify q−2 > R(1). Assume not, i.e.
R(1) ≥ q−2. Since the maximum of R is attained at xm = 1, it follows from
Lemma 3.1 and 3.2 that q−2 > 1. Also p > 1 gives us ep−1 > 1. Thus since
R is decreasing in [1,∞), applying R to the assumed inequality,

R2(1) ≤ R(q−2) = p−1 < 1
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and therefore R(ep−1) < 1. But

R(ep−1) = ep−1ep−ep−1

= e2p−1−ep−1

Defining h(t) = 2t − 1 − et−1, we will show h(t) > 0 on (0, 2] to obtain a
contradiction. Note h(1) = 0 and h′(t) = 2 − et−1 so that h′(1) = 1. The
maximum of h is attained at t0 = 1 + ln 2 < 2 and h′(t) < 0 in (t0, 2].
Therefore the minimum of h in that interval is at 2. But h(2) = 4−1−e > 0
which proves the lemma. Thus all the conclusions of Theorem 3.5 follow.

4.2 Eventually 2-periodic points

We now assume that 2 < p < p2, where p2 ≈ 2.5264, so we have an attracting
2-cycle {x̄, ȳ} with x̄ < p < ȳ.

Theorem 4.2. The basin of attraction of the 2-cycle {x̄, ȳ}, 2 < p < p2,
where p2 ≈ 2.5264, is

W s({x̄, ȳ}) = (0,∞)\EF

where EF is the set of all eventually fixed points of R.

The proof consists of several lemmas.

Lemma 4.3. Let f : X → X be a continuous map on a metric space X.
Then for an asymptotically stable fixed point x∗ of f , the component C in
W s(x∗) containing x∗ and its boundary ∂C are each invariant.

From Theorem 3.5 we have a full negative orbit O−(p) = {. . . , p−2, p−1, p}
with p−n → 0 monotonically. We shall use this to prove the following

Lemma 4.4. Let (a1, b1) be the component of W s(x̄) containing x̄ and (c1, d1)
be the component of W s(ȳ) containing ȳ. Then

(i) b1 = c1 = p

(ii) a1 = p−1, d1 = q−2

Proof. By Lemma 4.3, the sets {a1, b1} and {c1, d1} are invariant under R2.
If R2(a1) = a1, then either a1 is a 2-periodic point, which violates uniqueness
of the 2-periodic orbit, or a1 is a fixed point, namely a1 = 0. But by this
is impossible since the eventually fixed points p−n → 0 and therefore p−n ∈
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(a1, b1) for some large n. Thus R2(a1) = b1. If R2(b1) = a1, a1 is a 4-cycle
which is absurd since a 4-cycle (which is not a 2-cycle) consists of 4 distinct
points. Hence f 2(b1) = b1. Since b1 ≤ p and b1 cannot be a 2-periodic point,
b1 = p.

The argument that c1 = p is similar: Using uniqueness and invariance

R2(d1) = d1 ⇒ R(d1) = d1 ⇒ d1 fixed,

a contradiction. Thus R2(d1) = c1. If R2(c1) = d1, then R4(d1) = d1 ⇒
R2(d1) = d1 which again leads to a contradiction. Thus we must have
R2(c1) = c1 which implies c1 = p, i.e. R2(d1) = p.

Finally since by Lemma 3.2, R−1(p) = {p−1, p} with p−1 < 1 and therefore
R(d1) 6= p which implies that R(d1) = a1 (Note, The set {a1, b1, c1, d1} is
invariant under R). Hence p = R2(d1) = R(a1). Thus a1 = p−1 and d1 = q−2.

Lemma 4.5. (i) The full negative orbit O−(p) is unique.

(ii) The sequence {q−n} monotonically diverges to ∞ and each q−n is a
start point.

Proof. By virtue of Theorem 2.3, it suffices to prove that q−2 > R(1). So
assume that q−2 ≤ R(1). Then since q−2 > 1 and R is decreasing there,

p−1 = R(q−2) ≥ R2(1) (4.1)

But by Lemma 4.4, since 1 ∈ (p−1, p), R2(1) ∈ (p−1, p) which contradicts
(4.1).

Consider now the map G = R2 = R ◦R. Then G has three critical points
x1 < x2 < x3, where x2 = 1, and x1, x3 ∈ R−1(1), that is xie

p−xi = 1,
for i = 1, 3. There is a parameter value pc ≈ 2.25643 at which x̄ = 1 and
ȳ = epc−1. In addition to the case p = pc, there are two cases to consider.

1. If 2 < p < pc, then we have x̄ > 1 and ȳ < x3.

2. If p > pc, then we have x̄ < 1 and ȳ > x3.

The next lemma investigates these three cases.

Lemma 4.6. The following statements hold true for the 2-cycle {x̄, ȳ} .
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(i) If 2 < p < pc, then G−1(x̄) = {x1
−1, x

2
−1, x−1, x̄}, where x−1 ∈ (q−2, q−3)

is a start point, and x1
−1 ∈ (p−1, x̄), x2

−1 ∈ (p−3, p−2). Moreover,
G−1(ȳ) = {y1

−1, y
2
−1, y−1, ȳ}, with y−1 ∈ (ȳ, q−2) is a start point, y1

−1, y
2
−1 ∈

(p−2, p−1).

(ii) If p = pc, then G−1(x̄) = {x1
−1, x−1, x̄}, where x−1 ∈ (q−2, q−3) is a

start point, and x1
−1 ∈ (p−3, p−2). Moreover, G−1(ȳ) = {y−1, ȳ}, with

y−1 ∈ (p−2, p−1).

(iii) If p > pc, then G−1(x̄) = {x1
−1, x

2
−1, x−1, x̄}, where x−1 ∈ (q−2, q−3) is

a start point, and x1
−1 ∈ (x̄, p), x2

−1 ∈ (p−3, p−2). Moreover, G−1(ȳ) =
{y1

−1, y
2
−1, y−1, ȳ}, with y−1 ∈ (p, ȳ), and y1

−1, y2
−1 ∈ (p−2, p−1).

Proof. (i) Claim that q−2 > x3. For if q−2 ≤ x3, then p−1 = R(q−2) ≥
R(x3) = 1 which contaradicts the results in Lemma 3.2. Since R2 is decreas-
ing on the interval (x3,∞), there exists x−1 > q−2 with R2(x−1) = x̄. Since
R3(x−1) = ȳ and R3(q−3) = p, it follows that x−1 < q−3. The proof of the
remaining parts is straightforward and will be omitted.

The scenario in Lemma 4.6 may be extended to higher order cycles.

Proof of Theorem 4.2: Let (p−n, p−n+1) be an interval as defined in
section 2. Since p−n < 1 for all n = 1, 2, 3, . . . the map R is strictly in-
creasing on [p−n, p−n+1]. It follows that R([p−n, p−n+1]) = [p−n+1, p−n+2].
Thus Rn−1([p−n, p−n+1]) = [p−1, p0]. This implies by Lemma L-2-bas that
Rn−1((p−n, p−n+1)) = (p−1, p0) = W s(x̄). Hence (p−n, p−n+1) ⊂ W s({x̄, ȳ})
since q−n > 1, for n ≥ 2, R is strictly decreasing on [q−n, q−n−1]. Hence
Rn−1([q−n, q−n−1]) = [p−2, p−1] and consequently, Rn(q−n, q−n−1) = (p−1, p) =
W s(x̄). Hence (q−n, q−n−1) ⊂ W s({x̄, ȳ}).

Theorem 4.7. Let ck = {x̄1, x̄2, . . . , x̄2k} be asymptotically stable 2k-cycle.
Then W s(ck) is (0,∞)\

⋃

i∈Λ
EPx̄i

, where {x̄i : i ∈ Λ} is the set of all even-
tually 2r-periodic points 0 ≤ r < k.
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