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Fixed-point theory of one-dimensional maps of R does not completely ad-
dress the issue of non-hyperbolic fixed points. This paper generalizes the ex-
isting tests to completely classify all such fixed points. To do this, a family of
operators are exhibited that are analogous to generalizations of the Schwarzian
derivative. In addition, a family of functions f are exhibited such that the
MacLaurin series of f(f(x)) and x are identical.
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1. INTRODUCTION

The study of dynamics of maps from R to R is central to many fields
including discrete dynamical systems [1, 3, 5, 12], difference equations [4, 7,
9, 10], and differential equations via Poincaré [11] and Lorenz maps [1, 5, 8].
It is well known that a fixed point of such a map can be of three types. A
stable fixed point attracts nearby points towards it, under iteration. An
unstable fixed point repels nearby points, whereas a semistable fixed point
attracts nearby points on one side (say, to the left), and repels nearby
points on the other side.

Until recently, the classification of fixed points has been incomplete.
Specifically, no test existed if f(x∗) = x∗, f ′(x∗) = 1, f ′′(x∗) = 0, f ′′′(x∗) =
0. Also, no test existed if f(x∗) = x∗, f ′(x∗) = −1, Sf(x∗) = 0, where
Sf(x) is the Schwarzian derivative, defined in this case as Sf(x) = −f ′′′(x∗)−
1.5(f ′′(x∗))2. This situation was recently remedied in [2], which demon-
strated a sequence of tests that fill both gaps. However, the tests for the
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second gap have certain inadequacies. This paper restates and improves
on the solution for the second gap. This is summarized in Fig. 1.

The gray area to the lower left is from [2], and the gray boxed area
marked “NEW” is from this paper.
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2. SUMMARY OF PREVIOUSLY KNOWN RESULTS

Let f : R → R be a continuous map, and x∗ such that f(x∗) = x∗. We
say that x∗ is semistable from the left [respectively right] if given ε > 0,
there is a δ > 0 such that x∗ − δ < x < x∗ [respectively x∗ < x < x∗ + δ]
implies that |f(f(· · · (f(x)) · · · )) − x∗| < ε, for any positive number of
iterations of f . If x∗ is semistable from both sides, we say that x∗ is stable,
whereas if it is semistable from neither side, we say that x∗ is unstable. In
the sequel, when we say a fixed point is semistable, we imply that it is not
stable.

Theorem 2.1 (from [2]). Let f : R → R be continuous with f(x∗) =
x∗ and f ′(x∗) = 1. Let k > 1 be minimal such that f (k)(x∗) = A �= 0.
Then x∗ is classified as follows:

1.If k is even and A > 0, then x∗ is semistable from the left.
2.If k is even and A < 0, then x∗ is semistable from the right.
3.If k is odd and A > 0, then x∗ is unstable.
4.If k is odd and A < 0, then x∗ is stable.

This classification of nonoscillatory nonhyperbolic fixed points (that is,
where f ′(x∗) = 1) was used in [2] to generate a test for oscillatory non-
hyperbolic fixed points (where f ′(x∗) = −1), that satisfy Sf(x∗) = 0 and
therefore were previously unclassified. This test is due to the following
classical theorem.

Theorem 2.2. Let f : R → R be continuous with f(x∗) = x∗, and
f ′(x∗) = −1. Set g(x) = f(f(x)). Then x∗ is classified the same way
under f as under g.

Observe that for oscillatory nonhyperbolic fixed points, g(x∗) = f(f(x∗)) =
f(x∗) = x∗, and that g′(x∗) = f ′(f(x∗))f ′(x∗) = f ′(x∗)f ′(x∗) = (−1)(−1) =
1. This allows us to classify g (and, hence, f) using Theorem 2.1. Further-
more, [2] contains the following result, proved using Taylor’s theorem.

Theorem 2.3 (from [2]). Let f : R → R be continuous with f(x∗) =
x∗, and f ′(x∗) = −1. Then x∗ is either stable or unstable; it cannot be
semistable.

This method can be improved, as we will see in the sequel.
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3. ANOTHER METHOD

One of the drawbacks to the previous algorithm for the case of a fixed
point with f ′(x∗) = −1 is the need to pass to g(x). To study an n-th degree
polynomial with coefficients bounded by N , we need to consider an n2-d
degree polynomial with coefficients bounded by NNn

(
n

n/2

) ∼ 2nNn+1√
n

. A
test using f(x) would avoid this difficulty.

Example. Consider f(x) = −x+2x2 − 4x3. To classify the fixed point
f(0) = 0, we compute the derivatives of f : f ′(0) = −1, f ′′(0) = 4, f ′′′(0) =
−24, and zero from then on. We first find Sf(0) = −f ′′′(0)−1.5(f ′′(0))2 =
0. Unfortunately, this falls in the gap of the classical theory. Therefore, to
classify 0, the previous algorithm requires us to pass to the substantially
more complicated g(x) = f(f(x)) = −x + 4x2 − 8x3 + 64x5 − 192x6 +
384x7 − 384x8 + 256x9, to find that g(5)(0) = (64)(5!) = 7680 > 0, making
0 an unstable fixed point.

An improvement to the algorithm is made possible by a formula pub-
lished in the mid-19th century by Faà di Bruno. For a history of this result
as well as some biographical information, see [6].

Theorem 3.1 (Faà di Bruno).
dn

dxn
f(f(x)) =

∑ n!
a1!a2! · · · an!

f (a)(f(x))

(
f

′
(x)
1!

)a1

· · ·
(

f (n)(x)
n!

)an

for f ∈ Cn and where a = a1 +a2 + · · ·+an and the sum extends over all
possible integer ai such that 0 ≤ ai ≤ n and n = a1 +2a2 +3a3 + · · ·+nan.

In our context, we are evaluating it all at the fixed point x∗, with g(x) =
f(f(x)) and f ′(x∗) = −1. The sum then becomes:

g(n)(x∗) =
∑ (−1)a1n!f (a)(x∗)

a1!a2! · · · an!

(
f (2)(x∗)

2!

)a2

· · ·
(

f (n)(x∗)
n!

)an

(1)

The character of this result will be more evident with several examples.

Examples. For n = 2, there are two summands: {a1 = 2, a2 = 0} and
{a1 = 0, a2 = 1}. Hence g(2)(x∗) = (−1)22!

2! f ′′(x∗)+ (−1)02!
1! f ′(x∗)(f ′′(x∗)/2!)

= f ′′(x∗)−f ′′(x∗) = 0. This is no coincidence; Theorem 2.3 does not allow
the first nonzero derivative of g to be even-numbered.

For n = 3, there are three terms: {a1 = 3, a2 = a3 = 0}, {a1 = a2 =
1, a3 = 0}, and {a1 = a2 = 0, a3 = 1}. Hence g(3)(x∗) = (−1)33!

3! f (3)(x∗) +

+ (−1)13!
1!1! f ′′(x∗)(f ′′(x∗)/2!) + (−1)03!

1! f ′(x∗)(f (3)(x∗)/3!) = −f (3)(x∗) −
− 3(f ′′(x∗))2 − f (3)(x∗) = 2Sf(x∗). This confirms the classical test.
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4. GENERALIZED SCHWARZIAN-TYPE DERIVATIVES

Using Formula (1), we can calculate generalized analogues of the Schwarzian
derivative to use in our classification. We take Skf(x) = 1

2g(2k+1)(x), and
simplify using the assumption that Sif(x) = 0 for all i < k.

S1f(x) = Sf(x) = −f (3)(x) − 3
2
(f ′′(x))2

S2f(x) = −f (5)(x) − 15
2

f ′′(x)f (4)(x) + 15(f ′′(x))4

S3f(x) = −f (7)(x) − 14f ′′(x)f (6)(x) +
945
2

(f ′′(x))3f (4)(x) −

−35
4

(f (4)(x))2 − 9045
4

(f ′′(x))6

S4f(x) = −f (9)(x) − 45
2

f ′′(x)f (8)(x) + 2205(f ′′(x))3f (6)(x) −

−208845
2

(f ′′(x))5f (4)(x) +
411075

2
(f ′′(x))8 −

−105f (4)(x)f (6)(x) + 7875(f ′′(x))2(f (4)(x))2

S5f(x) = −f (11)(x) − 90748350(f ′′(x))10 − 495
2

f (4)(x)f (8)(x) −

−21881475
4

(f ′′(x))4(f (4)(x))2 +
30195

4
(f ′′(x))3f (8)(x) +

+
201611025

4
(f ′′(x))7f (4)(x) +

317625
4

f ′′(x)(f (4)(x))3 −

−33f ′′(x)f (10)(x) +
197505

2
(f ′′(x))2f (4)(x)f (6)(x) −

−1943865
2

(f ′′(x))5f (6)(x) − 231(f (6)(x))2

This allows a simpler algorithm to classify oscillatory nonhyperbolic fixed
points of a one-dimensional map.

Theorem 4.1. Let f : R → R be continuous with f(x∗) = x∗ and
f ′(x∗) = −1. Let k ≥ 1 be minimal such that Skf(x∗) = A �= 0. Then x∗

is classified as follows:

1.If A > 0, then x∗ is unstable.
2.If A < 0, then x∗ is stable.
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Theorem 4.1 allows classification of fixed points with simpler calculation.
Additional Schwarzian-type derivatives are simple to calculate using For-
mula (1). However, in general this won’t be necessary, as each generalized
derivative is only needed if all earlier ones are zero.

Example. Consider again f(x) = −x + 2x2 − 4x3, and recall that
f ′(0) = −1, f ′′(0) = 4, f (3)(0) = −24. We see that S1f(0) = −(−24) −
3
2 (4)2 = 0, and that S2f(0) = 0 − 0 + 15(4)4 = 3840 > 0. Hence, 0 is an
unstable fixed point of f(x).

Example. Consider the function f(x) = −x + x2 − x3 + 2
3x4. Observe

that f ′(0) = −1, f ′′(0) = 2, f (3)(0) = −6, f (4)(0) = 16. We see that
S1f(0) = −(−6) − 3

2 (2)2 = 0, S2f(0) = −0 − 15
2 (2)(16) + 15(2)4 = 0,

S3f(0) = −0 − 14(2)(0) + 945
2 (2)3(16) − 35

4 (16)2 − 9045
4 (2)6 = −86480 < 0.

Hence, 0 is a stable fixed point of f(x).

Several properties of these Skf(x) are described in the following result.

Theorem 4.2. Skf(x) has exactly one term containing an odd derivative
of f , and that term is −f (2k+1)(x).

Proof. First recall that Skf(x) = 1
2g(2k+1)(x). We now use Formula (1)

with n = 2k + 1. Observe that the highest derivative that can appear is
f (n)(x∗). This can appear in a term in only two ways: if a = n, or if an > 0.
The restrictions on the sum force exactly two terms containing f (n)(x∗):
{a1 = n, a2 = · · · = an = 0} and {a1 = · · · = an−1 = 0, an = 1}. Each
of these terms simplifies to −f (2k+1)(x∗). Hence, Skf(x) has the required
term −f (2k+1)(x).

Now, we prove by strong induction that no other terms appear with odd
derivatives of f . The case k = 1 corresponds to the classical Schwarzian
derivative. For k > 1, we observe that we are simplifying under the as-
sumption that Sif(x) = 0 for all i < k. The result holds for these Sif(x)
by the induction hypothesis. Hence, we can solve for each odd deriva-
tive f (2i+1)(x) in terms of even derivatives, and substitute into Skf(x).

We now use these Schwarzian-type derivatives to generate a class of
functions, each of which is analytically a “square root” of the identity at
the origin.
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5. A SPECIAL CLASS OF FUNCTIONS

The function h(x) = x has a natural square root, namely f(x) = −x.
By this we mean that f(f(x)) = h(x) = x. However, we can construct an
infinite class of other functions f , each of which is analytically a square
root of h(x) at the origin. That is, (f ◦ f)(n)(0) = h(n)(0), for all n ≥ 0.

The most general square root is given by the following power series:

f(x) = −x +
a2

2!
x2 +

a3

3!
x3 +

a4

4!
x4 + · · · + an

n!
xn + · · ·

We observe that f(0) = 0, f ′(0) = −1, and otherwise f (n)(x) = an. In
order to ensure that (f ◦ f)(n)(0) = h(n)(0) = 0, we must ensure that
Sfk(0) = 0 for each k. We can do this inductively by choosing the the odd
derivatives (a2j+1) as per Theorem 4.2. The even derivatives (a2j) may be
chosen freely. For example, we may choose a2 freely, but then a3 = − 3

2a2
2

to have S1f(x) = 0.
If we choose the even coefficients growing not too fast, the odd coefficients

will also grow not too fast, by the following result.

Theorem 5.1. Suppose that |ai| ≤ 1 for 2 ≤ i ≤ n. Then (assuming n
is sufficiently large), |an/n!| ≤ 1.

Proof. In Formula (1) there is exactly one term for each partition of n.
Hence, there are at most eπ

√
2n
3 terms (for a proof of this bound, see [13]).

We will now show that each term has coefficient bounded above by n!
2�n/2� .

If any of a�n/2�+1, . . . , an is positive, then the coefficient of that term is
at most n!

(�n/2�+1)! < n!
2�n/2� for n ≥ 4. Otherwise, we have 0 = a�n/2�+1 =

a�n/2�+2 = · · · = an. In this case, we have a1 + a2 + · · · + a�n/2� = n,
and the coefficient is at most n!

a1!a2!···a�n/2�!
. This is maximized when 2 =

a1 = a2 = · · · = a�n/2�. Hence in any case the coefficient of each term is
bounded above by n!

2�n/2� .
So, putting together the two bounds above with the hypothesis that each

derivative |f (i)(x∗)| ≤ 1, we get |an/n!| ≤ e
π
√

2n
3

2�n/2� ≤ eπ
√

2
3
√

n− ln 2
2 n ≤ 1 for n

sufficiently large (it turns out that n ≥ 55 is sufficient).

This bound isn’t sharp. The terms of Formula (1) are of both signs,
which this result does not exploit. Also, the lower derivatives appear as
multiple powers, and so there could be a further improvement that way,
if we insist they are strictly less than one in absolute value. Calculation
of polynomial approximations to these power series suggests they can be
made to have a positive radius of convergence, but this is unproven.
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6. OPEN PROBLEMS

This work has created more questions than it has answered.

Conjecture 1. Given M > 0, there are infinitely many square roots of
the identity that converge on [−M,M ].

Conjecture 2. The terms of Skf(x), except for the unique highest-
derivative term, are all of the form α(f (a1))b1 · · · (f (aj))bj , where 4α ∈ Z

and 2n =
j∑

i=1

bi(ai − 1).

Problem 1. Find a combinatorial proof that if f ′(x∗) = −1, and
g′′(x∗) = · · · = g(2k−1)(x∗) = 0, then g(2k)(x∗) = 0.

Problem 2. Find a simple expression for the coefficients of Skf(x).
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