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1 Introduction & Notation

Linear programming is one of the most prominent areas in optimization, hav-
ing a rich mathematical theory and numerous applications in economics, the
management sciences, health care, and the physical sciences (to name just a
few). In this paper, we focus on the connection between linear programming
and economics. In particular, we extend the Nonsubstitution Theorem, which is
an economics result that was first established by the Nobel Laureate P. Samuel-
son [21] and further studied by the Nobel Laureate J. Mirrlees [19]. This result
states that under typical economic assumptions, there is an optimal manner
to produce commodities that is independent of demand. The Nonsubstitution
Theorem is considered by some to be the pivotal result that moved economics
out of the neoclassical frame of thought and into the modern paradigm. The
importance of this result is highlighted in the following quote [18], “The theorem
was received with some astonishment by the authors working in the neoclassi-
cal tradition since it flatly contradicted the importance attached to consumer
preferences for the determination of relative prices.”

The Nonsubstitution Theorem continues to be investigated [7, 8, 10, 17], and
in this paper we extend the main result of [13] to the case of multiple objectives.
In [13], Hasfura-Buenaga, Holder, and Stuart studied a dynamic version of the
Nonsubstitution Theorem and showed that the collection of optimal processes
stabilizes, meaning that the collection is constant for sufficiently large time.
One of the simplifying assumptions found in these works is that the only non-
producible commodity is a homogeneous labor source, and hence, every worker
is paid the same wage. Our extension to the multiple-objective case removes
this assumption and permits multiple labor sources with differing wages.

As in [13], our extension relies on the concept of the optimal partition. Con-
sider the standard form primal and dual linear programs,

(LP ) min{cT x : Ax = b, x ≥ 0} and (LD) max{bT y : AT y + s = c, s ≥ 0},

where A ∈ IRm×n, b ∈ IRm, and c ∈ IRn. We denote the feasible and optimal
regions of the primal (dual) problem by P (D) and P∗ (D∗), respectively. Also,
the strict interiors of the primal and dual feasible regions are

Po = {x ∈ P : x > 0} and Do = {(y, s) ∈ D : s > 0}.

The optimal partition, (B|N), is defined by

B = {i : x∗i > 0, for some x∗ ∈ P∗}, and
N = {i : s∗i > 0, for some (y∗, s∗) ∈ D∗}

= {1, 2, . . . , n} \B.

The optimal partition is important because it characterizes the optimal sets.
Allowing a set subscript on a vector (matrix) to be the subvector (submatrix)
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containing the elements (columns) in the set, we have that

P∗ = {x ∈ P : xN = 0} = {x : ABxB = b, xB ≥ 0, xN = 0} and
D∗ = {(y, s) ∈ D : sB = 0}

= {(y, s) : AT
By = cB , AT

Ny + sN = cN , sN ≥ 0, sB = 0}.

The two set partitions of {1, 2, . . . , n} provide an algebraic description of the
faces of P. For each face F of P, there is a unique partition (I|I ′) of {1, 2, . . . , n},
such that F = {x ∈ P : xI ≥ 0, xI′ = 0} and Fo = {x ∈ P : xI > 0, xI′ = 0} 6=
∅. The dimension of F is |I| − rank(AI), see [20].

The necessary and sufficient Lagrange conditions for (LP ) and (LD) are

Ax = b, x ≥ 0, AT y + s = c, s ≥ 0, and sT x = 0.

If the optimal partition is known, these optimality conditions may be rewritten
as a linear system —i.e. without the bilinear constraint sT x = 0. This follows
because if we know (B|N), the solutions to

ABxB = b, xB ≥ 0, AT y = cB , AT y + sN = cN sN ≥ 0, (1)

are in a one-to-one correspondence with the solutions to (LP ) and (LD). For
example, let (xB , y, sN ) satisfy (1). Then, setting xN = 0 and sB = 0, we have
that (xB , xN ) is primal optimal and (y, (sB , sN )) is dual optimal. Moreover,
(B|N) is the unique optimal partition of (LP ) and (LD) if the system in (1) has
a solution with xB > 0 and sN > 0.

Throughout this paper we study asymptotic linear programming, mean-
ing that we investigate the long-term behavior of dynamic linear programs.
Jeroslow [15, 16] was the first to study asymptotic linear programming, and
several researchers have since investigated these problems [1, 2, 3, 23]. This
type of analysis parallels the long-term solution analysis of differential equa-
tions, but instead of investigating such things as population dynamics, asymp-
totic linear programs are studied to make economic interpretations [1, 3, 13].
We are interested in the dynamic, multiple-objective linear program

(MOLP (t)) min{C(t)x : A(t)x = b(t), x ≥ 0},

where A(t) : IR → IRm×n, b(t) : IR → IRm, and C(t) : IR → IRr×n. The feasible
region for (MOLP (t)) is P(t). Because IRr does not have a standard complete
ordering for r ≥ 2, minimization is not uniquely defined, and we use pareto
optimality. A feasible solution x is pareto optimal at time t if there does not
exist a feasible y such that C(t)y ≤ C(t)x, with strict inequality holding in
at least one component. The efficient frontier at time t, denoted by E(t), is
the set of all pareto optimal solutions (pareto solutions are also called efficient
solutions). It is well known [9] that x is efficient at time t if and only if there
exists a strictly positive weighting vector w such that x solves

(LP (w, t)) min{wT C(t)x : x ∈ P(t)}.

3



The definition of the optimal partition for MOLP (t), denoted by (
molp

B (t)|
molp

N (t)),
is a natural extension of the single objective case [14], and we define

molp

N (t) = {i : xi = 0 for all x ∈ E(t)} and
molp

B (t) = {1, 2, . . . , n} \
molp

N (t).

As in the single objective case,
molp

N (t) indexes the components of x that are zero

over the entire optimal set, and
molp

B (t) indexes the components that are positive
somewhere in the optimal set. The difference is that the multiple-objective
optimal partition no longer characterizes the efficient frontier. However, we do
have that

E(t) ⊆
{

x ∈ P(t) : xmolp
N (t)

= 0
}

.

An important observation about
molp

B (t) is that it is the union, over the set of
positive weighting vectors, of the B sets of LP (w, t). That is,

molp

B (t) =
⋃

w>0

{B : (B|N) is the optimal partition of LP (w, t)}.

We say that B is a sub-partition of
molp

B (t) if there is a positive w such that
(B|N) is the optimal partition of LP (w, t). Other notation and terminology is
consistent with the Mathematical Programming Glossary [11].

2 Asymptotic Sign-Solvability

The goal of this section is to develop conditions under which the collection
of sign patterns of a linear system stabilize. The sign operator acts on an
arbitrary matrix or vector and returns a matrix or vector of the same size
whose components are replaced with the symbols +, −, and 0. As an example,

sign
([

−2 3 0 1
−1 −2 1 0

])
=

[
− + 0 +
− − + 0

]
.

Sign-solvability is the study of linear systems when we only know the sign pat-
terns of the coefficient matrix and right-hand side. A large amount of research
has been conducted in this area of linear algebra, and interested readers are
directed to [4]. One of the more natural questions to ask is whether or not the
system Mx = m is consistent if we only know sign(M) and sign(m). A slightly
more difficult question is if there exists a solution with a fixed sign pattern.
For example, if M is the matrix above and sign(m) = (+,−)T , we could ask
whether or not Mx = m has a solution with sign(x) = (0, 0,+,+)T (there is
no such solution). The main result of this section answers a related asymptotic
question. For the functions M : IR → IRp×q and m : IR → IRp, does

Σ(t) = {sign(x) : M(t)x = m(t)}
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stabilize? This is obviously not true for all M and m, and we show that the
conditions guaranteeing the stabilization of the optimal partition also guarantee
the stabilization of Σ(t).

The connection between sign-solvable systems and linear optimization is the
necessary and sufficient Lagrange equations in (1). As previously mentioned,
we know that (B|N) is the optimal partition of (LP ) if and only if the linear
system

ABxB = b, AT
By = cB , AT

Ny + sN = cN

has a solution with sign(xB) = (+,+, . . . ,+)T and sign(sN ) = (+,+, . . . ,+)T .
One way to solve a linear program is to systematically proceed through the 2-set
partitions of {1, 2, . . . , n} and see if the above system has a positive solution.
This is not an intelligent way to solve the problem as there are 2n possible
partitions, but this is a finite method to solve a linear program.

Throughout the remainder of this paper, we assume that every linear system
satisfies the following assumption.

Assumption 1. For the linear system M(t)x = m(t), there is a time, T , such
that for all t ≥ T , the determinants of all square submatrices of [M(t)|m(t)] are
either constant or have no roots. We further assume that M(t) and m(t) are
continuous for t ≥ T .

With this assumption, the following results were established in [13].

Lemma 2.1 (Hasfura-Beunaga, Holder, Stuart [13]). Under Assump-
tion 1, the rank of every submatrix of [M(t)|m(t)] stabilizes.

The next result shows that the optimal partition of a feasibility problem is
constant for arbitrarily large t.

Lemma 2.2 (Hasfura-Beunaga, Holder, Stuart [13]). Under Assump-
tion 1, we have that the optimal partition of min{0T x : M(t)x = m(t), x ≥ 0}
stabilizes.

As stated, Lemma 2.2 is a sub-case of the result in [13], as it only deals with the
feasibility problem min{0T x : M(t)x = m(t), x ≥ 0} (the result in [13] permits
a dynamic objective function as well). However, we show that dealing with the
feasibility problem is enough to establish that Σ(t) stabilizes. For a sign pattern
σ, we let

Λ+(σ) = {i : σi = +}, Λ−(σ) = {i : σi = −}, and Λ0(σ) = {i : σi = 0}.

So, if σ = (+,−,+,+, 0), we have that Λ+(σ) = {1, 3, 4}, Λ−(σ) = {2}, and
Λ0(σ) = {5}. Theorem 2.3 shows that there is a time after which Σ(t) is
constant.

Theorem 2.3. Under Assumption 1, we have that there is a time T such that
for all t ≥ T , Σ(t) = Σ(T ).
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Proof. Let t0 be large enough to guarantee that for t ≥ t0 the ranks of the sub-
matrices of [M(t)|m(t)] are constant and that the optimal partition of min{0T x :
M(t)x = m(t), x ≥ 0} is constant. If rank(M(t0)) 6= rank([M(t0)|m(t0)]), we
have that Σ(t) = ∅ for all t ≥ t0.

Assume that rank(M(t)) = rank([M(t)|m(t)]), for all t ≥ t0, and let σ ∈
Σ(t0). Consider the optimization problem,

min{0T x : M(t0)x = m(t0), sign(x) = σ}
= min{0T x : M(t0)x = m(t0), xΛ+(σ) > 0, xΛ−(σ) < 0, xΛ0(σ) = 0}.

Let P be the n × n diagonal matrix such that P(i,i) = −1 if i ∈ Λ−(σ), and
P(i,i) = 1 otherwise. Then, if z = Px, we have that

argmin{0T x : M(t0)x = m(t0), xΛ+(σ) > 0, xΛ−(σ) < 0, xΛ0(σ) = 0}
= argmin{0T z : M(t0)Pz = m(t0), zΛ+(σ) > 0, zΛ−(σ) > 0, zΛ0(σ) = 0}. (2)

The optimization problem in (2) has a solution if and only if the optimal parti-
tion to the linear program

min{0T x : M(t0)Pz = m(t0), zΛ0(σ) = 0, z ≥ 0} (3)

is (Λ+(σ) ∪ Λ−(σ)|Λ0(σ)) = (B(t0)|N(t0)). From the fact that σ is in Σ(t0),
we know that the optimization problem in (2) has a solution, and hence, the
optimal partition of the linear problem in (3) is (Λ+(σ) ∪ Λ−(σ)|Λ0(σ)). From
Lemma 2.2 we have that this optimal partition is constant for every t ≥ t0. So,
the optimization problem in (2) has a solution for every t ≥ t0, which means
that σ ∈ Σ(t) for every t ≥ t0.

So far we have established that Σ(t0) ⊆ Σ(t), for t ≥ t0. If at some time
t1 > t0 a new sign pattern enters Σ(t1), the same reasoning shows that this new
sign pattern is in Σ(t), for all t ≥ t1. Since there are 3n sign patterns, we know
that there is a time T such that Σ(t) = Σ(T ), for all t ≥ T .

3 Stabilization of the Multiple Objective Opti-
mal Partition

In this section we show that the multiple objective optimal partition stabilizes.
Let {(B1|N1), (B2|N2), . . . , (B2n |N2n

)} be the collection of two-set partitions
of {1, 2, . . . , n}. For i = 1, 2, . . . , 2n, we let

Hi(t) =

ABi(t) 0 0 0
0 AT

Bi −CT
Bi(t) 0

0 AT
Ni −CT

Ni(t) I|Ni|

 , h(t) =

b(t)
0
0

 , and v =


xBi

y
w

sNi

 .

We say that v is sufficiently non-negative (sufficiently positive), written v≥|0
(v>|0), if xBi , w, and sNi are non-negative (positive). So, for any partition
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(Bi|N i) we have that the Lagrange conditions of LP (w, t) are the same as the
consistency of Hi(t)v = h(t), v≥|0. We also have that Bi is a sub-partition of
molp

B (t) if and only if Hi(t)v = h(t), v>|0 is consistent.
Remember that for each i we assume the system Hi(t)v = h(t) satisfies As-

sumption 1. We point out that the class of functions described by Assumption 1
includes the rational and transcendental functions. In fact, sin and cos are per-
mitted so long as they are shifted to satisfy the condition of not having zeros.
For example, Assumption 1 is satisfied by

A(t) =
[
1/t t2

et sin(t) + ln(t)

]
, C(t) =

[
t t + sin(t)

1/
√

t 1

]
, and b(t) =

(
e−t

t3

)
.

As in [13], one of the strengths of our proof technique is that it permits a broader
class of functions than what was previously available, with rational functions
being required in [15] and [16] and linear functions being required in [1], [2],
[3], and [23]. The following result states that the multiple objective optimal
partition stabilizes over this larger class of functions.

Theorem 3.1. There exists a time T , such that for all t ≥ T , (
molp

B (t)|
molp

N (t)) =

(
molp

B (T )|
molp

N (T )).

Proof. For i = 1, 2, . . . , 2n, let

suff

Σi (t) = {sign(v) : Hi(t)v = h(t), v>|0} and Ω(t) =
{

i :
suff

Σi (t) 6= ∅
}

.

So, at any time we see that

molp

B (t) =
⋃

i∈Ω(t)

Bi. (4)

From Theorem 2.3 we have that each
suff

Σi (t) becomes constant, and hence, there

is a time T after which every
suff

Σi (t) is constant. So, the index set in (4) stabilizes,

and consequently, so does
molp

B (t).

The asymptotic, multiple objective optimal partition is denoted by (
molp

B |
molp

N ),
with the dependence on time being removed. From Theorem 3.1 we see that
there is point in time at which the collection of variables that are zero in every
efficient solution is constant. We point out that it may not be possible for all
of the remaining variables to be positive in an efficient solution. In fact, this
can only happen if the efficient frontier stabilizes to a single face (an unlikely
event). The geometric interpretation of Theorem 3.1 is that as time increases
without bound, the ‘shape’, dimension, and number of faces of the efficient
frontier stabilize.
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We now establish that the efficient frontier is continuous for arbitrarily large
time. The efficient frontier is a point-to-set map that depends on t, and such
maps are continuous at t0 (in the Hausdorff sense [12]) if, for any sequence
tk → t0, we have that

1. if x0 is in E(t0), then there is a sequence xk in E(tk) that converges to x0,
and

2. if xk is a sequence in E(tk) that converges to x0, then x0 is in E(t0).

Our proof relies on the following previously established results.

Lemma 3.2 (Campbell and Meyer [5]). The Moore-Penrose pseudo inverse
of M : IR → IRp×q is continuous at t0 if and only if rank(M(t)) = rank(M(t0)),
for t sufficiently close to t0.

The next result shows that the analytic center of a polytope is continuous if the
Moore-Penrose pseudo inverse of the coefficient matrix is continuous. At any
time t, the analytic center of M(t) = {x : M(t)x = m(t), x ≥ 0} is the unique
solution to

max

{
n∑

i=1

ln(x) : x ∈Mo(t)

}
,

which is only defined if M is bounded and Mo is non-empty.

Lemma 3.3 (Caron and Holder [6]). Assume that M(t) is bounded and
that the strict interior of M(t) is non-empty. Also assume that M(t) and m(t)
are continuous. Then, the analytic center of M(t) is continuous at t0 if the
Moore-Penrose pseudo inverse of M(t) is continuous at t0.

To use Lemma 3.3 we need the assumption that Po is non-empty. This as-
sumption is equivalent to assuming that the dual optimal set is bounded [20].
Such an assumption is natural in light of Hausdorff convergence because Haus-
dorff topologies naturally yield the notion of compactness, a property that we
are assuming about the dual faces. The proof of Theorem 3.4 requires a conver-
gent dual sequence, which is possible because the dual optimal sets are assumed
to be compact.

Theorem 3.4. The efficient frontier is continuous for arbitrarily large t, pro-
vided that Po(t) 6= ∅.

Proof. Let t0 be large enough so that for some δ > 0, we have for all t ≥ t0 − δ

that (
molp

B |
molp

N ) = (
molp

B (t)|
molp

N (t)) and that the ranks of all submatrices of A(t)
are constant. Let tk → t0, and assume that x0 is in E(t0). Then, x0 is in
the strict interior of a unique face of the efficient frontier, and hence, there is
a unique partition (Bi|N i) such that for some y0, w0, and s0

Ni , we have that
v(t0) = (x0

Bi , y0, w0, s0
Ni)T is a solution to Hi(t0)v = hi(t0), v>|0. Thus, v(t0) =

H+
i (t0)h(t0) + q0, where H+

i (t0) is the Moore-Penrose pseudo inverse of Hi(t0)
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and q0 ∈ Null(Hi(t0)). We define v(tk) = H+
i (tk)h(tk) + (I −H+

i (tk)Hi(tk))q0.
Then,

Hi(tk)v(tk) = Hi(tk)[H+
i (tk)h(tk) + (I −H+

i (tk)Hi(tk))q0]
= Hi(tk)H+

i (tk)h(tk) + Hi(tk)q0 −Hi(tk)H+
i (tk)Hi(tk)q0

= h(tk)−Hi(tk)q0 + Hi(tk)q0

= h(tk),

where the 3rd equality holds because h(tk) is in the column space of Hi(tk).
Since (I − H+

i (t0)Hi(t0))q0 is the projection of q0 onto the null space of
Hi(t0) and q0 ∈ Null(Hi(t0)), we see that (I − H+

i (t0)Hi(t0))q0 = q0. From
Lemmas 2.1 and 3.2 we have that H+

i (t) is continuous. So, as tk → t0,

v(tk) = H+
i (tk)h(tk) + (I −H+

i (tk)Hi(tk))q0 → H+
i (t0)h(t0) + q0 = v(t0)>|0.

Notice that v(tk)>|0 for large k. Setting xk
Ni = 0, we have that xk is in E(tk)

and that it converges to x0. Hence, we have established the first condition of
continuity.

Assume that xk in E(tk) converges to x0. Since each xk is in the strict
interior of a unique face of E(tk), we have that each k corresponds to a unique
optimal partition. Since there are a finite number of partitions, we assume
without loss of generality that (B1|N1), (B2|N2), . . . , (Bs|Ns) are the optimal
partitions observed an infinite number of times. For j = 1, 2, . . . , s, we let kj be
the subsequence of k such that (Bj |N j) is the optimal partition at time tkj . For
any kj , there exists a positive wkj and a dual feasible (ykj , skj ) such that v(tkj ) =
(xkj

Bj , y
kj , wkj , s

kj

Nj )T is a sufficiently positive solution to Hj(tkj )v = h(tkj ). The
proof would be complete if v(tkj ) converged, but we only have that the subvector
xk

Bj converges. We select the remaining components to guarantee convergence.
First, we assume without loss of generality that ‖wk‖ = 1, and hence, wk has a
convergent subsequence. For simplicity, we assume that wkj → wj . Second, we
select (ykj , skj ) to be the analytic center of

{(y, s) : AT
Bj (tkj )y = CT

Bj (tkj )wkj , AT
Nj (tkj )y + sNj = CT

Nj (tkj )wkj , sNj ≥ 0}.

So, (ykj , skj ) is the analytic center of the optimal face of the dual of LP (wkj , tkj ).
Notice that t0 is selected to be large enough to guarantee that for each j and
t ≥ t0 − δ that

rank
([

AT
Bj (t) 0

AT
Nj (t) I

])
= rank

([
AT

Bj (t0) 0
AT

Nj (t0) I

])
.

From Lemmas 3.3 and 3.2 we have that (ykj , skj ) converges to the analytic
center of

{(y, s) : AT
Bj (t0)y = CT

Bj (t0)w0, AT
Nj (t0)y + sNj = CT

Nj (t0)w0, sNj ≥ 0}.

We now have for any j that v(tkj ) = (xkj

Bj , w
kj , ykj , s

kj

Nj ) converges, say to v0.
Since Hj(t0)v0 = h(t0) and v0≥|0, we see that x0 ∈ E(t0).
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Theorem 3.4 adds to our geometric intuition by showing that the efficient
frontier is altered continuously as time grows without bound. From Theo-
rems 3.1 and 3.4 we now have for large t that 1) the number of faces in the
efficient frontier is constant, 2) the dimension of each face is constant, and 3)
the faces are altered in a continuous fashion. In fact, the proof of Theorem 3.4

shows that a continuous solution exists for every sub-partition of
molp

B .

Corollary 3.5. Let Bi be a sub-partition of
molp

B . Then, for large t there is a
continuous (x(t), w(t)) such that

xBi(t) > 0, xNi(t) = 0, and x(t) ∈ argmin{wT (t)C(t)x : A(t)x = b(t), x ≥ 0}.

Proof. The proof follows directly from the first part of the proof of Theorem 3.4.
Notice that this part of the proof does not require that Po 6= ∅.

We conclude this section by investigating the time at which the optimal par-
tition stabilizes. For any weighting vector w, let (Bw(t)|Nw(t)) be the optimal
partition of LP (w, t) and define

T (w) = inf{T : for all t > T, (Bw(t)|Nw(t)) = (Bw(T )|Nw(T ))}.

This function maps the weighting vector, w, to the time when the optimal par-
tition of LP (w, t) stabilizes. In [14], it is shown that for any fixed w, the optimal
partition of LP (w, t) stabilizes, so T (w) exists for all w > 0. We originally at-
tempted to prove Theorem 3.1 by finding an upper bound on T (w), but this
technique is flawed, as shown in the following example.

Example 3.6. Let

c(t) =
[
−1 0

0 −t

]
, A(t) =

[
2 3 1 0
3 2 0 1

]
, and b(t) =

(
6
6

)
.

Without loss of generality, we assume that ‖w‖ = 1. Then, LP (w, t) is

max{(1− w2)x1 + w2tx2 :
2x1 + 3x2 + x3 = 6, 3x1 + 2x2 + x4 = 6, xi ≥ 0, i = 1, 2, 3, 4},

where w2 varies in (0, 1). It is easy to see that for all t > 0, (
molp

B (t)|
molp

N (t)) =
({1, 2, 3, 4}|∅). However, the partition of LP (w, t) stabilizes when (1−w2) = w2t,
and hence, we have that T (w) = (1 − w2)/w2. Clearly this function is not
bounded over the interval (0, 1).

Example 3.6 helps us interpret Theorem 3.1. The fact that the multiple ob-
jective optimal partition stabilizes does not mean that there is a time after which
the optimal partitions of the single objective programs LP (w, t) are constant.
However, it does mean that there is a time after which the optimal partition of

LP (w, t) provides a sub-partition of
molp

B . Hence, there is a time, independent of
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w, after which we know that the solutions to LP (w, t) are efficient, even if the
optimal partition of this single objective program has not stabilized.

While T (w) is not in general bounded, it is quasi-convex over the weighting
regions that define an optimal partition. For each (Bi|N i), we let

V i = {w > 0 : (Bi|N i) is the asymptotic optimal partition of LP (w, t)}.

The following results shows that each V i is convex and that T (w) is quasi-
convex.

Theorem 3.7. For each i = 1, 2, . . . , 2n, we have that V i is convex. Moreover,
T is a quasi-convex function over V i.

Proof. Let {w1, w2, · · · , wp} ⊆ V i and let t ≥ max{T (wj) : j = 1, . . . , p}. Then,
for j = 1, . . . , p, there exist x, yj , and sj such that

ABi(t)xBi = b(t), xBi > 0
AT

Ni(t)yj + sj
Ni = CT

Ni(t)wj , sj
Ni > 0, and

AT
Bi(t)yj = CT

Bi(t)wj .

Let w =
∑

j αjw
j , where

∑
j αj = 1 and αj ≥ 0. Allowing y =

∑
j αjy

j and
s =

∑
j αjs

j , we see that

ABi(t)xBi = b(t), xBi > 0
AT

Ni(t)y + sNi = CT
Ni(t)w, sNi > 0, and

AT
Bi(t)y = CT

Bi(t)w.

Since these are the necessary and sufficient conditions for (Bi|N i) to be the
optimal partition of LP (w, t), we have that V i is convex. Moreover, the choice
of t was arbitrary past max{T (wj) : j = 1, . . . , p}. So, T (w) ≤ max{T (wj) :
j = 1, . . . , p}, and T is quasi-convex.

4 Economic Interpretations

In this section, we demonstrate the usefulness of Theorem 3.1 by showing how
it extends the economics insights of the Nonsubstitution Theorem. Suppose
that at any given time the economy transforms input commodities and labor
into output commodities. Suppose further that the entire economy has n com-
modities produced by m processes and r labor sources. Under some typical
economic assumptions, we determine the price of each commodity and a pro-
duction schedule that indicates how processes are to be used.

We assume that the available technology allows constant returns to scale,
meaning that changing the inputs to a process by some factor changes the
outputs by the same factor. This hypothesis is the subject of constant debate in
economics, but it is not unreasonable. After all, if we have one factory producing
a commodity, should we not expect to produce twice the amount if we purchase
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an identical factory? The assumption of constant returns to scale means that
for every time t, every process i, and every commodity j, there is a real number
ai

j(t) equal to the number of units of commodity j required to run process i

at unit intensity. Similarly, let bi
j(t) be the number of units of commodity j

yielded by a unit of process i, and lik(t) be the number of units of labor type
k required to use process i at unit intensity. We assume that labor is the only
nonproducible commodity and that no process operates free of labor. So, for
each process i there exists some labor type k such that lik(t) is positive. For
every time t, we construct the matrices A(t), B(t), and L(t) with entries ai

j(t),
bi
j(t), lik(t), with the rows being indexed by i and the columns by j or k. We

represent a choice of prices, wages, and process utilization by the vectors p, w,
x, respectively. With this notation, we see that at time t the total amount spent
on running the processes is xT (A(t) + L(t))p and that the aggregate earnings
from the output commodities is xT B(t)p.

In elementary economic models, the prevailing rate of interest on loaned
money is derived from the particular climate of risk in the economy, and in
turn, this interest rate induces a maximum rate of profit. We assume that if
some industry yields a higher rate of profit than the interest rate, then new
firms will enter the industry and increases the supply, which in turn lowers the
market price and the rate of profit. Thus, we assume that there is a maximum
rate of profit that any choice of prices, wages, and use of capital may yield.
For each time t, we let r(t) be the rate of maximum profit associated with the
economy at time t. A process that does not achieve the maximum rate of profit
incurs extra costs. Similarly, a process that yields a higher rate of profit than
r(t) provides extra profits. Our assumption of a maximum marginal profit does
not allow a process to yield extra profits. This means that for any prices and
wages we have that

[B(t)− (1 + r(t))A(t)]p ≤ L(t)w.

Moreover, it is natural to assume that only process achieving the maximum
rate will be selected, as underachieving process will not attract investment.
The algebraic representation of this assumption is

xT [B(t)− (1 + r(t))A(t)]p = xT L(t)w.

We require that each commodity be the sole product of at least one process,
but some processes are allowed to produce multiple commodities. Processes that
produce multiple commodities are not permitted to yield a savings in input
commodities over the most efficient processes that produces the commodities
individually. However, multiple output processes are allowed to make more
efficient use of labor. This assumption is a weakening of the standard economic
assumption called single production, which requires that all processes produce a
single commodity. We do not go as far as allowing joint production, which allows
more efficient use of input commodities and labor. We call our assumption joint
production without commodity savings. This assumption imposes a structure on
A and B. We scale input and output units so that quantities are in terms of a
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single output unit. This means that B is a 0, 1 matrix, with bi
j = 1 meaning

that process i makes commodity j. If we assumed single production, then each
row of B would contain a single 1. However, the assumption of joint production
without commodity savings allows the rows of B to contain several 1s, but only
if A has a special structure. Let the ith row of B have a 1 in column j′ and j′′

—i.e process i makes commodities j′ and j′′. Let i′1, i
′
2, . . . , i

′
u and i′′1 , i′′2 , . . . , i′′v

be the process that uniquely produce commodity j′ and j′′. The assumption
of joint production without commodity savings requires that for some i′p and

i′′q , the ith row of A is the sum of the i′p and i′′q rows of A. So, with respect
to commodity inputs process i replicates processes i′p and i′′q . The difference
between using process i and jointly using processes i′p and i′′q is that the labor
requirements for process i may differ from the labor requirements of jointly using
processes i′p and i′′q .

We have not yet mentioned anything about monetary units, and without one
prices are only relative. It is convenient to specify a standard of value, called a
numeraire in the language of economics. Specifically, we let the numeraire be
the collection of commodities that satisfy demand, and we assume that prices
are scaled so that the total value of the numeraire is one monetary unit. So,
allowing d(t) to be the positive vector of demands at time t, we require that
prices are scaled to satisfy d(t)T p = 1.

The economic model that we consider is

[B(t)− (1 + r(t))A(t)]p ≤ L(t)w
xT [B(t)− (1 + r(t))A(t)]p = xT L(t)w

xT B(t) > 0
d(t)T p = 1

x, p ≥ 0
w > 0.


(5)

The first two constraints make sure that no process earns extra profits and that
the processes that are used attain the maximum profit. The third constraint
guarantees that every commodity is produced, and the fourth equality defines
a monetary unit. A choice of prices, p, a wage structure, w, and a manner to
operate the processes, x, satisfying this system is an equilibrium point of the
economy. The goal of equilibrium models is to show that in an economy, prices,
wages, and industrial production are not random but are subject to governing
forces, guided, in Adam Smith’s phrase, by an invisible hand [22]. Our goal
is to show that the operating structure of an economy in equilibrium stabilizes
independent of how labor is paid.

Kurz and Salvadori [18] show that if we assume single production and a
single labor source (so L has a single column and w is a scalar instead of a
vector), then this economic model has an equilibrium solution if and only if the
following dual pair of linear programs is consistent,

min{L(t)T x : xT [B(t)− (1 + r(t))A(t)] ≥ d(t)T , x ≥ 0}, and (6)
max{d(t)T y : [B(t)− (1 + r(t))A(t)]y ≤ L(t), y ≥ 0}. (7)
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The first linear program has the simple interpretation of minimizing labor
while meeting demand. If x∗(t) and y∗(t) are optimal for (6) and (7), then
x(t) = x∗(t), p(t) = y∗(t)/(d(t)T y∗(t)), and w(t) = 1/(d(t)T y∗(t)) are equilib-
rium solutions of (5). The Nonsubstitution Theorem, stated in mathematical
programming terms, is below.

Theorem 4.1 (Nonsubstitution Theorem [21]). Assume that B(t), A(t),
L(t), and r(t) are constant functions and that L(t) has a single column. Then,
there is a basic optimal solution of (6) that is optimal independent of d(t).

In economics terms, this result states that there is a collection of processes that
yields an economy in equilibrium and that this collection does not depend on the
demands of the economy. We point out that the Nonsubstitution Theorem does
not say the collection of processes is unique, and it is easy to construct exam-
ples where there are several such collections (each corresponding to a different
optimal basis).

Hasfura-Buenaga, Holder, and Stuart [13] extend this result in several ways.
First, they show that solving the linear programs in (6) and (7) is the same as
finding an equilibrium solution of (5) under the assumption of joint production
without commodity savings. Second, they establish that as long as there is a
single labor source, the optimal partition of (6) stabilizes (assuming that the
Lagrange conditions defined by the functions A(t), B(t), L(t), r(t), and d(t)
satisfy Assumption 1). This economic extension means that the entire collection
of processes that can be used in an economy in equilibrium becomes constant.
The result is true even when the technology of the processes, the demand for the
commodities, and the interest rate are allowed to dynamically vary with time.

We keep the assumption of joint production without commodity savings but
examine the more realistic situation where labor is heterogeneous —i.e. where
there are r labor sources. The immediate extension to multiple labor sources is
that the economy in (5) has an equilibrium solution with wage structure w if
and only if the following linear programs are consistent.

min{wT L(t)T x : xT [B(t)− (1 + r(t))A(t)] ≥ d(t)T , x ≥ 0}, and (8)
max{d(t)T y : [B(t)− (1 + r(t))A(t)]y ≤ L(t)w, y ≥ 0}. (9)

Considering all positive wage vectors w, the solutions to (8) form the efficient
frontier of the multiple objective linear program

min{L(t)T x : xT [B(t)− (1 + r(t))A(t)] ≥ d(t)T , x ≥ 0}. (10)

An immediate corollary to Theorem 3.1 is that the multiple objective optimal
partition stabilizes, and hence, for any wage structure we know that the entire
collection of processes that can be used to achieve an equilibrium stabilizes.
This is formalized in the following theorem.

Theorem 4.2. Let A(t), B(t), L(t), r(t), and d(t) be such that Theorem 3.1 ap-
plies to the the multiple objective program in (10). Then, under the assumption
of joint production without commodity savings, there is a time T , independent
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of the wage structure, for which the collection of processes that are capable of
achieving economic equilibrium is constant for all t ≥ T .

The important aspect of Theorem 4.2 is that T is independent of the wage
structure w. So, in an economy where technology, demand, and the interest
rate are dynamic, we have that there is a time after which the collection of
optimal processes is constant no matter how labor is paid. Hence, we have the
surprising economic result that the wage structure does not effect the long term
behavior of the model.

5 Conclusion

There are three primary contributions in this work. The first of these is stated in
Theorem 2.3, where we show that the sign patterns of a dynamic linear system
stabilize. This result has a different flavor than the previous combinatorial
work on sign-solvable systems. The second main result shows that the MOLP
optimal partition stabilizes. This is not surprising because the analogous single
objective result was already known. However, the proof of our extension hinges
on the sign pattern stabilization of a dynamic linear system, and a straight
forward extension of the single objective case showing that T (w) is bounded is
not possible. Finally, we used this result to extend a dynamic version of the
Nonsubstitution Theorem in a way that allows multiple labor sources.
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