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Abstract

The q-round Rényi-Ulam pathological liar game with k lies on the set [n] :=
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hypercube with certain relaxed Hamming balls. Defining F ∗
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n such that Paul can win the q-round pathological liar game with k lies and initial
set [n], we find F ∗

1 (q) and F ∗
2 (q) exactly. For fixed k we prove that F ∗

k (q) is within
an absolute constant (depending only on k) of the sphere bound, 2q/

( q
≤k

)
; this is

already known to hold for the original Rényi-Ulam liar game due to a result of J.
Spencer.
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1 Introduction

In this paper we consider the following 2-player perfect information zero-sum
game, which we call the Rényi-Ulam pathological liar game, first defined in
[4]. The players Paul and Carole play a q-round game on a set of n elements,
[n] := {1, . . . , n}. Each round, Paul splits the set of elements by choosing a
question set A ⊆ [n]; Carole then completes the round by choosing to assign
one lie either to each of the elements of A, or to each of the elements of [n]\A.
A given element is removed from play, or disqualified, if it accumulates k + 1
lies, where k is a predetermined nonnegative constant; in choosing the question
set A, we may consider the game to be restricted to the surviving elements,
which have ≤ k lies. The game starts with each element having no associated
lies. If after q rounds at least one element survives, Paul wins; otherwise Carole
wins. Thus Paul plays a strategy to preserve at least one element for q rounds,
and Carole answers adversely. We think of a capricious or contrary Carole
lying “pathologically” in order to disqualify elements as quickly as possible.
Our main result, stated as Theorem 3 in Section 2 and proved in Section 4,
is a tight asymptotic characterization of the minimum n for which Paul has a
winning strategy for the q-round game with a fixed number, k, of lies.

This game arises as the dual to the Rényi-Ulam liar game, originating in [9]
and [12], which we refer to as the original liar game. The simplest version of
the original game is the “20 questions” game in which Paul may ask 20 Yes-No
questions in order to identify a distinguished element x from a set [n], where
Carole answers “Yes” or “No” without lying. Here, Paul has a winning strategy
iff log2 n ≤ 20. In the general version, the number of rounds q and number of
elements n are predetermined, as is the number, k, of times Carole is allowed
to lie. We take the equivalent viewpoint that the distinguished element is not
chosen ahead of time by Carole, but rather that she must answer consistently
with there being at least one candidate for the distinguished element at each
round. Thus a candidate element y ∈ [n] cannot be the distinguished element
if it would cause Carole to have lied about it k + 1 times. Paul’s strategy in
the original game, therefore, is to win by forcing Carole to associate k + 1 lies
with all but one element within q rounds, and Carole’s strategy is to answer
questions adversely so that at least two candidate elements remain after q
rounds. Recently, Pelc thoroughly surveyed what is known about the original
liar game and many of its variants [7].

The duality between the pathological liar game and the original liar game
arises from the choice of Paul’s condition to win. In the pathological liar game
at least one element must survive for Paul to win, but in the original game
at most one element may survive for him to win. The remaining mechanics
of the two games are the same, in that each round Paul chooses a question
subset A ⊆ [n] and Carole decides to assign lies either to A or to [n] \ A.
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In Section 2, we describe how each stage of the pathological game can be
encoded in a (k +1)-tuple state vector which keeps track of the number of lies
associated with each element. In Section 3 we discuss the Berlekamp weight
function on a state vector and how a winning strategy by Paul corresponds to
maximizing (minimizing) the weight of the state vector after q rounds in the
pathological (original) liar game. In Section 4, we give the value of n, up to
a constant independent of q, for which Paul can win the q-round game with
a fixed number, k, of lies. In Sections 5 and 6, we give the exact minimum n
for which Paul can win the q-round 1-lie and 2-lie games, respectively. Finally,
in Section 7, we prove the equivalence of the existence of a winning strategy
for Paul in the pathological (original) liar game to the existence of a covering
(packing) of the hypercube with certain relaxed Hamming spheres, and discuss
the connection to covering codes and error-correcting codes.

2 The vector game format

The mechanics of both the pathological liar game and the original liar game
are encapsulated in the following vector framework due to Berlekamp [1].
Given that the game parameters are n elements, q rounds, and k lies, the
initial state of the game is the (k + 1)-vector (n, 0, . . . , 0). An intermediate
stage of the game after some number of rounds is encoded by the state vector
�x = (x0, x1, . . . , xk), where xi denotes the number of elements of [n] associated
with i lies (disqualified elements, with k + 1 lies, are not tracked by the state
vector). The state vector completely encodes a stage of the game because
an element of [n] is distinguished only by the number of lies associated with
it. Paul chooses a question set A ⊆ [n] corresponding to an integer question
vector �a = (a0, a1, . . . , ak) which must be legal, that is, 0 ≤ ai ≤ xi for each
i ∈ {0, . . . , k}. Carole answers either “Yes” or “No.” By answering “Yes,”
Carole assigns an additional lie to each element in [n] \ A, so that the next
state vector Y (�x,�a) is obtained from �x by moving elements corresponding to
[n]\A to the right one position. Analogously, by answering “No,” Carole causes
the next state vector N(�x,�a) to arise from moving elements corresponding to
A to the right one position. Therefore the subsequent state chosen by Carole
is either

Y (�x,�a) := ( a0, a1 + x0 − a0, . . . , ak + xk−1 − ak−1) or

N(�x,�a) := ( x0 − a0, x1 − a1 + a0, . . . , xk − ak + ak−1).
(1)

Elements which become associated with k +1 lies are considered to be shifted
out of the state vector to the right, and so we may consider the question
set A and the set of elements [n] to be restricted at any given stage to the
surviving elements. In the pathological liar game, Paul wins iff after q rounds
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∑k
i=0 xi ≥ 1 (at least one element survives). In the original liar game, Paul

wins iff after q rounds
∑k

i=0 xi ≤ 1.

More generally, we may consider a game starting with an arbitrary nonnegative
state vector �x = (x0, . . . , xk). We will use the following shorthand.

Definition 1 (i) The (�x, q, k)∗-game is the q-round pathological liar game
with k lies and initial state �x.
(ii) The (�x, q, k)-game is the q-round original liar game with k lies and initial
state �x.
In either game, the initial state �x = (x0, . . . , xk) encodes for 0 ≤ i ≤ k the
number xi of elements which are initially associated with i lies.

The k is redundant when �x is specified. Both games are monotonic in the
following sense. Suppose �x = (x0, . . . , xk), �y = (y0, . . . , yk), and 0 ≤ yi ≤
xi for all 0 ≤ i ≤ k; i.e., �x covers �y. If Paul has a strategy to win the
(�y, q, k)∗-game (the (�x, q, k)-game), then he has a strategy to win the (�x, q, k)∗-
game (the (�y, q, k)-game). The new strategy is obtained from the winning
strategy in the pathological game by arbitrarily choosing whether the extra
elements corresponding to xi − yi are in A or [n] \ A, and in the original
game by restricting all questions A by intersection with the set of all elements
represented by y0, . . . , yk. In fact, the same monotonicity holds if �x majorizes
�y; i.e., if for all 0 ≤ j ≤ k,

∑j
i=0 yi ≤ ∑j

i=0 xi. Empirically, an element lasts
longer in the game if it starts with fewer associated lies. Monotonicity under
majorization is an immediate result of Theorem 19, as we will describe in
Section 7. We may now define F ∗

k (q) to be the minimum number n such that
Paul has a winning strategy for the ((n, 0, . . . , 0), q, k)∗-game. The previously
defined maximum n such that Paul can win the ((n, 0, . . . , 0), q, k)-game is
Fk(q). Pelc determined F1(q) exactly in [6], Guzicki determined F2(q) in [5],
Deppe determined F3(q) in [3], and Spencer determined Fk(q) for fixed k to
within a constant independent of q. Of particular importance to this paper is
the following result of Spencer, given implicitly in Section 3 of [10].

Theorem 2 (Spencer) For any fixed nonnegative integer k there exist con-
stants qk, Ck such that for all q ≥ qk,

2q(
q
≤k

) − Ck ≤ Fk(q) ≤ 2q(
q
≤k

) .

Here,
(

q
≤k

)
:=

∑k
i=0

(
q
i

)
is the size of a radius k Hamming ball in the q-

dimensional discrete hypercube Qq (Section 7 explores this further). The main
result of this paper, which we prove in Section 4, is the following dual of The-
orem 2.

Theorem 3 For any fixed nonnegative integer k there exist constants q∗k, C
∗
k
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such that for all q ≥ q∗k,

2q(
q
≤k

) ≤ F ∗
k (q) ≤ 2q(

q
≤k

) + C∗
k .

3 The Berlekamp weight function

For a nonnegative integer q and a state vector �x = (x0, . . . , xk), the q-weight
of �x is defined to be

wtq(�x) :=
k∑

i=0

xi

(
q

≤ k − i

)
. (2)

This is the Berlekamp weight function introduced in [1]. The number of ways
to select positions for at most k − i lies in a sequence of Y/N responses by

Carole of length q is
(

q
≤k−i

)
, which motivates the weight of an element counted

by xi. We will abuse notation and denote wtq((x0, . . . , xk)) by wtq(x0, . . . , xk).
We will see that Carole can always win the (�x, q, k)∗-game when wtq(�x) < 2q.
Intuitively, elements with fewer associated lies are worth more toward a win by
Paul. To borrow an analogy from [10], we can think of the xi’s as representing
coins of various denominations, where we call the coins with smallest weight,
counted by xk, pennies. We now present a well-known conservation lemma
concerning the weight function, previously appearing in [1].

Lemma 4 (Conservation of weight) Let q ≥ 1, let �x be a state vector, and
let �a be a legal question for �x. Then

wtq(�x) = wtq−1(Y (�x,�a)) + wtq−1(N(�x,�a)).

PROOF. Using (1) and (2), we compute

wtq−1(Y (�x,�a)) + wtq−1(N(�x,�a)) = x0

(
q − 1

≤ k

)
+

k∑
i=1

(xi + xi−1)

(
q − 1

≤ k − i

)

=
k∑

i=0

xi

((
q − 1

≤ k − i

)
+

(
q − 1

≤ k − i − 1

))
= wtq(�x),

by repeated use of the identity
(

n
k

)
=
(

n−1
k

)
+
(

n−1
k−1

)
. �

The lemma illustrates that Carole’s choice in answering “Yes” or “No” to a
question by Paul induces a choice of weight of the resulting state vector. In
particular, Carole might always choose the resulting state with lower weight,
giving a constraint on Paul’s ability to win the (�x, q, k)∗-game which holds for
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any k. We call the following lemma the sphere bound because of a connection
to the sphere bound of coding theory to be made clear after Theorem 19.

Lemma 5 (Sphere bound) Let q, k ≥ 0 and let �x = (x0, . . . , xk) be a non-
negative vector. If wtq(�x) < 2q, then Carole can win the q-round pathological

liar game with k lies and initial state �x. Consequently, F ∗
k (q) ≥ 2q/

(
q
≤k

)
.

PROOF. Regardless of Paul’s initial question, by Lemma 4 Carole may re-
spond so that the resulting state has weight at most wtq(�x)/2 < 2q−1. By
induction, Carole may respond to Paul’s remaining q − 1 questions to ensure
the 0-weight of the final state is < 1. Since the state vector must always be
integer, Carole can always force the vector (0, . . . , 0) in q rounds. �

In the original game, the analog to the above lemma is that Carole has a
strategy to win the (�x, q, k)-game when wtq(�x) > 2q. This is proved in [10] by
showing that if Carole answers randomly at each stage, the probability that
the final weight is > 1 is nonzero, and thus Carole has a winning strategy since
it is a perfect information game. The proof of Lemma 5 could be rewritten
from this randomized perspective.

Lemma 5 shows that a necessary condition for Paul to win the q-round patho-
logical liar game with starting state �x is that wtq(�x) ≥ 2q, but in general this is
not sufficient. Paul is not always able to choose a question which balances the
weights of the possible next states. Given some intermediate state �x with j +1
rounds remaining and a question �a, the resulting weight imbalance between
possible next states is defined as (cf. Section 2 of [10])

∆j(�x,�a) := wtj(Y (�x,�a)) − wtj(N(�x,�a)). (3)

The following is a counterexample to the converse of Lemma 5.

Example 6 Let �x = (3, 1) be the initial state of a ((3, 1), 4, 1)∗-game. Note
that wt4((3, 1)) = 3 · 5 + 1 · 1 = 16, and so Paul could possibly have a winning
strategy. But any first-round question �a by Paul will satisfy |∆3(�x,�a)| ≥ 2.
One question minimizing |∆3(�x,�a)| is �a = (1, 1), for which Y (�x,�a) = (1, 3),
N(�x,�a) = (2, 1), and ∆3(�x,�a) = 7 − 9 = −2. In any event, Carole responds
so that the next state has 3-weight at most 7, guaranteeing herself to win the
game.

Paul’s goal in the pathological liar game, in terms of the weight function, cor-
responds to maximizing the 0-weight of the game state after q rounds. The
capability to identify situations in which he can choose “perfectly balancing”
questions at every stage so that ∆j(�x,�a) = 0 would provide a partial con-
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verse to Lemma 5; however, this is sometimes impossible (cf. Example 6), and
difficult to know if it is possible when initially the q-weight is close to 2q.

4 Asymptotics of the k-lie game

Since the full converse to Lemma 5 is impossible, we instead wish to identify
the states �x having wtq(�x) close to 2q for which Paul can win the (�x, q, k)∗-
game. As Spencer proved in [10], there is a large category of states �x =
(x0, . . . , xk) such that if wtq(�x) = 2q and xk is large enough, then Paul can
find q questions which make the weight imbalance vanish at each stage. Intu-
itively two processes are at work. If there are enough “pennies,” counted by
xk, then �a can be chosen so that the weights of the two possible next states
Y(�x,�a) and N(�x,�a) are exactly equal. The number of pennies in the next state
is maintained sufficiently by drawing from xk−1 and xk. To employ Spencer’s
result, it will suffice to begin with �x having q-weight slightly more than 2q

and reduce in k rounds to a state �y with (q−k)-weight exactly 2q−k for which
Spencer’s theorem holds. Here now is Spencer’s result, essentially appearing
as the “Main Theorem” in Section 2 of [10], in a form convenient for our
purposes.

Theorem 7 (Spencer) Let k be fixed. There are constants c, q0 (dependent
on k) so that the following holds for all q ≥ q0: if wtq(x0, . . . , xk) = 2q and
xk > cqk, then Paul has a strategy to reach a state �z with wt0(�z) = 1 in exactly
q rounds such that every intermediate state (u0, . . . , uk) after playing j rounds
satisfies wtq−j(u0, . . . , uk) = 2q−j.

Theorem 8 Let k be fixed. There are constants c1, q
∗
k (dependent on k) so

that the following holds for all q ≥ q∗k: if wtq(x0, . . . , xk) ≥ 2q + c1

(
q
k

)
, then

Paul can win the q-round pathological liar game with k lies and initial state
�x = (x0, . . . , xk).

PROOF. The proof proceeds in three main stages. First, the first k rounds
of the game are played with a “floor-ceiling” question strategy which ensures
that the resulting state �y′ satisfies wtq−k(�y′) ≥ 2q−k. Second, coins are removed

from �y′ to obtain �y with (q − k)-weight exactly 2q−k. Finally, Theorem 7 is
applied to �y to reach a state �z with wt0(�z) = 1 after an additional q−k rounds.

Paul plays the first k rounds of the game, reaching the state �y′ = (y′
0, . . . , y

′
k),

according to the following strategy which is oblivious to Carole’s responses.
If �u(j) = (u0(j), . . . , uk(j)) is the state when j rounds remain, then for q ≥
j > q − k, Paul’s next question �a(j) = (a0(j), . . . , ak(j)) is defined by letting
ai(j) = �ui(j)/2� or �ui(j)/2	, so that the least i for which ui(j) is odd results
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in choosing ai(j) = �ui(j)/2	, and the overall choice of floors and ceilings for
the odd ui(j)’s alternates.

By combining (1) and (2) with the definition of ∆j in (3), the weight imbalance
of the two possible next states when j + 1 rounds remain is at most

∆j(�u(j + 1),�a(j + 1)) =
k∑

i=0

(2ai(j + 1) − ui(j + 1))

(
j

k − i

)
≤
(

j

k

)
, (4)

where we know the value is nonnegative by definition of �a(j + 1). By Lemma
4 and (4), we have for each intermediate state �u(j + 1) (with indexes j + 1
suppressed for clarity)

wtj(Y(�u,�a)) ≥ wtj(N(�u,�a)) ≥ wtj+1(�u) −
(

j
k

)
2

.

Therefore with an initial state of weight

wtq(�x) ≥ 2q + c1

(
q

k

)
≥ 2q +

q−k∑
j=q−1

2q−1−j

(
j

k

)
,

for some constant c1 and q ≥ q1 large enough, Paul can guarantee a state �y′

with wtq−k(�y′) ≥ 2q−k after k rounds.

The number of pennies y′
k after k rounds is large, by the following argument.

Since wtq(�x) ≥ 2q and the largest weight of an element is
(

q
≤k

)
≤ qk, then∑k

i=0 xi ≥ 2q/qk. Thus there exists a coordinate i0 for which xi0 ≥ 2q/
(
(k +

1)qk
)
. By definition of the first k questions,

y′
k = uk(q − k) ≥ �2−1uk(q − k + 1)� ≥ · · · ≥ �2−i0uk(q − k + i0)�
≥ �2−i0−1uk−1(q − k + i0 + 1)� ≥ · · · ≥ �2−kui0(q)� = xi0

≥
⌊
2−k · 2q

(k + 1)qk

⌋
≥ c2q

k.

The first line is true because uk(j) is at least �uk(j + 1)/2�, the second line is
true because ui(j) is at least �ui−1(j + 1)/2�, and the last inequality is true
for any choice of c2 and q ≥ q2 provided q2 is taken to be large enough. We
note that the choice of c1 does not affect the choice of c2 in this analysis.

Now obtain the state �y = (y0, . . . , yk) with (q − k)-weight 2q−k from �y′ by
greedily removing coins of decreasing weight, so that either only 2q−k pennies
are left, or fewer than

(
q−k
≤k

)
pennies were removed. In the first case Paul

trivially can make the game last another q − k rounds; in the second case at
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least

yk ≥ c2q
k −

(
q − k

≤ k

)
≥ c3(q − k)k

pennies remain. The constant c3 can be chosen to be at least c2−1, for instance,
provided that q ≥ q3 for q3 large enough. Choose c3 and q∗k ≥ max{q1, q2, q3}
large enough so that c3 and q∗k − k satisfy the requirements of Theorem 7 for
the (�y, q − k, k)-game. Therefore Paul can win the (�x, q, k)∗-game. �

PROOF. (Proof of Theorem 3.) From Lemma 5, F ∗
q (k) ≥ 2q/

(
q
≤k

)
. Now

suppose q ≥ q∗k and let n = �(2q + c1

(
q
k

)
)/
(

q
≤k

)
	, where c1 and q∗k are as

in Theorem 8. Then wtq(n, 0, . . . , 0) ≥ 2q + c1

(
q
k

)
and F ∗

k (q) ≤ n ≤ �(2q +

c1

(
q
k

)
)/
(

q
≤k

)
	 ≤ 2q/

(
q
≤k

)
+ C∗

k for q ≥ q∗k and some constant C∗
k . �

We remark that the excess weight above 2q in Theorem 8 is needed so that
Paul can guarantee a (q − k)-weight of 2q−k after the first k rounds and go
on to win when q is large enough. The exact excess required is difficult to
compute for general k. However, in the next two sections we will compute the
exact amount required for k = 1 and 2 for any q, not just when q is large
enough.

5 Exact result for the 1-lie game

We now consider the q-round pathological liar game with 1 lie and initial state
(n, 0). For this section, define the character ch(x0, x1) of a state (x0, x1) to be
the maximum q such that wtq(x0, x1) ≥ 2q. Furthermore, denote by (y0, y1)
the game state immediately following the state (x0, x1) and Paul’s question
(a0, a1), so that (y0, y1) = (a0, a1 +x0−a0) or (x0−a0, a0 +x1−a1), depending
on Carole’s response of “Y” or “N,” respectively. The next theorem completely
characterizes the values of n for which Paul can win the ((n, 0), q, 1)∗-game.

Theorem 9 Let q ≥ 0. Paul has a winning strategy for the q-round patholog-
ical liar game with 1 lie and initial state (n, 0) iff

2q ≤
⎧⎪⎨
⎪⎩

n(q + 1) if n is even,

n(q + 1) − (q − 1) if n is odd.
(5)

The difference in the even and odd cases reflects the fact that when n is odd,
Paul’s first question is forced to be inefficient, as there is no way to balance
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a0 with x0 − a0. By considering the possibilities for �2q/(q + 1)	 mod 2 and
2q mod q + 1, it is not difficult to obtain the following.

Corollary 10 Let SB∗
1 := �2q/(q+1)	 be the sphere bound for the ((n, 0), q, 1)∗-

game. Then

F ∗
1 (q) =

⎧⎪⎨
⎪⎩

SB∗
1 , if SB∗

1 is odd and (2q mod q + 1) ∈ {1, 2},
2�SB∗

1/2	, otherwise.

The proof of Theorem 9 follows in one direction by Lemma 11, and the other
direction will be proved after Lemmas 12 and 13. This proof technique is
based on that of Pelc’s theorem in Section 2 of [6], which states that the
characterization for Paul having a winning strategy for the ((n, 0), q, 1)-game
is obtained from (5) by reversing the inequality.

Lemma 11 Let q ≥ 0. Carole can win the q-round pathological liar game with
1 lie and initial state (n, 0) provided

2q >

⎧⎪⎨
⎪⎩

n(q + 1) if n is even,

n(q + 1) − (q − 1) if n is odd.

PROOF. The case of n even follows directly from Lemma 5, since wtq(n, 0) =
n(q+1). If n is odd, observe that whatever Paul’s first question is, Carole may
respond so that in the resulting state (y0, y1), y0 < y1, and so

wtq−1(y0, y1) ≤ n − 1

2
q +

n + 1

2
=

n(q + 1) − (q − 1)

2
< 2q−1.

Now apply Lemma 5 to show that Carole can win the ((y0, y1), q − 1, 1)∗-
game. �

The next lemma handles the late rounds of the game for which there is at
most 1 element with no accumulated lies.

Lemma 12 Paul can win the q-round pathological liar game with 1 lie and
initial state (x0, x1) provided 0 ≤ x0 ≤ 1 and q ≤ ch(x0, x1).

PROOF. Without loss of generality, assume q = ch(x0, x1). We prove the
lemma by induction on q, by exhibiting a question Paul can ask that will not
reduce the character by more than one. Since q = ch(x0, x1), wtq(x0, x1) =
(q + 1)x0 + x1 ≥ 2q.
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If x0 = 0, then x1 = wtq(x0, x1) ≥ 2q; if Paul chooses the question �a =
(0, �x1

2
�), then y1 = �x1

2
� or �x1

2
	. In either case, wtq−1(y0, y1) ≥ �2q

2
� ≥ 2q−1,

and so ch(y0, y1) ≥ q − 1.

If x0 = 1, set a0 = 1 and a1 = �x1+1−q
2

�. Observe that a1 ≥ 0, since otherwise
q > x1+1 and 2q > q+1+x1 = wtq(1, x1) ≥ 2q, which is impossible. Paul then
asks �a = (1, a1), and Carole can choose between (1, a1) or (0, x1 +1−a1). The
weight imbalance is |∆q−1(�x,�a)| = |(q+a1)−(x1+1−a1)| = |q−x1−1+2a1| ≤
1. By Lemma 4 and because 2q is even, we have wtq−1(y0, y1) ≥ 2q−1. Hence
ch(y0, y1) ≥ q − 1. �

We now show that certain state vectors (x0, x1) in the game allow Paul a
question which guarantees that the next state has three narrow constraints,
including a character reduced by at most one.

Lemma 13 Let (x0, x1) be a state with ch(x0, x1) ≥ 1 and x1 ≥ x0 − 1 ≥ 1.
Then there exists a question (a0, a1) such that regardless of Carole’s answer
the next state (y0, y1) will satisfy:

�x0

2
� ≤ y0 ≤ �x0

2
	 (6)

y1 ≥ y0 − 1 (7)

ch(y0, y1) ≥ ch(x0, x1) − 1. (8)

PROOF. Without loss of generality, assume q = ch(x0, x1). The proof de-
pends on whether x0 is even or odd. Case 1 (x0 is even). Paul chooses the legal
question �a = (x0

2
, �x1

2
�) so that (y0, y1) = (x0

2
, x0

2
+ �x1

2
�) or (x0

2
, x0

2
+ �x1

2
	). Re-

gardless of Carole’s response, y0 = x0

2
, satisfying condition (6); also, y1 ≥

x0

2
+ �x1

2
� ≥ y0 − 1, satisfying condition (7). Finally, since 2q is even and

|∆q−1(�x,�a)| = �x1

2
	−�x1

2
� ≤ 1, we have wtq−1(y0, y1) ≥ 2q−1, and so condition

(8) is satisfied.

Case 2 (x0 is odd). Paul chooses �a = (x0+1
2

, �x1−q+1
2

	), so that (y0, y1) =
(x0+1

2
, x0−1

2
+�x1−q+1

2
	) or (x0−1

2
, x0+1

2
+x1−�x1−q+1

2
	). To show the question is

legal, we require a1 = �x1−q+1
2

	 ≥ 0. Otherwise, x1−q+1 < −1, or x1 ≤ q−3,
and so x0 ≤ q − 2. With this assumption on x0 and x1, 2q ≤ wtq(x0, x1) ≤
(q + 1)(q − 2) + q − 3 = q2 − 5, which is impossible for q ≥ 0, and so the
question is legal. Continuing, clearly condition (6) holds. If Carole answers
“Y,” y1 − y0 + 1 = �x1−q+1

2
	, which is at least 0. If Carole answers “N,”

y1 − y0 + 1 = x1 − �x1−q+1
2

	 + 2, which is clearly nonnegative. Thus condition
(7) holds. Again, 2q is even, and |∆q−1(�x,�a)| = |2�x1−q+1

2
	− (x1 − q + 1)| ≤ 1;

therefore wtq−1(y0, y1) ≥ 2q−1 and condition (8) holds. �
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We now finish the proof of the theorem by handling the first round, applying
Lemma 13 until x0 ≤ 1, and by applying Lemma 12 until ch(x0, x1) = 0.

PROOF. (Proof of Theorem 9.) By Lemma 11, we may assume that n sat-
isfies (5). For even n = 2m, Paul chooses �a = (m, 0) for his first question so
that the next state is forced to be (y0, y1) = (m, m). By Lemma 4 and the
hypothesis, wtq−1(m, m) ≥ 2q−1, and so ch(m, m) ≥ q − 1. If m = 1, we apply
Lemma 12 to have Paul ask q − 1 more questions. Otherwise, m > 1, and
(m, m) satisfies the requirements of Lemma 13. We apply it repeatedly until
we reach a state of the form (1, u). The lemma assures us that this will happen
in t steps, where �log2(m)� ≤ t ≤ �log2(m)	. At the conclusion, we will have
ch(1, u) ≥ q− 1− t. Then, applying Lemma 12, Paul can ask at least q− 1− t
further questions. Therefore, altogether he has asked 1 + t + (q − 1 − t) = q
questions.

For odd n = 2m + 1, Paul chooses �a = (m + 1, 0) for his first question. Carole
can then choose (y0, y1) = (m + 1, m) or (m, m + 1) as the next state. We

see that wtq−1(y0, y1) ≥ mq + m + 1 = 2mq+2m+2
2

= n(q+1)−(q−1)
2

≥ 2q−1, by
hypothesis. Hence regardless of Carole’s response, ch(y0, y1) ≥ q − 1. The rest
of the proof mimics the case for even n. �

6 Exact result for the 2-lie game

We now consider the q-round pathological liar game with 2 lies and initial state
(n, 0, 0). The next theorem completely characterizes the values of n for which
Paul can win the ((n, 0, 0), q, 2)∗-game. Its proof follows some definitions and
two lemmas focusing on the first two rounds and then the rest of the game.

Theorem 14 Let q ≥ 0. Paul has a winning strategy for the q-round patho-
logical liar game with 2 lies and initial state (n, 0, 0) iff

2q ≤ n

(
q

≤ 2

)
− A

(
q − 1

2

)
− B

(
q − 2

1

)
, (9)

where A = n mod 2 and

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if n ≡ 0 mod 4,

2 · (q mod 2), if n ≡ 1 mod 4,

(1 − q3) mod 4, if n ≡ 2 mod 4,

(1 + q3) mod 4, if n ≡ 3 mod 4.
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We say that Paul survives the first two rounds of the ((n, 0, 0), q, k)∗-game
provided he has a strategy which guarantees that the (q − 2)-weight of the
state after two rounds is at least 2q−2 regardless of Carole’s responses. Let �a
be Paul’s first question, and if Carole’s response is “Y” (“N”), then let Paul’s

second question be �bY ( �bN). Then Paul can survive the first two rounds iff

2q−2 ≤ max
�a, �bY, �bN

min
{
wtq−2(Y(Y((n, 0, 0),�a), �bY), wtq−2(N(Y((n, 0, 0),�a), �bY),

wtq−2(Y(N((n, 0, 0),�a), �bN), wtq−2(N(N((n, 0, 0),�a), �bN)
}
,

where �a, �bY, and �bN must be legal questions when they are asked. Now define
weight imbalances

∆q−1 := ∆q−1((n, 0, 0),�a),

∆Y
q−2 := ∆q−2(Y((n, 0, 0),�a), �bY), and

∆N
q−2 := ∆q−2(N((n, 0, 0),�a), �bN);

where without loss of generality, we choose the questions �a, �bY, and �bN so
that ∆q−1, ∆Y

q−2, and ∆N
q−2 are nonnegative (for instance, by replacing �a with

�x − �a). By Lemma 4 and (3), Paul can survive the first two rounds of the
((n, 0, 0), q, 2)∗-game iff

2q ≤ wtq(n, 0, 0) + ∆, where

∆ := max
�a, �bY, �bN

min
{
∆q−1 + 2∆Y

q−2, ∆q−1 − 2∆Y
q−2,

−∆q−1 + 2∆N
q−2,−∆q−1 − 2∆N

q−2

}
. (10)

We have reduced the problem to finding the value of ∆ because, given a

fixed first question �a, we may refer to Section 5 of [5] to compute �bY and �bN

minimizing ∆Y
q−2 and ∆N

q−2, respectively.

Lemma 15 Let q ≥ 19, n ≥ 2q/
(

q
≤2

)
, and let ∆ be defined as in (10) for the

q-round pathological liar game with 2 lies and initial state (n, 0, 0). Then

∆ = −A

(
q − 1

2

)
− B

(
q − 2

1

)
,

where A and B are defined as in Theorem 14. Furthermore, Paul’s strategy
achieving ∆ guarantees at least (q − 2)2 +

(
q−2
≤2

)
pennies after the first two

rounds.

PROOF. Write n = 4p + r and q − 2 = 4l + s, where 0 ≤ r, s < 4. We
consider cases of the initial state (n, 0, 0) based on the values of r and s. In

13



each case, there is only one choice of �a achieving ∆ because any other choice
of �a results in −∆q−1 − 2∆N

q−2 < ∆ (recall that, without loss of generality, �a,
�bY and �bN are chosen to make ∆q−1, ∆Y

q−2 and ∆N
q−2 nonnegative). We give

Paul’s strategy for achieving ∆ by listing the questions �a, �bY and �bN in each

case explicitly. Guzicki proved that the choices below of �bY and �bN minimize
∆Y

q−2 and ∆N
q−2; we omit the details and refer the interested reader in Section

5 of [5]. The calculations for the minimum q for which all questions are legal
and for which the resulting states have at least (q − 2)2 pennies are tedious
but straightforward, and thus omitted.

Case n = 4p. Set �a = (2p, 0, 0) and �bY = �bN = (p, p, 0) to achieve ∆ = 0
with unique possible resulting state (p, 2p, p). The resulting state has p ≥
(q − 2)2 +

(
q−2
≤2

)
pennies when q ≥ 19.

Case n = 4p + 1. Set �a = (2p + 1, 0, 0) and �bY = (p + 1, p, 0) in each subcase,

so that ∆q−1 =
(

q−1
2

)
and two possible resulting states are (p + 1, 2p, p) and

(p, 2p+1, p). Subcase 2 � |(q−2). Set �bN = (p, p+1, 0) to achieve ∆ = −
(

q−1
2

)
−

2
(

q−2
1

)
with additional possible resulting state (p, 2p, p+1). Subcase 2|(q− 2).

Set �bN = (p+1, p− q−2
2

+1, 0) to achieve ∆ = −
(

q−1
2

)
with additional possible

resulting states (p +1, 2p− q−2
2

, p+ q−2
2

) and (p− 1, 2p+ q−2
2

+ 1, p− q−2
2

+ 1).
All questions are legal when q ≥ 9, and all resulting states have at least
(q − 2)2 +

(
q−2
≤2

)
pennies when q ≥ 19.

Case n = 4p+2. Set �a = (2p+1, 0, 0) in each subcase. Subcase q−2 = 4l. Set
�bY = �bN = (p+1, p− q−2

4
+1, 0) to achieve ∆ = −

(
q−2
1

)
with possible resulting

states (p+1, 2p− q−2
4

+1, p+ q−2
4

) and (p, 2p+ q−2
4

+1, p− q−2
4

+1). Subcase q−2 =

4l + 1. Set �bY = �bN = (p, p + q−3
4

+ 1, 0) to achieve ∆ = −2
(

q−2
1

)
with possible

resulting states (p, 2p+ q−3
4

+2, p− q−3
4

) and (p+1, 2p− q−3
4

, p+ q−3
4

+1). Subcase

q − 2 = 4l + 2. Set �bY = �bN = (p, p + q−4
4

+ 1, 0) to achieve ∆ = −
(

q−2
1

)
with

possible resulting states (p, 2p+ q−4
4

+2, p− q−4
4

) and (p+1, 2p− q−4
4

, p+ q−4
4

+1).

Subcase q− 2 = 4l +3. Set �bY = �bN = (p, p+ q−5
4

+1, 0) to achieve ∆ = 0 with
possible resulting states (p, 2p+ q−5

4
+2, p− q−5

4
) and (p+1, 2p− q−5

4
, p+ q−5

4
+1).

All questions are legal when q ≥ 8, and all resulting states have at least
(q − 2)2 +

(
q−2
≤2

)
pennies when q ≥ 19.

Case n = 4p + 3. Set �a = (2p + 2, 0, 0) and �bY = (p + 1, p + 1, 0) in each
subcase so that two possible resulting states are always (p + 1, 2p + 2, p) and

(p +1, 2p+ 1, p+ 1). Subcase q− 2 = 4l. Set �bN = (p, p+ q−2
4

+ 1, 0) to achieve

∆ = −
(

q−1
2

)
−
(

q−2
1

)
with additional possible resulting states (p, 2p + q−2

4
+

2, p− q−2
4

+1) and (p+1, 2p− q−2
4

+1, p+ q−2
4

+1). Subcase q−2 = 4l +1. Set
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�bN = (p, p+ q−3
4

+1, 0) to achieve ∆ = −
(

q−1
2

)
with additional possible resulting

states (p, 2p+ q−3
4

+2, p− q−3
4

+1) and (p+1, 2p− q−3
4

+1, p+ q−3
4

+1). Subcase

q − 2 = 4l + 2. Set �bN = (p + 1, p− q−4
4

+ 1, 0) to achieve ∆ = −
(

q−1
2

)
−
(

q−2
1

)
with additional possible resulting states (p + 1, 2p− q−4

4
+ 1, p + q−4

4
+ 1) and

(p, 2p + q−4
4

+ 2, p − q−4
4

+ 1). Subcase q − 2 = 4l + 3. Set �bN = (p, p + q−5
4

+

2, 0) to achieve ∆ = −
(

q−1
2

)
− 2

(
q−2
1

)
with additional possible resulting states

(p, 2p + q−5
4

+ 3, p − q−5
4

) and (p + 1, 2p − q−5
4

, p + q−5
4

+ 2). All questions are

legal when q ≥ 8, and all resulting states have at least (q−2)2 +
(

q−2
≤2

)
pennies

when q ≥ 19. �

Lemma 16 Let q ≥ 23. If wtq(x0, x1, x2) = 2q and x2 ≥ q2, then Paul
has a strategy to reach a state �z with wt0(�z) = 1 in exactly q rounds such
that every intermediate state (u0, u1, u2) after playing q − j rounds satisfies
wtj(u0, u1, u2) = 2j.

PROOF. The proof proceeds by showing how Spencer’s “Main Theorem” of
[10, Section 2], quoted here as Theorem 7, can be tightened in the case k = 2
so that we may take c = 1 and q0 = 23. Spencer’s technique is to relax the
game to allow the pennies position to take on negative integer values in both
questions and resulting states in fictitious play, and then to show in fact that
this position never goes negative for a given c and q0.

Before stating and proving the three claims which tighten Spencer’s result, we
recall the necessary notation and results from [10] for the case k = 2. Assume

there are j + 1 rounds remaining, and the current position is �P = (p0, p1, p2)
with weight 2j+1.

Fictitious play: Paul selects the next question vector (v0, v1, v2) according to
the parity of p0 and p1 as follows. If p0 is odd, then v0 = p0+1

2
and v1 = �v1

2
�;

otherwise if p0 is even, then v0 = p0

2
and v1 = �v1

2
	. Let v2 be the unique integer

that makes the weight imbalance ∆j(�P ,�v) = 0. In other words, in fictitious
play the weight of the states is exactly halved after each round. Note that by
the choices of v0 and v1, ∆j(�P ,�v) − (2v2 − p2) ≥ 0. Hence, v2 ≤ p2, and so
(v0, v1, v2) is legal whenever v2 ≥ 0.

In fictitious play Paul and Carole continue to play formally even though the
last entry of the states may turn negative. Let

fic(j) = (fic0(j), f ic1(j), f ic2(j))

be the state of the game when there are j rounds remaining. Note that fic(q) =
(x0, x1, x2) is simply the initial state of the game, and fic0(j), f ic1(j) are
always non-negative.
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Perfect play: When the state is �P , Paul selects �v = �P/2. This results in

Y (�P ,�v) = N(�P ,�v) and uniquely determines the state pp(j) = (pp0(j), pp1(j), pp2(j))
when j rounds remain in the game. When the initial state pp(q) is �x, it is easy
to compute that

pp0(j) =
x0

2q−j
, pp1(j) =

x1 + x0

(
q−j
1

)
2q−j

.

pp2(j) =
x2 + x1

(
q−j
1

)
+ x2

(
q−j
2

)
2q−j

.

Defining ei(j) = |ppi(j)−fici(j)|, Spencer proves e0(j) ≤ 1 and e1(j) ≤ 3. By

replacing the jk in Spencer’s calculations with 1
2

(
j
k

)
for k = 2, it follows that

|fic2(j)− 1
2
(fic2(j +1)+ fic1(j +1))| ≤ 1

2

(
j
2

)
+ 1

2
. Hence e2(j) ≤ 1

2
e2(j +1)+

1
2

(
j
2

)
+ 2. By induction, e2(j) ≤

(
j
2

)
+ 5.

Now we describe the strategy for Paul: starting from the state (x0, x1, x2) with
q-weight 2q and x2 ≥ q2, Paul plays fictitious play in all rounds. Our analysis
now deviates from that of Spencer. We argue that Paul can win by seeing that
no entries turn negative and by examining the state Paul reaches at j = 6, i.e.,
when 6 rounds remain. Explicitly, we prove the following claims for q ≥ 23.

1. fic0(6) ≤ 1.
2. fic2(j) > 1 for j ≥ 6. (Fictitious play questions are legal when j ≥ 6.)
3. When j = 6, the state of the game is not (1, 5, 7), or (1, 4, 14).

If the above claims are true, then the possible states at j = 6 are (1, 3, 21),
(1, 2, 18), (1, 1, 35), (1, 0, 42), (0, 8, 8), (0, 7, 15), (0, 6, 22), (0, 5, 29), (0, 4, 36),
(0, 3, 43), (0, 2, 50), (0, 1, 57), and (0, 0, 64). It is easy to check that in all these
states, Paul can split the weight evenly until he reaches a state �z with wt0(�z) =
1.

Proof of Claim 1. Since e0(j) ≤ 1, it suffices to show that pp0(6) < 1,

i.e., x0 < 2q−6. This is true because x0

(
q
≤2

)
≤ wtq(x0, x1, x2) = 2q. Hence

x0 ≤ 2q/
(

q
≤2

)
, which is less than 2q−6 when q ≥ 12.

Proof of Claim 2. We show that pp2(j) > e2(j) + 1 for 6 ≤ j ≤ q − 1.

It is enough to show that min
{(

x2 + x1

(
q−j
1

)
+ x0

(
q−j
2

))
/2q−j

}
≥
(

j
2

)
+ 6

for all x0, x1, x2 satisfying wtq(x0, x1, x2) = 2q and x2 ≥ q2. The minimum

of
(
x2 + x1(q − j) + x0

(
q−j
2

))
/2q−j is achieved at one of the vertices of the
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feasible region, that is, when (x0, x1, x2) is

(0, 0, 2q),

⎛
⎝0,

2q − q2(
q
≤1

) , q2

⎞
⎠ , or

⎛
⎝2q − q2(

q
≤2

) , 0, q2

⎞
⎠ .

For 6 ≤ j ≤ q − 1, direct computation shows that the minimum is greater
than

(
j
2

)
+ 6 > e2(j) + 1 for q ≥ 16. The case j = q − 1 is special, for which(

q−j
2

)
= 0; the inequality remains true here since x2 ≥ q2.

Proof of Claim 3. We show that when q ≥ 23, fic0(8) ≤ 1 and fic0(8) +
fic1(8) ≤ 16. Then by definition of fictitious play, fic(6) could not be (1, 5, 7)
or (1, 4, 14).

To show fic0(8) ≤ 1, note that pp0(8) = x0/2q−8 ≤ 28/
(

q
2

)
, which is less than 1

when q ≥ 23. To show fic0(8)+fic1(8) ≤ 16, define e01(j) := |pp0(j)+pp1(j)−
(fic0(j)+fic1(j))|. By definition of fictitious play, |fic0(j)+fic1(j)−(fic0(j+
1)+ 1

2
fic1(j+1))| ≤ 1

2
, which implies e01(j) ≤ 1

2
e01(j+1)+1. By induction with

base case e01(q) = 0, we have e01(j) < 2. Now assume that fic0(8)+fic1(8) ≥
17. Then pp0(8) + pp1(8) > 15, that is, x1 + x0

(
q−8
≤1

)
> 15 · 2q−8. However, the

maximum of x1 +x0

(
q−8
≤1

)
is reached when (x0, x1) is either (0, (2q −q2)/

(
q
≤1

)
),

or ((2q − q2)/
(

q
≤2

)
, 0). For the first one, x1 + x0

(
q−8
≤1

)
> 15 · 2q−8 iff q ≤ 16, for

the second one, x1 + x0

(
q−8
≤1

)
> 15 · 2q−8 iff q ≤ 22. This contradicts the fact

that q ≥ 23. �

PROOF. (Proof of Theorem 14.) The values of F ∗
2 (q) for 1 ≤ q ≤ 24, found

by exhaustive computation, are listed in Table 1. In each case, F ∗
2 (q) is the first

value of n which satisfies the inequality in (9). These values were generated
by a dynamic programming algorithm based on the recurrence

r∗(�x) = 1 + max
�a

{min{r∗(Y(�x,�a)), r∗(N(�x,�a))}},

where r∗(�x) is defined to be the maximum number of rounds for which Paul
can win the pathological liar game with initial state �x.

Now suppose q ≥ 25. If n satisfies (9), then by Lemma 15, Paul can survive

two rounds with all possible resulting states having at least (q − 2)2 +
(

q−2
≤2

)
pennies. If after the first two rounds the (q − 2)-weight of the resulting state
is > 2q−2, greedily remove coins as large as possible so that the (q − 2)-weight
is exactly 2q−2. Either the resulting state has only pennies remaining, or at
most

(
q−2
≤2

)
pennies were removed. Since q − 2 ≥ 23, Lemma 16 shows that

Paul can win the ((n, 0, 0), q, 2)∗-game. If n fails to satisfy (9), then by (10)
and Lemma 15, Paul cannot survive the first two rounds and therefore has no
winning strategy for the ((n, 0, 0), q, 2)∗-game. �
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7 Winning strategies and hypercube coverings and packings

The pathological liar game has an important natural reformulation in terms
of coverings of the hypercube Qk with certain adaptive Hamming balls. For
our purposes, we think of the q-dimensional hypercube Qq as the set of ver-
tices {Y, N}q in which two vertices are adjacent iff they differ in exactly one
position. Instead of the usual 0’s and 1’s, the bits are Y’s and N’s, and so
“bit” complementation is defined by Y = N and N = Y. A Hamming ball of
radius k in Qq consists of a center ω ∈ Qq and all w′ ∈ Qq which differ from
ω in at most k positions. A covering (packing) of Qq usually refers to a col-
lection of Hamming balls of a fixed radius whose union is Qq (disjoint in Qq),
but there are many variations. We refer the interested reader to the literature
for further information [2,8]. It happens that a winning strategy for Paul in
the pathological liar game can be converted to a covering of Qq with these
adaptive Hamming balls, and vice versa. We now formalize this relationship.

Noting that 2[q] is the power set of [q], define

(
[q]

j

)
:= {J ∈ 2[q] : |J | = j} and

(
[q]

≤ i

)
:=

i⋃
j=0

(
[q]

j

)
.

We have the following definition of an adaptive Hamming ball, which we call
a quasiball, followed by an example for q = 4 and radius i = 2.

Definition 17 (i-quasiball) Let q, i ≥ 0. An i-quasiball is the image f
((

[q]
≤i

))
of an injective function

f :

(
[q]

≤ i

)
→ Qq,

such that whenever A, B ∈
(

[q]
≤i

)
are of the form

A = {p1, . . . , p|A|} and B = {p1, . . . , p|A|, p|A|+1, . . . , p|B|}, (11)

where p1 < · · · < p|A| < p|A|+1 < · · · < p|B|, then f(A) and f(B) are of the
form

f(A) = ω1 · · ·ωp|A| · · ·ωq and f(B) = ω1 · · ·ωp|A|−1
ωp|A|ω

′
p|A|+1

· · ·ω′
q,

where ω′
p|A|+1 · · ·ω′

q ∈ Qq−p|A|.

Example 18 (A 2-quasiball in Q4) Let q = 4 and i = 2. Define f :
(

[4]
≤2

)
→

Q4 by f(∅) = NYNN, f({1}) = YNNY, f({2}) = NNYN, f({3}) = NYYN,
f({4}) = NYNY, f({1, 2}) = YYYN, f({1, 3}) = YNYN, f({1, 4}) = YNNN,
f({2, 3}) = NNNY, f({2, 4}) = NNYY, and f({3, 4}) = NYYY. For instance,
letting A = {2} and B = {2, 3}, we see that the first two coordinates of f(A)
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and f(B) agree, and the third coordinate is opposite, satisfying the constraint
on A and B given by the definition (the fourth coordinate happens to be op-
posite as well). After similar verification for all possible choices of A and B,

we see that f
((

[4]
≤2

))
is a 2-quasiball in Q4. We assign a tree structure to

f
((

[4]
≤2

))
by defining the parent of f(B), for any B = {p1, . . . , p|B|} �= ∅, to be

f(B \ {p|B|}), as illustrated in Figure 1.

Intuitively, for i > 0 an i-quasiball contains a stem, f(∅), and q children in

f
((

[q]
1

))
obtained from f(∅) by complementing one of its q bits and choosing

the bits to the right arbitrarily. The child f({p}) can be considered to be
the stem of the (i − 1)-quasiball obtained by deleting the first p bits from

each of the vertices in f({{p} ∪ P : P ∈
(

[q]\[p]
≤i−1

)
}). An i-quasiball is clearly a

generalization of a Hamming ball of radius i, since for A, B ∈ Qq satisfying
(11), we may choose f(B) by complementing f(A) in positions p|A|+1, . . . , p|B|
and leaving the other positions unchanged. We note in passing that some i-
quasiballs, for example {Y, N} and otherwise whenever i ≥ q, are obtained
from more than one such function f .

In order to understand the relationship between winning strategies for Paul
and coverings by i-quasiballs, recall that a covering code of length q and ra-
dius k is a set of Hamming balls of radius k whose union is Qq. By relaxing
Hamming balls to i-quasiballs and by allowing i to vary between 0 and k, we
define an �x-covering, where �x = (x0, . . . , xk) to be a collection consisting of
xi (k − i)-quasiballs for each 0 ≤ i ≤ k whose union is Qq. Similarly, an �x-
packing is such a collection whose constituent members are pairwise disjoint,
and whose union is not necessarily Qq. Informally speaking, we may think of
an (n, 0, . . . , 0)-covering of Qq as an adaptive covering code of length q and
fixed radius. The following theorem is adapted from [11, Theorem 1.2] which
is for an asymmetric version of the original game.

Theorem 19 Let q, k ≥ 0. Paul has a strategy for winning the q-round, k-lie
pathological liar game with initial state �x iff there exists an �x-covering of Qq.
Similarly, Paul has a strategy for winning the original game with the same
parameters iff there exists an �x-packing of Qq.

PROOF. For the proof it is convenient to keep track of the sets of elements
with a given number of lies, and not just their cardinalities. Without loss of
generality, in a game with initial state �x = (x0, . . . , xk), let n =

∑k
i=0 xi and

let Xi ⊆ [n] be the xi elements initially associated with i lies. We will abuse
notation and let a state or question vector be given in either integer or set
format; for example, �x = (x0, . . . , xk) or (X0, . . . , Xk). We prove the statement
about the pathological liar game and remark how to adapt the proof for the
original game afterward.
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For the forward implication, Paul’s winning strategy corresponds to a decision
tree which is a full binary tree of depth q. The root contains the initial state �x
and the first question. Each node contains a nonzero state, and each internal
node contains a legal question for the state in the same node. A node contain-
ing state �P and question �v has left child containing state N(�P ,�v) and right

child containing state Y(�P ,�v), corresponding to responses of “N” or “Y,” re-
spectively, by Carole. A game played under this strategy is a path from the root
to a leaf of the decision tree, passing down q levels of questions by Paul and
answers by Carole. We say that a leaf is labeled by each element of [n] which
survives in that leaf’s state. A leaf labeled by x ∈ [n] has a response vertex
with respect to x, which is Carole’s Yes/No response sequence ω1 · · ·ωq ∈ Qq

read in order from the root to that leaf. If the context is clear, we will refer
to a response vertex with respect to x simply as a response vertex. The leaves
are in bijection with Qq by considering the response sequence leading to each
leaf.

Let i ∈ {0, . . . , k} and choose x ∈ Xi. Let S ⊆ Qq be the set of response
vertices with respect to x of those leaves labeled with x. We define the function
f :

(
[q]
≤i

)
→ Qq certifying that S is a (k − i)-quasiball as follows. Set f(∅)

equal to the unique ω ∈ S for which every response by Carole is truthful. In
general a response vertex is completely determined by the positions A ⊆ [q]
corresponding to lies by Carole. Set f(A) equal to this response vertex for

all A ∈
(

[q]
≤k−i

)
. Two leaves α and β both labeled by x and having response

vertices with lies in positions A, B ⊆ [q], respectively, and satisfying (11),
must have the same first p|A| − 1 response sequence steps from the root and
bifurcate at step p|A|. Therefore S is a (k − i)-quasiball, and since every leaf
is labeled by at least one element of [n], there exists an �x-covering of Qq.

For the reverse implication, the states and questions contained in the depth q
full binary decision tree are determined by the �x-covering. The initial state at
the root is �x = (X0, . . . , Xk), where each (k − i)-quasiball is identified with a

unique element x ∈ Xi and is the image of a function fx :
((

[q]
≤k−i

))
→ Qq satis-

fying Definition 17. Paul constructs the first question vector �a = (A0, . . . , Ak)
by letting x ∈ Ai whenever the stem of the (k − i)-quasiball identified with
x begins with “Y.” Thus every x ∈ Ai will label a leaf whose response vertex
with respect to x begins with “Y.” Suppose Carole responds to �a with “Y.”
If x ∈ Ai for some i, no lie is associated with x by Carole’s response, and
fx

((
[q]\{1}
≤k−i

))
⊆ YQq−1 may be viewed as a (k − i)-quasiball in Qq−1 by re-

stricting the domain of fx to
(

[q]\{1}
≤k−i

)
and deleting the first bit of each vertex

in the image. The resulting state vector Y(�x,�a) counts x in the ith position.
If x is not counted by �a, one lie is associated to x by Carole’s response, and
fx({{1}∪P : P ∈

(
[q]\{1}
≤k−i−1

)
}) ⊆ YQq−1 may be viewed as a (k−i−1)-quasiball

in Qq−1 by restricting the domain of fx to {{1}∪P : P ∈
(

[q]\{1}
≤k−i−1

)
} and delet-

ing the first bit of each vertex in the image. The resulting state vector Y(�x,�a)
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counts x in the (i+1)st position (if i+1 > k, then the (k− i− 1)-quasiball is
empty and x does not appear in Y(�x,�a)). In both cases, the rest of the domain
of fx is mapped to NQq−1. Therefore there exists a Y(�x,�a)-covering of Qq−1.
Similarly, if Carole answers “N” there exists a N(�x,�a)-covering of Qq−1. The
reverse implication follows by induction, since a covering of Q0 must consist
of at least one i-quasiball, which corresponds to a surviving element.

For the original liar game, the function f in the forward implication is defined
in the same way; however, there is at most one surviving element labeling
each leaf of the decision tree. This ensures that the collection of i-quasiballs
which are the sets of response vertices of leaves with a given label are disjoint,
and thus form a packing. For the reverse implication, the inductive step is
the same, but for the base case a packing of Q0 corresponds to at most one
i-quasiball. �

Monotonicity under majorization, defined in Section 2, is now clear because an
i-quasiball realized by a function f :

(
[q]
≤i

)
→ Qq can be considered to contain

an (i − 1)-quasiball obtained by restricting f to
(

[q]
≤i−1

)
. Theorem 19 allows

Lemma 5, and its dual version for the original game, to be interpreted in terms
of the sphere bound for coverings or packings, respectively, of the hypercube.
A k-quasiball has size

(
q
≤k

)
in Qq, and so there can exist neither a covering

of Qq with fewer than 2q/
(

q
≤k

)
k-quasiballs, nor a packing of Qq with more

than 2q/
(

q
≤k

)
k-quasiballs. A natural question is whether the asymptotic sizes

of optimal coverings and packings, that is, covering codes and error-correcting
codes, meet at the sphere bound. For Hamming balls, this is true for radius 1
[2, Theorem 12.4.11], and is unknown for larger radius. For k-quasiballs, this
is now known to be true for fixed k by combining Theorems 2 and 3.
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q 1 2 3 4 5 6 7 8 9 10 11 12

F ∗
2 (q) 1 1 2 2 2 4 6 8 12 20 32 52

q 13 14 15 16 17 18 19 20 21 22 23 24

F ∗
2 (q) 90 156 272 480 852 1525 2746 4970 9040 16514 30284 55740

Table 1
Values of F ∗

2 (q), the minimum number of elements n for which Paul can win the
q-round pathological liar game with 2 lies and initial state (n, 0, 0).

NYNN

YYYN YNYN YNNN

YNNY

NNNY NNYY

NNYN NYYN

NYYY

NYNY

Fig. 1. A 2-quasiball in the hypercube Q4 satisfying Definition 17 is given a tree
structure with stem NYNN. A child agrees with its parent before the underlined
position, is opposite at the underlined position, and has unconstrained relationship
with its parent afterward.
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