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Abstract

We extend L. Rédei’s definition of polynomials with a restricted
range to include multivariable polynomial functions. Given a proper
subfield IF, of the finite field F;, we identify all f € F[z1,..., 2] (with
deg,. f < g for 1 <14 < k) such that for all v € ]F’,; we have f(vy) € Fs.

1 Introduction

Let F, denote the finite field with ¢ elements and let F¥ be the set of all
k-tuples of elements in IF,. In this paper we examine multivariable functions
with restricted range. Specifically, for a field F, and a proper subfield Iy, we
wish to classify all functions f(z1,...,z;) such that f(v) € F, for all y € F¥.

We first review some facts about finite fields and functions defined over
them. Recall that for a finite field F, the multiplicative group of nonzero
elements is cyclic, i.e. F = (a). Suppose that ¢ = s* where s and a are
positive integers greater than 1. Then, there exists a subfield s of [, with
FY = (o) where b= (¢ —1)/(s — 1) = 30, .

It is well-known that every function f(zi,...,z;) such that f(y) € F,
for all v € ]F’; can be uniquely represented by a polynomial function in
F,[z1,...,zx] in which no variable exponent exceeds ¢ — 1. Henceforth, we
can restrict our attention to all such polynomial functions.
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Definition 1.1. Let Fy be a subfield of F,. A polynomial f(z) € F,[z] is
called an (F,,Fy)-polynomial if for each v € F,, we have f(y) € F;.

Rédei [1] classified all such (F,,F;)-polynomials. We extend this notion
to include multivariable polynomials.

Definition 1.2. Let F, be a subfield of F,. A polynomial f(zy,...,zx) €
Fglx1,. ..,k is called an (F%,F,)-polynomial if for each v € Fi, we have

f(y) €.

We can see that there are 5(¢°) distinct functions f such that f(y) € F, for
all v € Fi. In addition if f and g are both (F%,F,)-polynomials and ¢ € F,,
then we see that both f + g and cf are (F%, F,)-polynomials. Furthermore,
it can be easily verified that the set of all (IF’;,]FS)—polynomials forms an F,-
vector space of dimension ¢*. We wish to find a basis for this vector space
and provide an easy method to not only generate these polynomials, but also
to be able to verify by inspection whether or not a given polynomial is an
(F%, Iy )-polynomial.

2 Cycles and Periods

Definition 2.1. For any nonnegative integer : < ¢ we can write its s-adic

representation

i =140+ 518+ 198% + o F g5

where 0 <4; < s for 0 < j < a — 1. From this we define the cyclic numeral-
permutation

(iS)q_1 =gy F 905 + 0187 + -+ da_05¥ L.
More generally, for any positive integer 7 < a put
(isj)q_l = lg—j + -+ 18 gt + -+ ia_j_ls“_l.
In essence, this results in j cyclic shifts of the numerals g, ..., 7,_1.

Remark 2.1. i) Note that (is?),—; = 0 if and only if ¢ = 0.
ii) The representation of (is?),_; is well-defined since 0 < (is’),_1 < g and
(157)4—1 = is? (mod g —1).



Definition 2.2. For each integer ¢ such that 0 < ¢ < ¢ — 1 we define the
s-period of i, denoted [(i), to be the smallest natural number j such that
(87)4—1 = i. In other words, I(i) is the fewest number of cyclic shifts needed
to restore the values of the s-adic numerals of i.

Remark 2.2. Let p be a divisor of a. Since we have s possibilities for
each s-adic numeral, the number of nonnegative integers ¢ < ¢ such that
(isP)4—1 = i is sP. For each such i we know that [(i) must divide p. Otherwise,
if p = di(i) + r for integers d and r with 0 < r < I(7), then we would have
(is")g4—1 = ¢ which is a contradiction. As a result, there are exactly s” integers
whose s-period divides p. In particular, for p = a we know that [(i)|a for
0<1<aq.

Definition 2.3. Let
M=A{a7'zs? ... 2}F:0<e <qgforl <i<k}

and
— (4 q q
I, = (al — a1, 28 —xg, ..., 2] — xp).

For any monomial m, let m € M denote the residue of m modulo I,.

€1 .62

Definition 2.4. For m = z'z5?...z;* € M we define the s-period of m,
denoted [(m) or simply , as I[(m) = lem{l(e1),...,I(ex)}

Remark 2.3. i) Since I(e;)|a for 1 < i < k, we know that [(m)]a.

ii) The s-period [(m) is the smallest natural number j such that m*’ = m.
. . . j i ensi i

This follows since if m = x{'x5? ... z7*, then m* = z7'* 252 ... z{** and

_ (ersT)g—1 (e2s?)q—1 (exs?)g—1

=, T ST .

m¥

Proposition 2.1. Let m = z{'25 ... 23* € M and put b= (¢ —1)/(s — 1).
Then, m has s-period l(m) =1 if and only if ble; for 1 < i < k.

Proof. From Definition 2.4, [(m) = 1 if and only if [(e;) = 1 for 1 <7 < k.
Furthermore, [(e;) = 1 if and only if there exists a nonnegative integer j < s
such that

a—1

ei=j+js+jst+ 4 =4 s =jlg—1)/(s—1).
1=0



k

Corollary 2.1. There are s monomials in M with an s-period value of 1.

We can recursively determine the number of monomials in M with any
arbitrary s-period using the following proposition.

Proposition 2.2. Let N(d) denote the number of monomials in M with an
s-period of d. For any divisor p of a, we have 3, N(d) = sP*.

Proof. Let p be a divisor of a. From Definition 2.4 we see that for any
m = zi'zy?...xF € M that [(m)|p if and only if l(e;)|p for 1 < ¢ < k.
By Remark 2.2, there are s” such values for each exponent e;. Hence, the
conclusion holds. 0

Definition 2.5. For m € M with s-period [, we define

U(m) = {m,m*,m**,..., m*'}
to be the monomial cycle of m.

Remark 2.4. i) If m’ € ¥(m), then ¥(m') = ¥(m).
ii) The monomial cycles constitute a partition of M.

3 Basis Generation
Place a total ordering <; on the monomials of M and let
A={me M :m <, m' for all m’ € ¥(m)}.

Observe that A is simply a set of cycle representatives.

Proposition 3.1. Suppose m € A with s-period | and ¢ € Fu. Put
Pom)=cm—+cms + -+ ms.
The polynomial P.(m) is an (F,F,)-polynomial.

Proof. Since m* = m, then for each vy € F; we have [m()]" = m(y).
Therefore, m(y) € Fu. Put 6 = em(y) € Fy, then note that

[Po(m)](y) =8+ 6%+ -+ 6 =Tr(5)

where T'r is the well-known (cf. [2]) trace function from Fy into Fy. O
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Remark 3.1. If ¢ = 0, then P.(m) = 0. If ¢ # 0, then Supp P.(m) = ¥(m).

Definition 3.1. Suppose m € A with s-period [ and {f, ..., 3} is a basis
of Fyu over Fy where F, C Fu C F,. Put

B(m) = {Pﬂ1 (m)’ Pﬂz(m)’ R Pﬂl (m)}

Suppose ¢ = a1y + -+ @3 € Fa with a; € Fy for 1 < 4 < [. Then,
observe that

S = (alﬁl)s 4.4 (alﬂl)s = alﬂf + - +a'l18ls

implies that
! !
Pe(m) = Zpaiﬂi (m) = Z a;Pg;(m).
i=1 i=1
From this observation we obtain the following remarks.

Remark 3.2. i) Since {fi,..., [} is Fs-linear independent, we know that
B(m) is also F,-linear independent. Therefore, Spany B(m) is an F,-vector
space of dimension I(m).

ii) A polynomial f is in Spany B(m) if and only if f is of the form P.(m) for
some c € F.

Theorem 3.1. Put U := UpecaB(m). Then, U is a basis for the Fy-vector
space of all (F%, Fy)-polynomials.

Proof. Note that for any nonzero f € Spang, B(m), we have Supp(f) = ¥(m)
by Remarks 3.2 ii) and 3.1. Also, for any distinct my,ms € A, we have
U(my) N ¥(my) = 0. Therefore, Spany U is the internal direct sum of the
family {Spany, B(m) : m € A} of F,-vector spaces. Hence, Spany U is an
Fy-vector space of dimension

Z dimp, Spang, B(m) = Z I(m) = Z W (m)| = ¢

meA meA meA

with basis U. On the other hand, every f € U is an (I}, F,)-polynomial by
Proposition 3.1. Therefore, I/ is also a basis for the Fs-vector space of all
(F%, Iy )-polynomials of dimension ¢*. O

Corollary 3.1. Let f be an (]F’;,]FS)—polynomial. Suppose A N Supp(f) =
{ma,...,my} andlet ¢; be the coefficient of m; in f. Then, f =Y Pe,(m;).
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Proof. From the proof of Theorem 3.1, we know that Spang U is the direct
sum of the family {Spany B(m) : m € A}. By Remark 3.2 ii) the conclusion
holds. 0

Definition 3.2. Suppose f € F,[z1, ..., zx] with Supp(f) C M. We will say
that f satisfies the s-power property if for each monomial m € Supp(f) with
coefficient ¢, we have m® € Supp(f) with coefficient c°.

In the single variable case the s-power property is the same as the conju-
gacy conditions of Proposition 6 in [1]. Observe that the polynomial P.(m)

in Proposition 3.1 satisfies the s-power property since ¢ =cand m* =m
by Remark 2.3 ii).

Theorem 3.2. A polynomial f € F,[z1,...,zx] with Supp(f) C M is an
(F’;,Fs)—polynomial if and only if f satisfies the s-power property.

Proof. Suppose that f satisfies the s-power property. Choose a monomial

m € Supp(f) which has s-period [ and coefficient c. Since ms' = m, the
s-power property implies that ¢ = Hence, ¢ € F,. Let m' € A denote
the cycle representative of W(m). Then, the s-power property implies that
m’ € Supp(f) with some coefficient in Fy.

Suppose that AN Supp(f) = {m,...,m,} and define I; := I(m;) and let
¢i € Fy; be the coefficient of m; in f. Then, f = Y" | P.,(m;) which by
Proposition 3.1 is an (F%, F,)-polynomial.

Conversely, assume that f is an (]F";,]Fs)—polynomial. By Corollary 3.1 f
can be expressed as the direct sum of polynomials that satisfy the s-power
property. Hence, f must satisfy the s-power property itself. O

Observe that Theorem 3.2 is independent of A. This has the benefit of
enabling us to verify by inspection whether or not a polynomial is an (]F’qC Iy )-
polynomial. In addition we can also easily generate these polynomials by just
ensuring that they satisfy the s-power property.

Example 3.1. Consider the field Fig where Fj; = (o) and the subfields
Fy, C F, C F4. Examine the polynomial

f(x,y) — .’L'8y9+06$4y12 +Od5£E10 +£E2y6 +O{10$5 +Od4$y3.

Observe that for each monomial m € Supp(f) we have m2 € Supp(f). To
see this more clearly we rewrite f as

f(z,y) = (@'zy® + 2°y° + az’y" + 2°°) + (2" + o’2"7).
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Note that f does not satisfy the 2-power property since m = xy> € Supp(f)
with coefficient o, but m2? = 2245 has coefficient 1 # (a*)2. On the other
hand, we see that f does satisfy the 4-power property. As a result, f is an
(F%s, Fy)-polynomial, but not an (%4, F; )-polynomial.
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