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1 Introduction

One of the earliest difference equations, the Fibonacci sequence, was intro-
duced in 1202 in “Liberabaci,” a book about the abacus, by the famous
Italian Leonardo di Pisa, better known as Fibonacci. The problem may be
stated as follows: how many pairs of rabbits will there be after one year when
starting with one pair of mature rabbits, if each pair of rabbits give birth
to a new pair each month starting when it reaches its maturity age of two
months? If F (n) is the number of pairs of rabbits at the end of n months,
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then the difference equation that represents this model is given by the second
order difference equation

F (n + 1) = F (n) + F (n − 1), with F (0) = 1, F (1) = 1.

This very early connection between biology and difference equations has been,
until recently, fairly dormant due largely to the creation of differential Cal-
culus by Isaac Newton in 1732 and the dominance of differential equations
in all natural sciences and economics.

Two great mathematicians have contributed significantly to the modern
theory of difference equations; Henri Poincaré and George Birkhoff. In “Sur
les equations linéaires aux differentielles ordinaires et aux différences finies”
[61] Poincaré studied the asymptotic representation of solutions of nonau-
tonomous linear difference equations. The Poincaré-Perron Theorem [20] is
the extension of Poincaré Theorem by Oscar Perron in 1921 [58]. Walter
Gautschi [31] showed how to use Poincaré–Perron Theorem to find mini-
mal (recessive) solutions of linear nonautonomous difference equations. This
has been a significant observation in the area of orthogonal polynomials and
special functions since every sequence of a monic polynomial must satisfy a
second order difference equations [8, 20, 73]. The importance of the exis-
tence of minimal solutions has been observed by Pincherle [60] much earlier
in 1894, where he showed a continued fraction converges if and only if the
associated second order difference equation has a minimal solution [20]. In
a series of papers by George Birkhoff and his collaborators [6, 7], the formal
theory of analytic difference equations has been established. Jet Wimp and
Doran Zeilberger [74] applied Birkhoff Theory to compute the asymptotics of
special functions and combinatorial identities. The study of the asymptotics
of combinatorial identities was greatly facilitated by Zeilberger’s algorithm
by which one can produce a second order difference equation that represents
a given combinatorial identity [74].

Another area where difference equations have played a prominent role is
numerical analysis. Here one would approximate a given differential equa-
tion, through a discretization method, by a difference equation. However,
these discretization methods may lead to instabilities and sometimes chaotic
behavior. To remedy this situation, Ronald Mickens introduced a nonstan-
dard discretization scheme which is dynamically consistent [2, 51, 55].

The modern theory of difference equations can be traced back to the 60’s
and 70’s. In 1964, Alexander Nicoli Sharkovsky introduced his fundamental
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theorem on the periods of continuous maps on the real line [21, 69]. Part of
Sharkovsky Theorem was later discovered in 1975, independently, by T.Y.
Li and James Yorke in “Period three implies chaos” [50]. In addition to in-
troducing “chaos” in mathematics, the Li–Yorke paper was instrumental in
introducing Sharkovsky Theorem in English which made it accessible to sci-
entists in the west. In 1978, Mitchell Feigenbaum [28] discovered a universal
constant, the “Feigenbaum number,” that is shared by unimodal continuous
maps on the real line [21].

Since then, chaos theory has been in the frontier of science, particularly
in physics and economics. In biology, however, progress in the use of differ-
ence equations as models has been rather slow. In 1976, difference equations
received a huge boost through the fundamental work of Robert May who
publicized the use of difference equations as biological models in his ever
popular paper “Simple mathematical models with very complicated dynam-
ics” [53]. The last twenty years witnessed an exponential growth in the area
of mathematical biology with several new scientific journals and books de-
voted to the subject. But until recently, the favorite models for biologists
have been the continuous ones, i.e., differential equations [19, 43, 59, 70].

Let us now move on to more recent developments. There are by now two
schools in difference equations. The first school views difference equations as
the discrete analogue of differential equations and analysis. It is no wonder,
that the majority in this school came over from differential equations. Books
representing this school are those of Lakschmikantham and Trigiante [48],
Agarwal [1], Kelley and Peterson [37], Mickens [54], Kocic and Ladas [39],
Kulenovic and Ladas [45], Sedaghat [65], Elaydi [20].

The second school views difference equations as iterations of maps or as
discrete dynamical systems. The questions raised here are concerned with
stability, bifurcation and chaos. Representing this school are the books by
Devaney [16], Holmgren [34], Strogatz [71], Alligood et al [3], Martelli [52],
Sandefur [64], Cushing [11, 12], Kulenovic and Merino [46], Elaydi [21]. The
first two authors do not even mention “difference equations” in their books.
The remaining books, however, are clear about the interplay between dif-
ference equations and discrete dynamical systems. It should be noted that
the last two books [21, 46] made a lot of efforts to bridge the gap between
the two schools. However, a larger and more sustained efforts are needed to
integrate both schools and consolidate their centrality in mathematics.

As research in difference equations takes root and more and more promi-
nent mathematicians join in, boundaries between the two schools are increas-
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ingly blurred. Intrinsic discrete models in biology and economics are being
studied without going through differential equations [12, 57, 65]. It has been
argued recently that difference equations are the right medium to model
physical phenomena [4, 22, 72, 75]. The question of whether time is discrete
has been settled affirmatively for quite some time in quantum mechanics,
and recently advocated by the above-mentioned group of mathematicians.

In this article, our main objective is to introduce to specialists and non-
specialists alike the notion of discrete skew-product dynamical systems. We
then specialize this to the case of periodic difference equations and apply the
general results to nonautonomous Beverton–Holt equations [5, 13, 23, 24,
25, 26, 38, 41]. In addition, we will survey the recent literature on periodic
difference equations [10, 9, 29, 30, 32, 33, 35, 36, 40, 49, 67, 76, 77].

The final section includes some further developments and open questions.

2 Discrete Dynamical Systems

Let X be a topological space, T a topological group, and let π : X × T →
X. Then the triple (X, T, π) or just π is called a dynamical system if π is
continuous and

(i)

π(x, 0) = x for all x ∈ X, where 0 is the identity of T , (2.1)

(ii)

π(π(x, s), t) = π(x, s + t). (2.2)

If T is a topological semigroup, then π is called a semi-dynamical system.
There are two important examples that are of general interest.

a. T = R(R+), the space of real numbers (nonnegative real numbers).
Consider the autonomous differential equation

x′ = f(x), x(0) = x0. (2.3)

We assume that Eq. (2.3) has a unique solution x(t, x0). Define
π(x, t)

.
= x(t, x0). Then π : X × R → X defines a continuous dy-

namical system. If, however, the solution x(t, x0) is defined only on
the set of nonnegative real numbers, then π : X × R

+ → X defines a
continuous semi-dynamical system.
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b. T = Z(Z+), the space of integers (nonnegative integers). Consider the
difference equation

x(n + 1) = f(x(n)), x(0) = x0, (2.4)

where f : X → X is at least continuous.

Let π(x0, n) = x(n). Then π defines either a discrete dynamical system
π : X ×Z → X or a discrete semi-dynamical system π : X ×Z

+ → X.
Equation (2.4) may be generated by the map f : X → X, by putting
x(n) = fn(x0), and thus π(x0, n) = fn(x0), where fn = f ◦ f ◦ · · · ◦ f
is the nth composition of f .

Notice that a fixed point x∗ of the map f is called an equilibrium point
of Eq. (2.4). Similarly, the (positive) orbit of x0 ∈ X, under the map
f , O+(x0) = {x0, f(x0), f

2(x0), . . .} is the same as the solution curve
{x(n) : n ∈ Z

+} of Eq. (2.4).

One of the most popular, and still fascinating, examples is the logistic
map/difference equation

x(n + 1) = µx(n)(1 − x(n))

or the map f(x) = µx(1 − x)

defined on the closed interval [0, 1]. Due to the centrality of this example
in the modern theory of difference equations, I have presented it, with great
detail, in my two books [20, 21]. The reader may find other interesting
expositions in many of the other books mentioned above.

3 Skew-Product Dynamical Systems

To motivate the notion of skew-product dynamical systems, let us look at
the following simple but illustrative example.

Example 3.1. Consider the nonautonomous difference equation

x(n + 1) = (−1)n

(

1 +
1

n + 1

)

x(n), x(0) = x0, (3.1)
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where n ∈ Z
+.

The solution of Eq. (3.1) is given by [20]

x(n) = (−1)
n(n−1)

2 (n + 1)x0. (3.2)

If we let π(x0, n) = x(n) = (−1)
n(n−1)

2 (n + 1)x0, then

π(π(x0, s), t) = (−1)
t(t−1)

2 (−1)
s(s−1)

2 (t + 1)(s + 1)x0.

However

π(x0, s + t) = (−1)
(s+t)(s+t−1)

2 (s + t + 1)x0

6= π(π(x0, s), t).

Hence π is not a semi-dynamical system as the semigroup property (2.2) fails
to hold.

Let us write F (n, x) = (−1)n
(

1 + 1
n+1

)

x. For each t ∈ Z
+, let Ft(n, x) =

F (n + t, x) = (−1)n+t
(

1 + 1
n+t+1

)

x. In the space of continuous functions
C(Z+×X, X), X = R, the hull of F is defined as the closure of the translates
of F (n, .): H(F ) = cl{Ft(n, .) : t ∈ Z

+}. Now H(F ) = {Ft(n, .) : t ∈
Z

+}∪{G(n, .)}, where G(n, x) = (−1)nx is the omega limit set of {Ft(n, .) :
t ∈ Z

+}. Let us now switch to the friendly notation: for each n ∈ Z
+, put

fn(x) = F (n, x), gn(x) = G(n, x). Then gn is periodic : g0 = g2n, g1 = g2n+1,
for all n ∈ Z

+, g0(x) = x, g1(x) = −x.
Define π : H(F ) × Z

+ → H(F ) as

π((x, fi), n) = (fi+n−1 ◦ · · · ◦ fi+1 ◦ fi(x), fi+n).

Then

π(π((x, fi), s), t) = π((fi+s−1 ◦ · · · ◦ fi+1 ◦ fi(x), fi+s), t)

= (fi+s+t−1 ◦ · · · ◦ fi+s ◦ fi+s−1 ◦ · · · ◦ fi+1 ◦ fi(x), fi+s+t)

= π((x, fi), s + t).

And similarly for gi.

The above scheme illustrates the essence of the notion of skew-product.
To explain the general situation, consider the nonautonomous difference
equation

x(n + 1) = F (n, x(n)) (3.3)
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where F (n, .) ∈ C(Z+ × X, X) = C. The space C is equipped with the
topology of uniform convergence on compact subsets of Z

+×X. Let Ft(n, .) =
F (t + n, .) and A = {Ft(n, .) : t ∈ Z

+} be the set of translates of F in C.
Then G(n, .) ∈ ω(A), the omega limit set of A, if for each n ∈ Z

+,

|Ft(n, x) − G(n, x)| → 0

uniformly for x in compact subsets of X, as t → ∞ along some subsequence
{tgn

}. The closure of A in C is called the hull of F (n, .) and is denoted by
Y = H(A). Let σ : Y ×Z → Y be defined as the shift map : σ(G(n, .), 1) =
G(n + 1, .), or more generally, σ(G(n, .), m) = G(n + m, .). Then σ is a
discrete dynamical system on Y .

The skew product dynamical system is now defined as π : X×Y ×Z
+ →

X × Y , such that

π((x, G(s, .)), t) = (Φt(s)(x), Gt(s, .)),

where Φt(s) = gs+t−1◦· · ·◦gs+1◦gs, Gt(s, .) = gs+t. If p is the projection map,
p(a, b) = b, then the following commuting diagram illustrates the notion of
skew product discrete semi-dynamical system.

X × Y × Z
+ π−−−→ X × Y





y

p×id





y

p

Y × Z
+ σ−−−→ Y

For each G(n, .) ∈ Y , we define the fiber Fg over G as Fg = p−1(g). If
g = fi, then we write Fg as Fi.

4 Periodic Difference Equations

In this section we turn our attention to the case when the map F (n, x) is
periodic of minimal period say p > 1, that is F (n + p, .) = F (n, .) for all
n ∈ Z

+. We found it rather informative and useful if we switch to writing
F (n, x) as fn(x) and hence Eq. (3.2) may be written in the convenient form

x(n + 1) = fn(x(n)), n ∈ Z
+ (4.1)

where it is assumed that fn+p = fn for all n ∈ Z
+. A point x∗ is a fixed point

of Eq. (4.1) if fn(x∗) = x∗ for all n ∈ Z
+. For periodic points or cycles we
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have to be extra careful in defining them. For there are two main types of
periodic points, one in the space X and another in the product space X ×Y .
A point (x0, g) is a periodic point with period k in the skew product system
π if π((x0, g), k + n) = π((x0, g), n) for all n ∈ Z

+. And by the semigroup
property this is equivalent to π((x0, g), k) = (x0, g).

We now give the definition of periodicity in the space X that is consistent
with that in the product space.

Definition 4.1. Let cr = {x̄0, x̄1, . . . , x̄r−1} be a set of points in X, with
r ≥ 1. Then cr is said to be a geometric r-cycle if for i = 0, 1, . . . , r − 1

f(i+nr) mod p(x̄i) = x̄(i+1) mod r, n ∈ Z
+. (4.2)

The following example illustrates the “layout” in X × Y of the orbit
(x̄0, f0) under the action of the skew product semi-dynamical system π.

Example 4.2. Define

f0(x) = 1 − x,

f2(x) = f0(x) for x ≤ 1 and = 0 otherwise,

f4(x) = f0(x) for x ≤ 1 and = 0 otherwise,

f1(x) = x,

f3(x) = f1(x) for x ≤ 1 and = 0 otherwise,

f5(x) = f1(x) for x ≤ 1 and = 0 otherwise,

fn(x) = fn mod 6, n ≥ 6

Then the system σ on the base Y = {f0, f1, . . . , f5} is defined by σ(fi, n) =
f(i+n) mod 6. Notice that c4 = {0, 1, 1, 0} is a geometric 4-cycle, which gives
rise to a 12-cycle in the skew-product system: {(0, f0), (1, f1), (1, f2), (0, f3),
(0, f4), (1, f5), (1, f0), (0, f1), (0, f2), (1, f3), (1, f4), (0, f5)}. Observe that
the period of the cycle in the skew-product system is the least common multiple
[4, 6] = 12 of r = 4 and p = 6. Furthermore, the number of distinct points in
each fiber is [4, 6]/6 = 2 each of which is of period 12 in the skew product π
(Figure 1).

The following crucial lemma formalizes the above discussion.

Lemma 4.3. [23] Let cr = {x̄0, x̄1, . . . , x̄r−1} be a geometric r-cycle. Then
the π-orbit intersects each fiber Fi, 0 ≤ i ≤ p − 1, in exactly l = s/p, where
s = [r, p] is the least common multiple of r and p, and each of these points is
periodic under the skew-product dynamical system with period s.
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Figure 1: The period of the cycle in the skew-product is given by s = [r, p],
the least common multiple of r and p, and the number of distinct points from
cr in each fiber is l = [r, p]/p.

As a consequence of the preceding Lemma, we now state the second fun-
damental result in this survey, the anticipated extension of Elaydi-Yakubu
Theorem to periodic difference equations.

Theorem 4.4 (Elaydi-Sacker Theorem). [23] Consider the periodic dif-
ference Eq. (4.1) with minimal period p such that each fi : X → X is a
continuous function on a connected metric space X. If cr is a geometric
r-cycle which is globally asymptotically stable, then r divides p.

The next example shows how to utilize Theorem 4.4 to prove that a given
cycle is not globally asymptotically stable.

Example 4.5. Consider the two-dimensional system

x(n + 1) =
1

2
x(n) −

√
3

2
y(n) + (x2(n) + y2(n) − 1) cos

(

2πn

9

)

y(n + 1) =

√
3

2
x(n) +

1

2
x(n) + (x2(n) + y2(n) − 1) sin

(

2πn

9

)

.

This is a periodic system of period p = 9. The solution (x(n), y(n)) =
(

cos nπ
3

, sin nπ
3

)

is of period 6.
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Since 6 does not divide 9, it follows by Theorem 4.4 that this periodic
solution is not globally asymptotically stable.

To this end, we have investigated the permissible globally asymptotically
stable r-cycle. The next question that we will address is what are the per-
missible cycles, with or without any stability properties, in a given p-periodic
difference equation?

The next result provides the definitive answer to the above question.

Theorem 4.6. [25] Consider the p-periodic difference Eq. (4.1). Let cr =
{x̄0, x̄1, . . . , x̄r−1} be a set of r points in a metric space X, d = (r, p), the
greatest common divisor of r and p, and m = p/d. Then the following
statements are equivalent.

(a) cr is a geometric r-cycle of equation (4.1),

(b) f(i+nd) mod p(x̄i) = x̄i+1, 0 ≤ i ≤ r − 1 and n = 0, 1, . . . , (m − 1),

(c) the graphs of the functions fi, fi+d, fi+d, fi+2d, . . . , fi+(m−1)d intersect at
the points (x̄i, x̄(i+1) mod r), (x̄(i+d) mod r, (x̄(i+d+1) mod r), . . . ,
(x̄(i+(m−1)d) mod r, x̄(i+(m−1)d+1) mod r), for 0 ≤ i ≤ r − 1.

We remark here that if the graphs of the maps fi, 0 ≤ i ≤ p − 1, are
disjoint (with the exception of possibly possessing a common fixed point),
then by the preceding theorem, the only possible geometric cycles are those
of period p or multiples of p.

In the next section we will discuss the implications of this fundamental
observation for nonautonomous Beverton-Holt equations.

5 Nonautonomous Beverton–Holt Equations

Cushing and Henson [13] considered a periodically forced Beverton–Holt
equation of the form

x(n + 1) =
µKnx(n)

Kn + (µ − 1)x(n)
(5.1)

where µ is the intrinsic growth rate and Kn = Kn+p, n ∈ Z
+, is the periodic

carrying capacity of a population.
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Equation (5.1) is a perturbation of the original autonomous Beverton–
Holt model

x(n + 1) =
µKx(n)

K + (µ − 1)x(n)
. (5.2)

It is well known (see [20] or [15]) that if K > 0 and 0 < µ < 1, then the zero
solution is globally asymptotically stable on [0,∞). Moreover, if K > 0 and
µ > 1, the positive equilibrium x∗ = K is globally asymptotically stable on
(0,∞). The case µ = 1 is trivial since then every point is a fixed point.

The following two conjectures were proposed by Cushing and Henson [13].
From now on we assume that p ≥ 2, Kn > 0, µ > 1.

Conjecture 5.1. Equation (5.1) has a positive p-periodic solution which is
globally asymptotically stable on (0,∞).

Conjecture 5.2. If cp = {x̄0, x̄1, . . . , x̄p−1} is a p-periodic solution of Eq.
(5.1), then

av(x̄n) < av(Kn)

where

av(x̄n) =
1

p

p−1
∑

i=0

x̄n,

and similarly for av(Kn).

These two conjectures were proved by Elaydi and Sacker in [23, 24]. In
fact, Conjecture 5.1 was proved for a more general class of maps, called class
K. Independently, Kocic [38] solved the above two conjectures where he also
considered the more general case when Kn is bounded, that is 0 < α <
Kn < β < ∞. In [41, 42], Kon proved the second conjecture for a class of
systems that include the periodic Beverton–Holt equation. He considered
the following class of difference equations of the form

x(n + 1) = g

(

x(n)

Kn

)

x(n), x(0) = x0, n ∈ Z
+, (5.3)

where g : R
+ → R

+ is continuous and satisfies the following conditions:
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(i) g(1) = 1,

(ii) g(x) > 1, for all x ∈ (0, 1), and g(x) < 1 for all x ∈ (1,∞). It is also
assumed that Kn > 0, Kn+p = Kn for all n ∈ Z

+.

Notice that Eq. (5.3) includes Ricker’s equation

x(n + 1) = x(n) exp

[

r

(

1 − x(n)

Kn

)]

(5.4)

where fn(x) = x exp

[

r

(

1 − x(n)

Kn

)]

is not monotonic (in contrast to the

Beverton–Holt maps which are monotonic).
Let KM = max{Ki : 0 ≤ i ≤ p − 1}, Km = min{Ki : 0 ≤ i ≤ p − 1}.

Suppose that the following inequality holds

KM

Km

exp(r − 1) ≤ 2. (5.5)

Zhou and Zou [77] showed that under condition (5.5), Eq. (5.4) has a globally
asymptotically stable periodic solution of period p. In fact, the authors
proved only the existence of a p-periodic solution which is globally attracting.
However, by a Theorem of Sedaghat [66], a globally attracting fixed point in
R is necessarily stable, and hence the above statement.

Kon [41] used this result to show that, under condition (5.5), Eq. (5.4)
has a p-periodic solution for which Conjecture 5.2 holds. In 1990, Clark and
Gross [9] discussed a discrete analogue of the nonautonomous Pearl-Verhulst
logistic differential equation

N ′(t) = r(t)N(t)[1 − N(t)/K(t)] (5.6)

where r(t) and K(t) are positive, bounded periodic functions of period T .
Their discrete model is of the form

x(n + 1) =
anx(n)

1 + bnx(n)
(5.7)

where an and bn are positive, bounded and periodic of integer period p. The
authors then showed that if

p−1
∑

i=0

ai > 1, (5.8)
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then Eq. (5.7) has a globally asymptotically stable p-periodic solution. Ob-
serve that the periodic Beverton–Holt equation may be written in the form

x(n + 1) =
µx(n)

1 + (µ−1)
Kn

x(n)
(5.9)

which is of the form (5.7) with an = µ and bn = (µ − 1)/Kn. Thus if µ > 1,
condition (5.8) is automatically satisfied, and the result of Clark and Gross
proves Conjecture 5.2 as well. Surprisingly, most of the authors who recently
tackled Cushing–Henson Conjectures, including Cushing and Henson and the
authors of this paper, were not aware of this early work!

To this end, we have shown that Eq. (5.1), with µ > 1, Kn > 0, has
a globally asymptotically stable p-periodic solution. By the remarks after
Theorem 4.6, we can now confirm that this periodic solution has a minimal
period p. For otherwise let r|p, r < p, be the minimal period of this periodic
solution. Then by Theorem 4.6

Ki = K(i+r) mod p = · · · = K(i+(m−1)r) mod p, i ∈ Z
+

where m = p/r. This implies that Eq. (5.1) is of period r, a contradiction.
The situation, however, is drastically different if we assume also that

µ = µn is periodic with a common minimal period p.
Consider the equation

x(n + 1) =
µnKnx(n)

Kn + (µn − 1)x(n)
, µn > 1, Kn > 0, (5.10)

where both intrinsic growth rate µn and the carrying capacity Kn are of
minimal common period p ≥ 2.

It was shown in [25] that Eq. (5.10) has a globally asymptotically stable
p-cycle {x̄0, x̄1, . . . , x̄p−1}, where

x̄0 =
Lp−1(Qp−1 − 1)

Ep−1
,

Lp−1 = Kp−1 . . . K0,

Qp−1 = µp−1 . . . µ0,

Ep−1 = Kp−1Ep−2 + (µp−1 − 1)µp−2µp−3 . . . µ0Kp−2Kp−3 . . .K0.
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Moreover, this p-periodic orbit may not be of minimal period p. This is in
contrast to the case of Eq. (4.1) when the intrinsic growth µn is constant. In
fact, Eq. (5.10) has a p-periodic orbit of minimal period r < p if and only if

Lp−1(Qp−1 − 1)

Ep−1
=

Lr−1(Qr−1 − 1)

Er−1
.

The following example from [11] produces a periodic cycle whose minimal
period is less than the period of the given difference equation.

Example 5.3. Let µ0 = 3, µ1 = 4, µ2 = 2, µ3 = 5; K0 = 1, K1 = 6
17

,
K2 = 2, K3 = 4

17
, where µn and Kn are periodic of minimal period p = 4.

The equation

x(n + 1) =
µnKn

Kn + (µn − 1)xn

xn = fn(xn)

has the geometric 2-cycle c2 =
{

2
5
, 2

3

}

. Notice that the graphs of the maps f0

and f2 intersect at the point
(

2
5
, 2

3

)

, while the graphs of the maps f1 and f3

intersect at the points
(

2
3
, 2

5

)

.

6 Further Developments

In [25], the authors investigated the extension of the second Cushing–Henson
conjecture to Eq. (5.10). They obtained the following inequality:

av(x̄n) <
µ∗

µ∗

· (µ∗ − 1)

(µ∗ − 1)
av(Kn), (6.1)

where µ∗ = max{µn}, µ∗ = min{µn}. And for the case p = 2, we have the
following sharp result.

av(xn) = av(Kn) + σ

(

K0 − K1

2

)

− γ

(

µ0 + µ1

2

)

(K0 − K1)
2, (6.2)

where

σ =
µ1 − µ0

µ0µ1 − 1
, γ =

(µ0 − 1)(µ1 − 1)

(µ0µ1 − 1)2
.

It would be interesting to extend Eq. (6.2) to the case p > 2.
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Recently, several authors [17, 18] considered the following autonomous
difference equation with delay.

x(n) = f(x(n − k)), k > 1. (6.3)

If we let

yj(n) = x(nk − j), j = 1, 2, . . . , k,

then

yj(n) = f(yj(n − 1)), j = 1, 2, . . . , k

is a set of k uncoupled first order difference equations. Hence one gains in-
formation about Eq. (6.3) by considering the associated first order difference
equation

x(n) = f(x(n − 1)). (6.4)

In particular, [18] considered the set

Sk(p
′) = {lp′ : l|k and (k/l, p′) = 1}.

They showed that if p is a period of Eq. (6.4) and p′ � p in Sharkovsky
ordering of positive integers [21], i.e., p′ is either equal to p or to the left of
p in the Sharkovsky ordering, then each number in the set Sk(p

′) is a period
of Eq. (6.3).

This is a nice extension of the famous Sharkovsky Theorem [21] from
continuous maps on the real line to higher-order difference equations.

This leads to several questions:

1. What is the natural extension of Sharkovsky’s Theorem to first order
periodic difference equations?

2. What is the natural extension of Sharkovsky’s Theorem to periodic
difference equations with delay such as

x(n) = fn(x(n − k))? (6.5)

3. What is the natural extension of Elaydi–Sacker Theorem to periodic
equations of the form (6.5)?
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4. In particular, what are the extensions of the Cushing–Henson Conjec-
tures to the equations

x(n) =
µKnxn−k

Kn + (µ − 1)xn−k

and x(n) =
µKnxn−k

Kn + (µn − 1)xn−k

?

Question 1 has been successfully addressed in [4].
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