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Abstract

The optimal design of a radiotherapy treatment depends on the collection of directions from
which radiation is focused on the patient. These directions are manually selected by a physician
and are typically based on the physician’s previous experiences. Once the angles are chosen,
there are numerous optimization models that decide a fluency pattern (exposure times) that
best treats a patient. So, while optimization techniques are often used to decide the length
of time a patient is exposed to a high-energy particle beam, the directions themselves are not
optimized. The problem with optimally selecting directions is that the underlying mixed integer
models are well beyond our current solution capability. We present a rigorous mathematical
development of the beam selection problem that provides a unified framework for the problem of
selecting beam directions. This presentation provides insights into the techniques suggested in
the literature and highlights the difficulty of the problem. We also compare several techniques
head-to-head on clinically relevant, two-dimensional problems.
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1 Introduction

Radiotherapy is the treatment of cancerous and displasiac tissues with ionizing radiation. These
treatments are beneficial because non-cancerous cells have a therapeutic advantage over their can-
cerous counterparts, an advantage that allows healthy cells to correctly reproduce with slightly dam-
aged DNA. Cancerous cells are in a heightened state of reproduction and do not have this correction
mechanism, and hence, small amounts of DNA damage render the cell incapable of reproducing.
There is a threshold at which the damage is so severe that both cancerous and non-cancerous tissues
are destroyed, and the goal of treatment design is to focus the radiation so that 1) enough radiation
is delivered to the targeted region to kill the cancerous cells and 2) surrounding anatomical struc-
tures are spared. It is worth pointing out that cancerous and non-cancerous cells are interspersed
within the targeted region, and hence, physicians strive to deliver enough radiation to the target to
destroy the cancerous cells but not enough to kill healthy cells.

Modern treatment technology allows patients to receive complicated treatments, and while it
was possible in the past for a physician to manually design a treatment that took full advantage
of the technology, the number of options that are available today places the optimal design of a
treatment outside the realm of human awareness. As such, the use of optimization methods to
systematically design appropriate treatments is now integral to the industry. There are numerous
treatment paradigms that depend on the technology of the clinic, but the most modern procedures
fall into the category called Intensity Modulated Radiotherapy (IMRT). These treatments use a
multileaf collimator to shape the beam and control, or modulate, the dose that is delivered along
a fixed direction of focus, see Figures 1 and 2. The plethora of clinical options, physical models,
and optimization techniques are described in several survey articles, and we direct interested readers
to [2, 19, 39, 43, 50].

Because of the significant complexity of the design process, treatment design is segmented into
a three-phase process that 1) selects how to focus radiation on the patient, 2) decides a fluency
pattern (exposure times) for the directions selected in phase one, and 3) chooses a delivery sequence
that efficiently administers the treatment. The research and industrial communities have largely ad-
dressed the second phase because this is where optimization methods were directly and immediately
useful. However, the directive of the science is to optimize the entire planning process, which is a
monumental task that requires knowledge of sophisticated physical models that in turn lead to opti-
mization problems that far exceed current limitations. Moreover, since there are a variety of clinical
capabilities, each treatment must be designed with the knowledge of what is and is not possible in
a specific clinical environment. So, while optimizing the entire process is the goal, researchers have
initially directed themselves to the question of finding a fluency pattern because this was where they
could help. With this said, researchers have recognized that optimization can aid the first and third
phases of treatment design [25, 26, 34, 35], but instead of dealing with these questions within the
global scope of calculating an optimal treatment, these problems have been considered sequentially.

This paper considers the first phase of IMRT design —i.e. we address the question of how to
select the directions from which radiation is directed at the patient. This question is called the beam
selection or geometry problem and is important for several reasons. First, re-directing the beam’s
path is time consuming, and the number of directions is limited to reduce the overall treatment
time. Moreover, short treatments are desirable because lengthy procedures increase the likelihood
of a patient altering his or her position on the couch, which often leads to inaccurate and potentially
dangerous treatments. Most clinics treat patients steadily throughout the day, and to make sure
that demand is satisfied, patients are usually treated in daily sessions of 15 - 30 minutes. Selecting

2



Figure 1: A Linear accelerator ro-
tating through various angles. Note
that the treatment couch is rotated.

Figure 2: A multileaf collimator that
is used to shape and modulate the
intensity profile.

the beam directions is currently done manually, and hence, the process is time intensive and subject
to the experience of the physician. The planning process proceeds as follows: the physician selects
a collection of angles and waits 10 - 30 minutes while a fluency pattern is calculated. The resulting
treatment is likely unacceptable, and the directions are adjusted and the process repeats. Finding a
suitable collection of directions often takes several hours. The goal of using optimization methods to
identify quality directions is to remove the dependency on a physician’s experience and to alleviate
the tedious repetitive process just described.

In this paper we present a rigorous mathematical development of the beam selection problem
and compare different techniques on (non)clinical examples. Our mathematical development clearly
describes the beam selection problem and provides notation that unifies the description of the tech-
niques in the literature. The numerical comparisons are the first head-to-head comparisons in the
field. A complete explanation of the underlying optimization models that are used to calculate a
fluency pattern is beyond the scope of this paper, and we expect readers to be familiar with these
models [2, 19, 39, 43, 50]. We also direct interested readers to the OR & Oncology web site at
www.trinity.edu/aholder/HealthApp/oncology.

The mathematical presentation that follows depends heavily on collections of functions, and we
use both functional and set notation. For example, we could refer to the collection of real-valued
quadratics of the form ax2 as {{f : f(x) = ax2, x ∈ R} : a ∈ R} or as {{(x, ax2) : x ∈ R} : a ∈ R}.
We use W ∼= V to mean that W is isomorphic to V , and we say that the two optimization problems

min{f(x) : x ∈ X} and min{g(y) : y ∈ Y }

are equivalent if there is a bijection h : X → Y such that for all x ∈ X , g(y) = f(h(x)). The notation
a := b means that a is defined to be b. A set subscript on a vector (matrix) represents the subvector
(submatrix) whose elements (rows) correspond to the elements in the set. There are places where
this notation is extended so that D(T,B) is the submatrix of D whose row indices are in T and whose
column indices are in B. Other terms and notation are consistent with Greenberg’s Mathematical
Programming Glossary located at http://carbon.cudenver.edu/∼hgreenbe/glossary/.
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2 The Beam Selection Problem

The beam selection problem is to find N positions for the patient and gantry from which the
treatment will be delivered. As an example, in Figure 1 we see that the gantry of the linear
accelerator can rotate around the patient in a great circle and that the couch can rotate in the plane
that keeps it flat. There are physical restrictions on the directions that can be used because some
couch and gantry positions interfere with the patient. For geometrical and computational simplicity,
we consider 2D treatment design instead of the entire 3D geometry. This means that we only consider
a 2D slice of the anatomy, which is represented by a single MRI or CAT scan image. Although we
only consider a 2D image, we use an accurate 3D dose model developed by Nizin [31, 32]. There are
numerous dose models in the literature [48], with the gold standard being a Monte Carlo technique
that simulates each particle’s path through the anatomy. Nizin’s work shows that his model is at
least 97% accurate, making it clinically relevant. Figures 3 and 4 depict the situation. In Figure 3
the beam of radiation is directed toward the patient along angle a. To accommodate the multileaf
collimator, the beam is divided into sub-beams, with the number and size of these sub-beams being
dependent on the specific collimator. A sub-beam’s dimensions are stated by the manufacturer ‘at
depth’. This is demonstrated in Figure 4. The 2D plane that contains the patient image is depicted
by thicker lines, and the patient is positioned so that the point about which the gantry rotates
(called the isocenter) is located in the center of the target. The angle defines an orthogonal plane
that passes through the isocenter, and the dimensions of the sub-beams are defined on this plane.

Positions within the anatomy where dose is calculated are called dose-points. These are indicated
in Figure 3 by the grid of dots. Placing dose-points in the anatomy is nontrivial, and many techniques
have been suggested [1, 5, 26, 30]. Each dose-point represents a 3D hyper-rectangle whose length
and width are decided by the spacing of the dose-points and whose height is decided by the spacing
between the images (an average image represents a 3mm thickness). The 3D dose model is needed
to accurately capture how the radiation along a sub-beam is deposited into a 3D hyper-rectangle
that is represented by a 2D dose-point.

We mention that all of the results in this paper naturally extend to the 3D case, where thickness
is accomplished by staking the images, and to the case where gantry rotation is not limited to
rotations around a single image. However, these generalizations complicate notation and hinder
numerical experimentation without adding benefit. For these reasons, we only consider single 2D
images and gantry rotations in the image plane. Within this context, the terms beam and angle are
used interchangeably.

We let A = {aj : j ∈ J} be a candidate collection of angles from which we will select N to treat
the patient, where we typically consider A = {iπ/180 : i = 0, 1, 2, . . . , 359}. The beam selection
problem depends on a judgment function that describes how well a patient can be treated with a
set of N angles. Allowing P(A) to be the power set of A and R

∗
+ to be the nonnegative extended

reals —i.e. R
∗
+ := {x ∈ R : x ≥ 0} ∪ {∞}, we define a judgment function as follows.

Definition 1 A judgment function is a function f : P(A) → R
∗
+ with the property that

A′ ⊇ A′′ implies f(A′) ≤ f(A′′).

The goal of a judgment function is to capture the nature of how a treatment planner decides
between good and bad treatments, and f is the optimal value of an optimization problem that
decides a fluency pattern. Thus, for any A′ ∈ P(A),

f(A′) = min{z(x) : x ∈ X(A′)}, (1)
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Source

Angle, a

Figure 3: An angle’s sub-beams emanate from the
gantry and pass through the anatomy that con-
tains two sensitive regions and a circular target.
The beam selection problem is to choose the best
N angles.

Figure 4: Although a 2D patient
image is considered, an accurate
3D dose model is used.

where z maps a fluency pattern x ∈ X(A′) into R
∗
+. If the demands of a physician are not possible

with a collection of angles —i.e. X(A′) = ∅, then we assume that f assigns the value of ∞ to this
collection. A fluency pattern is a vector x whose components x(a,i) represent the length of time
that a patient is exposed to sub-beam i in angle a. The dependency of f on A′ is described by
the constraints that define the feasible set, X(A′). We ensure the requirement that f(A′) ≤ f(A′′)
for A′ ⊇ A′′ by assuming that X(A′) ⊇ X(A′′). We circumvent a dimensionality problem with the
subset notation by assuming that if A′ ⊆ A, then the sub-beams of angles not in A′ have a zero
exposure time. Also, we only consider judgment functions with the property that f(A′) < ∞ for
some A′ ∈ P(A), for if this were not the case, it would be impossible to design a treatment. We say
that the fluency pattern x is optimal for A′ if f(A′) = z(x) and x ∈ X(A′).

A judgment function is defined by the data that forms the optimization problem in (1). This
data includes a dose operator that maps fluency patterns into anatomical dose, a prescription, and
an objective function. Allowing D to be a dose operator, P to be a prescription, and z to be an
objective function, we say that the triple (D, P, z) defines a judgment function. We let d(k,a,i) be the
rate at which radiation along sub-beam i in angle a is deposited into dose-point k, and we assume
that d(k,a,i) is positive for each (k, a, i). It is worth mentioning that these rates are patient-specific
constants, and hence, the operator that maps a fluency pattern into anatomical dose (measured in
Grays, Gy) is linear. We let D be the matrix whose elements are d(k,a,i), where the rows are indexed
by k and the columns by (a, i). The linear operator x 7→ Dx maps the fluency pattern x to the dose
that is deposited into the patient. To avoid unnecessary notation we use

∑

i to indicate that we are
summing over the sub-beams in an angle. So,

∑

i x(a,i) is the total exposure (or fluency) for angle
a, and

∑

i d(k,a,i) is the aggregated rate at which dose is deposited into dose-point k from angle a.
The majority of the literature is directed at modeling and calculating f , and while this is an
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important issue, our goal is not to decide whether or not one method of finding a fluency pattern is
better or worse than another. In fact, the authors’ experience indicates that the manner in which
a treatment is judged varies from patient to patient and from clinic to clinic. The problem here is
that no single objective adequately measures the myriad of geometrical and numerical tools that a
treatment planner uses to decide if a treatment is appropriate for a specific patient (some researchers
have addressed the problem directly as a multiobjective problem [12, 16, 17, 22, 23, 45]). However,
all commercial planning systems use an optimization routine to decide a fluency pattern, but the
model and calculation method differ from system to system [50]. Our definition of a judgment
function captures the single quality that is exhibited by all these methods, namely that if you
allow a treatment to be designed with more angles, the quality of the treatment either improves or
remains the same (low values of f are better than high values of f in the definition). This result is
not immediately obvious from our definition, which says that the objective improves if we broaden
any specific collection of angles. Our convention that angles outside of a candidate set, say A′, have
zero fluency allows us to conclude the stronger and more appropriate statement that a judgment
function is non-increasing if we simply allow more angles than |A′| —i.e. the subset relationship is
not necessarily required to (possibly) improve f .

Theorem 1 For all 0 ≤ N < |A| we have

min{f(A′) : A′ ∈ P(A), |A′| = N + 1} ≤ min{f(A′′) : A′′ ∈ P(A), |A′′| = N}.

Proof: From our assumption that angles outside of a candidate set of angles have zero fluency, we
conclude

min{f(A′′) : |A′′| = N, A′′ ∈ P(A′)}

= min

{

f(A′) : |A′| = N + 1, A′′ ∈ P(A′),
∑

i

x(a,i) = 0, for some a ∈ A′

}

≥ min{f(A′) : |A′| = N + 1, A′ ∈ P(A)}.

There are a variety of forms that a prescription can have, each dependent on what the optimiza-
tion problem is attempting to accomplish. As an example, the prescription P could be a vector
whose elements pk describe the ideal amounts of radiation for the dose-points. In this situation, we
have that the judgment function is

f(A′) = min

{

z(x) : Dx = P, x ≥ 0,
∑

i

x(a,i) = 0, a ∈ A\A′

}

.

We point out that the dependency on the collection of angles A′ is found in the requirement that
∑

i x(a,i) = 0 for a ∈ A\A′, which guarantees the non-use of angles outside of A′. These constraints
are needed since the dose matrix D includes a column for each sub-beam (a, i), regardless of whether
or not a is in A′. This particular judgment function is not that useful because it requires the physician
to describe an ideal prescription that is exactly attainable by a fluency pattern. However, since an
ideal prescription would have the targeted dose-points uniformly receiving a high level of radiation
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and all other tissues receiving no radiation, this optimization problem is often infeasible, and hence,
f(A′) = ∞.

We partition the set of dose-points by letting T be the set of targeted dose points, C be the
collection of dose-points in the critical regions, and N be the remaining dose-points. We further let
DT , DC , and DN be the submatrices of D such that DT x, DCx, and DNx map the fluency pattern
x into the targeted region, the critical structures, and normal tissue, respectively. Although our
focus is not on a specific judgment function, we use the following judgment functions to highlight
how the techniques in the literature fit into our notation,

f(A′) =

min

{

wT ‖DT x − TG‖2 + wC‖DCx‖2 + wN‖DNx‖2 : x ≥ 0,
∑

i

x(a,i) = 0, a ∈ A\A′

}

(2)

and

f(A′) = min
{

lT α + uT
Cβ + uT

Nγ : TLB − Lα ≤ DT x ≤ TUB,

DCx ≤ CUB + UCβ, DNx ≤ NUB + UNγ, TLB ≤ Lα, −CUB ≤ UCβ,

x ≥ 0, γ ≥ 0,
∑

i

x(a,i) = 0, a ∈ A\A′

}

. (3)

The prescription in the first problem is a vector of goal doses for the target, TG, and this
judgment function uses the 2-norm in an attempt to attain the target dose and at the same time
deliver no radiation to the remaining tissue. The weights wT , wC , and wN place a preferential
structure on these objectives. The second judgment function is linear and has a more complicated
prescription. The vectors TLB and TUB are lower and upper bounds on the targeted dose points,
CUB is a vector of upper bounds on the critical structures, and NUB is a vector of upper bounds
on the normal tissue. The linear functions Lα, UCβ and UNγ measure how the fluency pattern
deviates from the goals of the prescription and l, uC and uN penalize these deviations. We typically
consider the cases of L, UC and UN being either the identity matrix or the vector of ones, denoted
by e, and l, uC and uN being positive.

For a fixed judgment function, the N-beam selection problem is

min{f(A′) − f(A) : A′ ∈ P(A), |A′| = N} = min{f(A′) : A′ ∈ P(A), |A′| = N} − f(A). (4)

This problem is typically stated as a mixed integer (binary) extension of the optimization problem
that defines f by adding binary variables ya for all a ∈ A and constraints

∑

i x(a,i) ≤ Mya and
∑

a ya = N (where M is an arbitrarily large constant). Integer extensions are currently intractable
because they are beyond modern solution capabilities. We point out that the difficulty arises because
the number of binary variables is large and because f is evaluated by solving a large, continuous
optimization problem. Attempts to solve these mixed integer problems are found in [13, 24, 33, 49],
but |A| is severely restricted so that the number of binary variables is manageable. The feasible set

for the beam selection problem has
(

|A|
N

)

elements, and since clinically relevant values of N range from
5 to 10 beams, there are between 4.9 × 1010 and 8.9 × 1018 subsets of {iπ/180 : i = 0, 1, 2, . . .359}.
This fact has lead researchers to investigate heuristics, and one of the contributions of this paper
is that we define terminology that unifies the description of these heuristics. Our mathematical
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presentation clearly and concisely relates techniques that are seemingly different from a clinical
perspective. Our development provides a theoretical basis that explains the underlying difficulty of
the different approaches, and it highlights how to merge heuristics to form new techniques.

We begin by defining a beam selector.

Definition 2 The function g : W → V is a beam selector if

1. W and V are subsets of P(A) and

2. g(W ) ⊆ W for all W ∈ W.

So, if g : W → V is a beam selector, then every collection of angles in W is mapped to a subcollection
of selected angles. An N-beam selector is a beam selector with the added property that | ∪W∈W

g(W )| = N . A beam selector is informed if it is defined in terms of a judgment function’s value
and is weakly informed if it is defined in terms of the data (z, D, P ). A beam selector is otherwise
uninformed. If g is defined in terms of a random variable, then g is stochastic.

There are several beam selection techniques in the literature, and we show how to represent them
as beam selectors. These heuristics to the beam selection problem primarily fall into two categories,
deterministic beam selectors that calculate a collection of beams in one step and iterative, stochastic
beam selectors that randomly search for collections of angles and use the judgment function to decide
a final collection.

3 Deterministic Beam Selectors

We first consider an approach that restricts the total exposure time of a beam. For each angle
a ∈ A, we select a nonnegative value Ma and require

∑

i x(a,i) ≤ Ma. We let M be the vector with
components Ma and define

AM :=
⋃

{

A′ : A′ ∈ P(A), X(A′)
⋂

{

x :
∑

i

x(a,i) ≤ Ma, a ∈ A

}

6= ∅

}

.

So, AM excludes the angles that can not simultaneously satisfy the feasibility condition of being in
X(A′) and the limited total fluency constraint. As an example, if the lower bound TLB is positive
in (3) and Lα = TLB is inconsistent, then AM is empty for arbitrarily small M . But if f is defined
by (2), then AM = A for any M ≥ 0 because the only constraint in f(A′) is the nonnegativity of x.

Definition 3 (Limited Fluency Beam Selector) An LF-N beam selector is an N-
beam selector

glf : {AM} → P(AM ).

Letting FM
lf (N) denote the collection of LF-N beam selectors, the limited fluency approach to

the beam selection problem is

min
{

f
(

glf (AM )
)

: glf ∈ FM
lf (N)

}

− f(A). (5)

The insight into this approach is that small values of Ma restrict the feasible region of the underlying
mixed integer models that directly solve the N-beam problem. Such restrictions are used in an
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attempt to make the relaxed problems of a branch-and-bound method easier to solve [26]. The
size of the search space in (5) depends on M , which controls the number of angles in AM . Since
AM ⊆ A, the search space for the limited fluency approach is no greater than the search space of the
beam selection problem. The challenge is to find small enough values of Ma so that we can exactly
solve (5) but large enough values so that the selected angles are meaningful in the unrestricted case
—i.e. when Ma = ∞. As one would expect, the limited fluency problem approaches the beam
selection problem as M increases, a result formally stated in Theorem 2.

Theorem 2 There exists M̂ ≥ 0 such that the LF-N beam selection problem in (5) and the beam
selection problem in (4) have the same optimal value. Also, if M j is a nondecreasing sequence in

R
|A| such that limj→∞ M j > M̂ , then f(ĝlf (AMj

)) ↓ f(A∗), where A∗ is an optimal solution to the
beam selection problem and ĝlf is any LF-N-beam selector that satisfies

ĝlf (AM̂ ) ∈ argmin{f(A′) : A′ ∈ P(AM̂ ), |A′| = N}.

Proof: Since M j is nondecreasing, we have for any A′ ∈ P(A) that

X(A′)
⋂

{

x :
∑

i

x(a,i) ≤ M j
a , a ∈ A

}

6= ∅

⇒ X(A′)
⋂

{

x :
∑

i

x(a,i) ≤ M j+1
a , a ∈ A

}

6= ∅.

Hence, AMj

⊆ AMj+1

, and we conclude that X(AMj

) ⊆ X(AMj+1

). We are subsequently guar-

anteed that f(AMj+1

) ≤ f(AMj

). Let x∗ be an optimal fluency pattern for A∗, and for a ∈ A,
let M̂a :=

∑

i x∗
(a,i). Since limj→∞ M j > M̂ , there is a j′ such that M j ≥ M̂ for all j ≥ j′. We

now have that x∗ ∈ X(A∗) and that
∑

i x∗
(a,i) ≤ M̂a ≤ M j , for j ≥ j′. Hence, if j ≥ j′, then

A∗ ⊆ AM̂ ⊆ AMj

and the beam selector
{

AM̂
}

7→ A∗ is contained in FM̂
lf and in FMj

lf . From this

we see that for j ≥ j ′,

f(A∗) ≥ min
{

f
(

glf (AM̂ )
)

: glf ∈ FM̂
lf (N)

}

≥ min
{

f
(

glf (AMj

)
)

: glf ∈ FMj

lf (N)
}

≥ min{f(A′) : A′ ∈ P(A), |A′| = N}

= f(A∗).

Note, that it is not necessarily true that AM̂ contains all the angles that can be used in an optimal
treatment. However, each of the optimal N element collections of angles provides an M̂ as in the
proof of Theorem 2. If we let M be greater than the largest of these, then AM is the entire set of
angles that can be used in an optimal treatment. One may similarly think that the beam selection
problem and the limited fluency approach are equal for large enough M , but this is not generally
the case. The following theorem addresses the equivalence of the two problems.
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Theorem 3 For any M , the search space of the limited fluency problem in (5) is no greater than the
search space of the beam selection problem in (4). The two problems are equivalent for sufficiently
large M if and only if for every a ∈ A, there is an A′ ∈ P(A) such that a ∈ A′, |A′| = N , and
X(A′) 6= ∅.

Proof: The fact that the search space for the limited fluency problem is smaller than the search
space for the beam selection problem follows directly from the relationship that AM ⊆ A, for any

M ∈ R
|A|
+ . Let S = {A′ : A′ ∈ P(A), |A′| = N} be the feasible region of the beam selection problem.

The two problems are equivalent for sufficiently large M if and only if AM = A, in which case the
bijection from FM

lf onto S is defined by glf 7→ glf ({AM}). First, notice that

X(A′)
⋂

{

x :
∑

i

x(a,i) ≤ Ma, a ∈ A

}

= ∅

for arbitrarily large M if and only if X(A′) = ∅. This follows since if x̂ ∈ X(A′), then selecting
Ma =

∑

i x(a,i) ensures that
{

x :
∑

i x(a,i) ≤ Ma, a ∈ A
}

contains x̂. We now have from the defini-
tion of AM that AM = A for sufficiently large M if and only if for every a ∈ A, there is an A′ ∈ S
such that a ∈ A′ and X(A′) 6= ∅.

The significance of these results is that an optimal solution of the beam selection problem can
be obtained by sequentially increasing M . An interesting question for further research is to find
the smallest value of M so that the limited fluency approach identifies an optimal set of angles.
Realistic upper bounds on M are obtained from clinical and physical considerations. A weakly
informed heuristic for M is found in [26], where using the notation in (3), the authors set

Ma = max

{

TUBk
∑

i d(k,a,i)
: k ∈ T

}

.

This value of Ma makes sure that none of the tumor’s upper bounds are violated for exposure times
less than one unit. This is a sensible heuristic, but the authors of [26] still found it too large to solve
(5) directly and resorted to an iterative stochastic beam selector that used this bound at each step,
see Section 4.

We continue our investigation into beam selectors by considering the set covering approach
found in [13]. An angle a covers the dose-point k if

∑

i d(k,a,i) ≥ ε, and for each k ∈ T , let
Aε

k = {a ∈ A : a covers dose-point k}. It is important to notice that Aε
k = A for all k ∈ T if and

only if 0 ≤ ε ≤ ε∗ := min{
∑

i d(k,a,i) : k ∈ T, a ∈ A}. Allowing Wε
sc = {Aε

k : k ∈ T}, we make the
following definition.

Definition 4 (Set Cover Beam Selector) An SC-N-beam selector is an N-beam se-
lector having the form

gsc : Wε
sc →

⋃

k∈T

(P(Aε
k)\∅) .

Notice that since gsc can not map to ∅, the mapping has to select at least one angle to cover each
targeted dose-point. The isocenter is commonly placed at the center-of-mass of the targeted region,
making the most common scenario the one where each targeted dose-point is covered by every angle.
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Of course, this depends on the threshold that decides whether or not an angle covers a dose-point,
but this threshold is typically small. Allowing Fε

sc(N) to be the collection of SC-N-beam selectors,
we have that the set covering approach to the beam selection problem is

min







f





⋃

W∈Wε
sc

gsc(W )



 : gsc ∈ Fε
sc(N)







− f(A). (6)

As the following result shows, the set covering approach is typically equivalent to the beam selection
problem.

Theorem 4 If 0 ≤ ε ≤ ε∗, the set covering problem in (6) is equivalent to the beam selection
problem in (4).

Proof: If each targeted dose point is covered by every angle, then Aε
k = A for all k ∈ T . Since the

elements of Fε
sc(N) are functions, the image of A is unique. This means that

Fε
sc(N) = {{(Aε

k,Vk) : k ∈ T} : Vk ∈ P(Aε
k), |∪k∈TVk| = N}

= {{(A,V)} : |V| = N, V ∈ P(A)}
∼= {V : |V| = N, V ∈ P(A)} .

Notice that for any A′ ∈ P(A) such that |A′| = N , there exists a unique gε
sc ∈ Fε

sc(N) such that
gsc(A) 7→ A′. Hence, f(A′) = f(gε

sc(A)) and the proof is complete.

From Theorem 4 we see that under the common scenario of having each beam cover the entire
target, the set cover problem solves the beam selection problem. However, since the feasible sets are
isomorphic, there is no apparent numerical advantage to solving (6) instead of (4). This leads us to
heuristic approaches, where the idea is to use information about the problem to selectively identify
a subcollection of Fε

sc(N), say F̂ε
sc(N), such that

min{f(A′) : A′ ∈ P(A), |A′| = N} ≈ min

{

f

(

⋃

W∈Wsc

gsc(W )

)

: gsc ∈ F̂ε
sc(N)

}

. (7)

Although not with this notation, this is the technique found in [13], where a traditional set
covering problem is solved to identify a single gsc. For each targeted dose-point k, let q(k,a,i) be 1 if
d(k,a,i) is greater than some reasonably small threshold and 0 otherwise —i.e. q(k,a,i) is 1 if sub-beam
i in angle a covers dose-point k. For each angle a, define

ca =







∑

k∈C

∑

i

(uC)k ·q(k,a,i)

CUBk
, C 6= ∅,

0, C = ∅,
and ĉa =







∑

k∈C

∑

i

(uC )k·q(k,a,i) ·d(k,a,i)

CUBk
, C 6= ∅,

0, C = ∅,
(8)

where uC and CUB are part of the prescription in (3). Letting q(k,a) be 1 if angle a covers dose-point
k and 0 otherwise, the authors of [13] use the following set covering problems to select a gsc,

min

{

∑

a

caya :
∑

a

q(k,a)ya ≥ 1, k ∈ T,
∑

a

ya = N, ya ∈ {0, 1}

}

and (9)

min

{

∑

a

ĉaya :
∑

a

q(k,a)ya ≥ 1, k ∈ T,
∑

a

ya = N, ya ∈ {0, 1}

}

. (10)
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The cost of selecting an angle is large if it contains sub-beams that intersect a critical structure with
either a large penalty for violating its upper bound or a small upper bound. The ĉ coefficients are
additionally scaled by the rate at which dose is deposited into dose-point k from sub-beam (a, i). A
solution to either problem defines an element of F ε

sc(N) through the relationship that a ∈ gsc(Aε
k)

if and only if a ∈ Aε
k and ya = 1. These N-beam selectors are weakly informed because they

use information about the data that describes the judgment function, but they fail to be informed
because they do not require an evaluation of f .

While the set covering problems in (9) and (10) are binary, they are generally easy to solve. In
fact, in the ordinary situation of Aε

k = A for k ∈ T , we can completely classify the behavior of the
set covering heuristic for selecting an N-beam selector.

Theorem 5 Assume that 0 ≤ ε ≤ ε∗, and order the angles so that ca1 ≤ ca2 ≤ . . . ≤ ca|A|
. Let

j′ and j′′ be the smallest and largest values, respectively, such that caj′
= . . . = caN

= . . . = caj′′
.

Then, y is an optimal solution to (9) if and only if

• yaj
= 1 for 1 ≤ j < j′,

•
∑

j′≤j≤j′′
yaj

= N − j′, and

• yaj
= 0 for j > j′′.

Proof: From the assumption that 0 ≤ ε ≤ ε∗, we see that y is feasible if and only if
∑

a ya = N ,

and hence, the optimal solutions are those that satisfy
∑

a caya =
∑N

j=1 caj
. The result follows

immediately since caj′
= . . . = caN

= . . . = caj′′
.

The following corollary is immediate.

Corollary 1 If 0 ≤ ε ≤ ε∗, the problem in (9) has
(

j′′−j′+1
N−j′+1

)

optimal solutions.

From Corollary 1 we see that for sufficiently small ε, the set covering heuristic for the beam selection

problem reduces the search space of the beam selection problem from
(

|A|
N

)

to
(

j′′−j′+1
N−j′+1

)

, which is

dramatic if j′ ≈ j′′. Notice that the success of the heuristic lies in the ability of the cost coefficients
to accurately predict quality angles.

Although the result in Theorem 5 is simple, it is important because it allows us to interpret
the set covering approach as a scoring technique in the common situation of Aε

k = A, where each
angle is scored with either ca or ĉa. Other researchers have heuristically solved the beam selection
problem by scoring (collections of) angles and selecting the best N angles [36, 37, 41, 47, 51]. Such
techniques fit within the framework of the set covering approach. To make this precise, we define a
scoring selector as follows.

Definition 5 (Scoring Beam Selector) An S-N-beam selector is an N-beam selector
such that

gs : {A} → P(A).

It may seem odd that the definition of a scoring selector does not take into account the score that
an angle is assigned. However, this is done intentionally since the value of an angle’s score is only
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used to decide whether or not the angle is selected —i.e. whether or not a is in gs(A). Allowing
Fs(N) to be the collection of S-N-beam selectors, we immediately have from Definition 5 that

min{f(A′) : A′ ⊆ A, |A′| = N} − f(A) = min{f(gs(A)) : gs ∈ Fs(N)} − f(A). (11)

So, the scoring approach is equivalent to the beam selection problem.
An example of a scoring approach is found in [37], where each angle is assigned the score

ca =
1

|T |

∑

k∈T

∑

i

(

d(k,a,i) · x̂(a,i)

TG

)2

(12)

and
x̂(a,i) = min{min{CUBk/d(k,a,i) : k ∈ C}, min{NUBk/d(k,a,i) : k ∈ N}}.

An angle’s score increases as the sub-beams that comprise the angle become capable of delivering
more radiation to the target without violating the restrictions placed on the non-targeted region(s).
It is important to note that this weakly informed beam selector considers sub-beams individually
and then aggregates this information to form a score for the entire angle. High scores are considered
desirable since they indicate that it is possible to deliver large amounts of radiation to the target
while maintaining the restrictions on the remaining tissues. So, this scoring technique uses the
bounds on the non-targeted tissues to form constraints, and the score represents how well the target
can be treated under these constraints. This is the reverse of the perspective in (9) and (10), where
the constraints attempt to guarantee that the target is treated and the objective function strives to
reduce the damage to the critical structures. These philosophies are different, but from Theorem 5
we see that selecting the N highest scoring angles is the same as solving the set covering problem
in (9), provided that Aε

k = A for k ∈ T and that the cost coefficients are replaced by the negatives
of the scores in (12). The important observation is that every scoring technique is a set covering
problem.

Theorem 6 If 0 ≤ ε ≤ ε∗, then Fε
sc(N) = Fs(N).

Proof: As in the proof of Theorem 4, we have that if 0 ≤ ε ≤ ε∗, then

Fε
sc(N) = {{(Aε

k,Vk) : k ∈ T} : Vk ∈ P(Aε
k), |∪k∈TVk| = N}

= {{(A,V)} : |V| = N}

= Fs(N).

The interpretation of Theorem 5 for a scoring technique is simply that if there is a tie for the

Nth best score, then angles having this score can be interchanged. The score is only used to order
the beams, but once the ordering is known, the scores could be converted into 1s and 0s to represent
the beams that are and are not selected. The importance of Theorem 6 is that it shows how the
techniques in the literature relate independent of how they address the clinically important question
of how to treat the target without damaging the remaining anatomy.
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Two other scoring methods are found in [44]. Letting x∗ be an optimal fluency pattern for A,
the authors of [44] define the entropy of an angle by ea := −

∑

i x∗
(a,i) ln x∗

(a,i) and the score of a is

ca = 1 −
ea − min{ea : a ∈ A}

max{ea : a ∈ A}
. (13)

In this approach, an angle’s score is high if the optimal fluency pattern of an angle’s sub-beams is
uniformly high. So, an angle with a single high-fluency sub-beam would likely have a lower score
than an angle with a more uniform fluency pattern. Unlike the scoring procedure in [37], this
technique is informed since it requires a solution to f(A). An important observation is that there is
not necessarily a uniquely optimal fluency pattern, which means that this scoring technique is solver
dependent. We discuss this in detail at the conclusion of this section, and an example in Section 5
shows how radically different the scores can be from the same judgment function. The second score
in [44] is the the absolute value of the Fourier transform of x∗

(a,·). Details for this approach are not
provided, and we do not investigate this technique.

We now turn our direction to an approach that is based on the data compression technique called
vector quantization [20] (we direct readers to the text of Gersho and Gray [14] for further information
on vector quantization). We say that A′ is a contiguous subset of A if A′ is an ordered subset of
the form {aj , aj+1, . . . , aj+r}. So, if A = {iπ/180 : i = 0, 1, 2, . . .359}, then {0, π/180, 2π/180}
is a contiguous subset but {0, π/180, 3π/180} is not. A contiguous partition of A is a collection
of contiguous subsets of A that partition A, and we let Wvq(N) be the collection of N element
contiguous partitions of A.

Definition 6 (Vector Quantization Beam Selector) A VQ-N-beam selector is a func-
tion of the form

gvq : {Wj : j = 1, 2, . . . , N} → {{aj} : aj ∈ Wj},

where {Wj : j = 1, 2, . . . , N} ∈ Wvq(N).

The image of Wj is a singleton {aj}, and for notational simplicity, we consider gvq(Wj) to be aj

instead of {aj}. Allowing Fvq(N) to be the collection of VQ-N beam selectors, we have that the
vector quantization approach to the beam selection problem is

min







f





N
⋃

j=1

gvq(Wj)



 : gvq ∈ Fvq(N)







− f(A). (14)

Unlike the previous set covering and scoring approaches, the vector quantization problem is not
equivalent to the beam selection problem. In fact, the size of the search space in (14) is

(

|A|

N

)

< |Fvq | =
∑

{Wj}∈Wvq(N)





N
∏

j=1

|Wj |



 <

(

|A|

N

)2

, (15)

which is larger than the number of N element subsets of A. For example, if N = 5, the vector
quantization approach searches a space of between 4.9 × 1010 and 2.4× 1021 functions. The reason
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the search space is larger is that we have to select a contiguous partition in addition to selecting N
beams.

The increased search space initially makes this approach look unattractive. However, the choice
of a VQ-N-beam selector relies on the probability that an angle is used in an optimal treatment. So,
although the vector quantization approach is deterministic, its heart is in modeling the probability
that an angle is selected. Let α(a) be the probability that angle a is selected in an optimal collection
of N beams. The distortion of a quantizer is

N
∑

j=1

∑

a∈Wj

α(a) · m(a, gvq(Wj)),

where m measures the distance from a ∈ Wj to gvq(Wj). It is typical in the data compression
literature for m(u, v) = ‖u − v‖2, but this measure only makes limited sense in our setting. A
treatment planner typically considers angles that are spaced at least 5o apart because angles that
differ by a degree or two are not significantly different in the clinic unless such small differences
place a critical structure at risk. So, m(a, gvq(Wj)) = ‖a − gvq(Wj)‖2 measures some but not all of
the clinical relevance that such a metric should capture. A more meaningful metric is not known
for the beam selection problem, and developing such a measure promises to be a fruitful avenue of
research. In what follows, we assume that m(a, gvq(Wj)) = ‖a − gvq(Wj)‖2.

Once the probability distribution α is known, an element of Fvq(N) is calculated to minimize
distortion. The following result is found in [14].

Theorem 7 The VQ-N-beam selector gvq minimizes distortion for the contiguous partition {Wj :
j = 1, 2, . . . , N} if and only if gvq satisfies

N
∑

j=1

∑

a∈Wj

α(a) · m(a, gvq(Wj)) ≤
N
∑

j=1

min







∑

a∈Wj

α(a) · m(a, a′) : a′ ∈ Wj







. (16)

Theorem 7 states that once a contiguous partition is selected, the VQ-N-beam selector that minimizes
distortion over the individual contiguous subsets actually minimizes the overall distortion. In the
special case of a continuous A, say the interval [0, 2π), the authors of [14] show that a solution to
the minimization problem in (16) is

gvq(Wj) =

∑

a∈Wj
a · α(a)

∑

a∈Wj
α(a)

. (17)

So, once a contiguous partition is known, the image of a contiguous set that minimizes distortion
is the center-of-mass of the contiguous set. This center-of-mass calculation is not exact for discrete
sets since the center-of-mass may not be an element of the contiguous set. For example, if α is the
uniform distribution over {iπ/180 : i = 0, 1, 2, . . . , 359} and W1 = {0, π/180, 2π/180, 359π/180},
then the center-of-mass over this set is

(

(1/360)(359 + 360 + 361 + 362)

4/360

)

mod 360 =
1

2
.

Instead of solving (16) exactly, we proceed by calculating the center-of-mass and mapping angles
not in A to their nearest neighbor. Angles with ties, such as 1/2 in this example, are mapped to
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the next largest element of A. We denote the elements of Fvq(N) that satisfy (17) by gopt
vq , and we

let Fopt
vq (N) be the collection of these functions. Theorem 8 shows the relationships between the

different search spaces.

Theorem 8 If 0 ≤ ε ≤ ε∗, then

∣

∣

∣

∣

∣

∣

⋃

gopt
vq ∈Fvq(N)

gopt
vq (Wopt

vq )

∣

∣

∣

∣

∣

∣

≤ |Fopt
vq (N)| ≤ |Fε

sc(N)| = |Fs(N)| ≤ |Fvq(N)|, (18)

where Wopt
vq is the domain of gopt

vq .

Proof: From (11), (15), and Theorem 6 we have that |F ε
sc(N)| = |Fs(N)| ≤ |Fvq(N)|. Since there

are
(

|A|
N

)

contiguous partitions of A that contain N sets, we have from Theorem 7 that |F opt
vq (N)| ≤

(

|A|
N

)

. The first inequality holds since gopt
vq ∈ Fopt

vq (N), and because it is possible for different
contiguous partitions to map to the same image set.

As previously stated, the fact that |Fs(N)| ≤ |Fvq(N)| makes it appear as though the vector
quantization technique is fruitless. However, the inequalities in (18) show that if we only consider

VQ-N-beam selectors that minimize distortion, then we have to consider at most
(

|A|
N

)

collections
of angles. It is possible for |Fopt

vq (N)| < |Fε
sc(N)|. For example, if Wj is a contiguous subset of A

with the property that α(a) = 0 for all a ∈ Wj , then no VQ-N-beam selector satisfies (17). The first
inequality in (18) further highlights the possibility that different partitions can map to the same
image —i.e. it is possible to have different contiguous partitions, say {Wj : j = 1, 2, . . .N} and
{W ′

j : j = 1, 2, . . .N}, such that gopt
vq (Wj) = gopt

vq (W ′
j), j = 1, 2, . . . , N . For example, assume that α

is the uniform distribution over A = {iπ/180 : i = 0, 1, . . . , 359} and let θ range from 1 to 89. Then,
if we let

W1 = {a : 0 ≤ a ≤ θπ/180 or 2π − θπ/180 ≤ a ≤ 2π},

W2 = {a : θπ/180 < a < π − θπ/180},

W3 = {a : π − θπ/180 ≤ a ≤ π + θπ/180} and

W4 = {a : π + θπ/180 < a < 2π − θπ/180},

we have for any gopt
vq that

gopt
vq ({W1, W2, W3, W4}) = {0, π/2, π, 3π/2}.

So, there are 89 different contiguous partitions of A, and hence 89 different mappings, with an image
of {0, π/2, π, 3π/2}.

If we alter (14) so that it becomes

min{f(gopt
vq (A)) : gopt

vq ∈ Fopt
vq }, (19)

then we have from Theorem 8 that the search space of the vector quantization approach is no larger
than the size of the search space for the beam selection problem. Indeed, if we limit our search space
to VQ-N-beam selectors with unique images, the size of the space may significantly reduce. The
precise relationship between this reduction and the probability distribution α is an open question.
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Theorem 7 provides a basis for vector quantization heuristics to be applied to the beam selection
problem. The heuristics select a contiguous partition from which a single VQ-N-beam selector is
created according to condition (17). The process in [20] selects the zero angle as the start of the
first contiguous set. The end point of the first contiguous set is

max







a′ : |A|
∑

a≤a′

α(a) < 1/N







, (20)

and the first element of the second contiguous set is the next largest element of A. The end of
the next contiguous set is found by replacing 1/N in (20) by 2/N , and the process continues until
a contiguous partition is formed. This is the same as forming the cumulative density and evenly
dividing its range into N intervals. This technique is not that intelligent because the contiguous
sets are decided by zero being an end point of the first contiguous set. As an alternative, we could
use the same rule and rotate the starting angle through the 360 candidates, which would produce a
maximum of 360 different VQ-N-beam selectors. We could then evaluate f over the image of each
of these beam selectors and take the smallest value. This heuristic reduces the search space from
(

A
N

)

to no more than 360.
We suggest a more thoughtful heuristic instead of simply calculating the possible 360 different

VQ-N-beam selectors that minimize distortion. The key is to intelligently select the contiguous
partition, and we use an algorithm first discovered by Lloyd [27]. This iterative process uses the
m metric to sequentially select new contiguous partitions. The idea is to start with an initial
contiguous partition, say {W 0

j : j = 1, 2, . . . , N}, and then calculate the unique function gopt
vq ∈ Fopt

vq

that corresponds to this partition (we assume that α(a) > 0 for some a in each contiguous set,
which guarantees the existence of the VQ-N-beam selector). The m metric is used to form a new
contiguous partition as follows

W 1
j =

{

a ∈ A : m
(

a, gopt
vq (W 0

j )
)

= min
{

m(a, gopt
vq (W 0

t )) : t = 1, 2, . . . , N
}}

.

For example, if m(a, g(Wj)) = ‖a − g(Wj)‖2, then the algorithm first calculates the center of mass
of each of the initial contiguous sets, and then forms a new contiguous partition by re-assigning the
angles to their nearest center of mass, where nearest is interpreted naturally. The process repeats
until the contiguous partition remains unchanged. The following result is found in [14].

Theorem 9 If {W ′
j : j = 1, 2, . . . , N} and {W ′′

j : j = 1, 2, . . . , N} are consecutive contiguous
partitions from the Lloyd algorithm, then

N
∑

j=1

∑

a∈W ′′
j

α(a) · m(a, gopt
vq (W ′′

j )) ≤
N
∑

j=1

∑

a∈W ′
j

α(a) · m(a, gopt
vq (W ′

j)).

Theorem 9 guarantees that the distortion is non-increasing as the Lloyd algorithm selects VQ-
N-beam selectors. The hope is that the Lloyd algorithm terminates with a VQ-N-beam selector
that minimizes distortion, but this is not guaranteed. Also, there is no theoretical foundation on
why a VQ-N-beam selector that minimizes distortion is a clinically relevant beam selector, and the
relationships among the probability density, the m metric, and the ability of the Lloyd algorithm to
accurately select quality angles is not well understood.
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The success of vector quantization directly relies on the ability of the probability distribution to
accurately gauge the likelihood of an angle being used in an optimal N-beam treatment. This means
the vector quantization technique is under the auspices of probability modeling, and we conclude
this section by discussing some different probability models. The first idea is to make a weakly
informed probability distribution by normalizing the scoring techniques in (8) and (12). Using these
probabilities in a vector quantization heuristic is new, and we test them in Section 5.

Alternatively, an informed density is suggested in [20], where the authors assume that an optimal
fluency pattern of f(A) contains information about which angles should and should not be used.
This idea is similar to the informed scoring technique in (13). We mention that the scores in (13)
can be normalized to create an informed model of α. The authors of [20] similarly calculate an
optimal fluency pattern, x∗ for A, and let

α(a) =

∑

i

x∗
(a,i)

∑

a∈A

∑

i

x∗
(a,i)

.

Evaluating f(A) with this probability model allows the angles to compete for exposure time, with the
goal being to optimally treat the patient. If there is a unique optimal fluency pattern corresponding
to f(A), then an angle’s probability is proportional to the unique exposure time that is required of
that angle to optimally treat the patient. However, if there are alternative optimal fluencies, the
interpretation of the probability is not clear. In fact, an example in Section 5 shows that different
solution techniques can produce significantly different fluencies from the same judgment function.
In this situation, the probability model in [20] has the undesirable property of being dependent
on the solver, just like the scoring method in (13). This flaw is recognized in [18] and [20], and a
path-following interior point method is suggested to circumvent the problem. However, while the
solution of a path-following technique is theoretically favorable, the implementations typically fall
short of the promised theoretical advantages (the problem being that a path-following technique
often terminates with a degenerate optimal solution).

To remove the dependency on a particular solver, we consider generating a balanced probability
distribution —i.e. one that is as uniform as possible. Such a distribution results from solving

lexmin

(

z(x), sort

(

∑

i

x(a,i) : a ∈ A

))

, (21)

where sort is a function mapping R
A into R

A that reorders the components of the vector
(
∑

i x(a,i)

)

a∈A
in a nonincreasing order. This particular type of lexicographic optimization has been considered in
multicriteria optimization [3, 28] and has interesting properties [11].

The optimization problem in (21) is solved by an iterative process. Like the techniques in [20]
and [44], the procedure first calculates f(A). Holding f(A) constant, the procedure iteratively
minimizes the infinity norm of the fluency pattern. So, after the first iteration we have found the
value, say z∗

1 , for which we are assured that any fluency pattern with each exposure time below z∗
1 is

non-optimal. The sub-beams that necessarily attain z∗
1 are assigned this value, fixing the exposure

times for these sub-beams. The process repeats with the remaining sub-beams and terminates once
all beams are held constant. The algorithm is found in Figure 5.

The probability model formed by the algorithm in Figure 5 has the favorable quality that α(a) is
large if and only if an optimal treatment requires a lengthy exposure time for angle a. Unfortunately,
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• Let z0 = f(A).

• Initialize x̂ to be the zero vector of length |A|, t = 1, Bt = ∅, and Ut = {j :
j = 1, 2, . . . , |A|}.

• Do until |Bt| = |A|:

– Let x∗
Ut

solve z∗
t = min{‖xUt

‖∞ : f(A) = z0, xBt
= x̂Bt

, xUt
≥ 0}.

– Let

∆Bt = {j : (x∗
Ut

)j must be z∗t }

Bt+1 = Bt ∪ ∆Bt

Ut+1 = Ut\∆Bt

x̂∆Bt
= z∗t

t = t + 1

• Set α = (1/‖x̂‖)x̂.

Figure 5: An iterative algorithm to calculate a solver-independent probability distribution that
models an angles likelihood of being used in an optimal treatment.

we do not have a similar statement for the smaller components of α, and it is possible for α(a) to
be zero even though the patient can be exposed to angle a in an optimal treatment. We make this
precise by analyzing the algorithm with respect to the polytope

X∗ = {x : 0 < l ≤ DT x ≤ u1, DC∪Nx ≤ u2, x ≥ 0}. (22)

This polytope is general enough to represent the optimal fluency patterns of most representations
of f(A), including (2) and (3), and for this analysis we assume that

X∗ = {x : 0 < l ≤ DT x ≤ u1, DC∪Nx ≤ u2, x ≥ 0} = {x ∈ X(A) : f(A) = z(x)}.

Theorem 10 explains how the algorithm terminates and how some sub-beams are assigned a zero
probability.

Theorem 10 With the notation of the algorithm in Figure 5, assume that f is a judgment function
with the property that x∗

Ut
solves

z∗t = min{‖xUt
‖∞ : f(A) = z0, xBt

= x̂Bt
, xUt

≥ 0}

= min{‖xUt
‖∞ : x ∈ X∗, xBt

= x̂Bt
, xUt

≥ 0}.

Then, the algorithm terminates with an α in the (t+1)st iteration having the property that α(a) = 0
for some a ∈ A if and only if either D(T,Bt)x̂Bt

≥ l or
[

D(T,Bt)

D(C∪N,Bt)

]

x̂Bt
≤

(

u1

u2

)

,

[

D(T,Bt)

D(C∪N,Bt)

]

x̂Bt
6<

(

u1

u2

)

. (23)
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Moreover, α(a) = 0 implies a ∈ ∆Bt+1.

Proof: Let f be a judgment function with the stated property. Assume that the algorithm has
entered the tth iteration —i.e. that Bt 6= A and Ut 6= ∅. By design the optimization problem used
to calculate z∗

t is feasible and z∗
1 ≥ z∗2 ≥ . . . ≥ z∗t . If D(T,Bt)x̂Bt

≥ l, then

z∗t = min{‖xUt
‖∞ : x ∈ X∗, xBt

= x̂Bt
, xUt

≥ 0}

= min{‖xUt
‖∞ : l − D(T,Bt)x̂Bt

≤ 0 ≤ D(T,Ut)xUt
≤ u1 − D(T,Bt)x̂Bt

,

D(C∪N,Ut)xUt
≤ u2 − D(C∪N,Bt)x̂Bt

, xBt
= x̂Bt

, xUt
≥ 0}.

Since xUt
= 0 is feasible, it is optimal. So, Bt+1 = A and α(a) = 0 for a ∈ Ut.

Suppose that (23) holds. Then, for some j ∈ T ∪ C ∪ N we have that D({j},Bt)x̂Bt
= (u1, u2)

T
j .

This means that calculating z∗
t requires

xUt
≥ 0 and D({j},Ut)xUt

≤ (u1, u2)
T
j − D({j},Bt)αBt

= 0.

Since D > 0, the only solution is xUt
= 0, and again we see that Bt+1 = A and α(a) = 0 for a ∈ Ut.

Alternatively, suppose that

l − D(T,Bt)x̂Bt
≥ 0, l − D(T,Bt)x̂Bt

6= 0, and

(

u1

u2

)

− DBt
x̂Bt

> 0.

Then, xUt
= 0 is not feasible to

z∗t = min{‖xUt+1‖∞ : x ∈ X∗, xBt
= x̂Bt

, xUt
≥ 0}

= min{‖xUt
‖∞ : 0 ≤ l − D(T,Bt)x̂Bt

≤ D(T,Ut)xUt
≤ u1 − D(T,Bt)x̂Bt

,

D(C∪N,Ut)xUt
≤ u2 − D(C∪N,Bt)x̂Bt

, xBt
= x̂Bt

, xUt
≥ 0}.

and we have that z∗
t > 0. There are two cases to consider. First, if |Bt+1| = |A|, then the

algorithm terminates with the smallest elements of x̂ being z∗
t . In this case no angle is assigned a

zero probability. Second, if |Bt+1| < |A|, then the algorithm continues to the (t + 1)st iteration.

The algorithm in Figure 5 iteratively reduces the maximum exposure time of the angles that are
not fixed, which intuitively means that we are re-distributing fluency over the remaining angles.
As the maximum exposure time decreases, the exposure times for some angles needs to increase to
guarantee an optimal treatment. Theorem 10 shows that the algorithm terminates as soon as the
variables that are fixed by this ‘equalizing’ process attain one of the bounds that describe an optimal
treatment. Theorem 10 also helps us interpret the angles with a zero probability. At the algorithm’s
conclusion, we have that α(a) = 0 if and only if the exposure time of angle a is forced to zero when
the other angles are set at their ‘smallest’ exposure time (smallest relative to the iterative process
of reducing the maximum exposure time).

4 Iterative Beam Selectors

The previous beam selectors reduced the search space of the original beam selection problem and
then selected a collection of angles from the reduced set, either by solving an optimization problem or
through a rule. The beam selectors presented in this section are different in that they recognize the
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immense size of the search space and iteratively select collections of angles, keeping track of which
collection has the best judgment value. These iterative methods are either deterministic local-search
techniques or stochastic global approaches.

The local search heuristics in [6, 13, 29] are naturally interpreted as iterative scoring methods.
Starting with an initial collection of N angles, A′

0, a scoring selector is used to find a subsequent
collection of angles, A′

t, for t ≥ 1. We let c(a,t) be the score of angle a in iteration t. Each of these
methods sets c(a,t) = 0 if a is not in a neighborhood of A′

t−1, which makes these iterative approaches
local search algorithms. The techniques differ in how they select A′

0 and in how they update the
scores.

The method in [13] assumes that the tth angle set is A′
t = {a(1,t), a(2,t), . . . , a(N,t)}, where

a(i,t) < a(j,t) if i < j. The initial collection of angles is A′
0 = {2πi/N : i = 1, 2, . . . , N}, and for

t = 1, 2, . . . , N the angles are scored by

c(a,t) :=







γ, a ∈ argmin{f((A′
t−1 \ {a(t,t−1)}) ∪ {a′}) : a(t,t−1) < a′ < a(t+1,t−1), a′ ∈ A}

1, a ∈ A′
t \ {a(t,t−1)}

0, otherwise,

where 0 < γ < 1. With these scores, Theorem 5 implies that a(t,t−1) is replaced by an angle between
a(t,t−1) and a(t+1,t−1) such that c(a,t) = γ. The score of γ indicates that the replacement angle
improves the judgment function as much as possible knowing that such a replacement is required.
Notice that the score of the angle being replaced is c(t,t) = 0. Obviously, this scoring technique is
informed by evaluating f . If, after N iterations f(A′

N ) < f(A′
0), the heuristic repeats by setting

A′
0 = A′

N . Otherwise it stops. The heuristics of [6] and [29] are similar but select A′
0 differently and

respectively score angles with

c(a,t) :=























γ, a ∈ argmin{f((A′
t−1 \ {a(t,t−1)}) ∪ {a′}) :
a(t,t−1) − u < a′ < a(t,t−1) + u,
a′ ∈ A, |a′ − a′′| ≥ l, a′′ ∈ A′

t−1 \ {a(t,t−1)}
1, a ∈ A′

t−1 \ {a(t,t−1)}
0, otherwise

(24)

and

c(a,t) :=















γ, a ∈ argmin{f(A′
t−1 ∪ {a′}) : a′ ∈ A \ A′

t−1}
0, a ∈ argmin{f(A′

t−1 \ {a
′}) : a′ ∈ A′

t−1}
1, a ∈ A′

t−1 \ argmin{f(A′
t−1 \ {a

′}) : a′ ∈ A′
t−1}

0, otherwise.

The parameters l and u in (24) guarantee that a(t,t) is replaced by an angle at least l degrees from
any other angle in A′

t but not more than u degrees from a(t,t−1) (the authors use l = 5 and u = 50).
Similar to [13], the process in [6] repeats after N iterations as long as A′

N 6= A′
0. Otherwise it repeats

once with 2u replacing u. Each of these iterative heuristics are informed because they require the
evaluation of the judgment function (at each step).

Stochastic iterative beam selectors repetitively and randomly select candidate sets of angles and
evaluate f , making them informed. This idea leads us to define a stochastic-N-beam selector.

Definition 7 A stochastic-N-beam selector is an N-beam selector such that

gst : {A} → P(A),

where gst(A) is a random set according to some distribution.
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As an example, the authors of [7] repeatedly select N angles uniformly from A and evaluate f with
each collection. The process stops once a fixed number of candidate sets have been generated, and
the one with the best value of f is selected. This is an example of pure random search, and this
iterative stochastic beam-selector is informed since it evaluates f .

The most popular stochastic heuristic is simulated annealing [4, 9, 35, 40, 46]. Allowing t to be
an iteration counter, we choose A′

t = gst(A) according to some stochastic process. The judgment
function f is then evaluated and A′

t is accepted as the incumbent if f(A′
t) < f(A′

t−1) or with some
probability (that decreases as t increases) otherwise. The beam selectors gst found in the literature
often follow a uniform or Cauchy distribution.

We describe the simulated annealing heuristics in [9] and [46] (other papers report the use of
simulated annealing but do not provide sufficient detail to reproduce their results). Let A′

t−1 = {aj :
j = 1, . . . , N}. In [9] and [46], a new set A′′ = {aj + φ : j = 1 . . . , N} is chosen where φ is sampled
from a Cauchy distribution with density function

p(φ) =
Yt

(φ2 + Y 2
t )

N+1
2

.

We note that the authors of [9] state that the numerator is instead 1, but this must be a typographical
error since this function does not integrate to 1. In [46], Yt = Y0/(1 + t/R), but values of Y0 and
R are not reported. In [9], Tt = T0/(1 + t) and Yt = θT 2

t , where θ is chosen so that if Tt = 1, then
each angle a has a 1% chance of being replaced by a + π. Neither a value of T0 nor values of θ for
which Tt ≥ 1 are stated. The set of angles in the next iteration is defined probabilistically as

A′
t =

{

A′′, with probability min
(

1, exp
(

f(A′
t−1)−f(A′′)

Tt

))

A′
t−1, if A′′ is not selected.

(25)

Consequently, the acceptance probability follows a negative exponential distribution with param-
eter 1/Tt. The algorithm in [46] stops as soon as Yt < 1 and (f̄ − fmin/f̄) < 0.01, where
f̄ =

∑t
m=t−5N f(A′

m) is the average value of f over the last 5N iterations and fmin = min{f(A′
m) :

m = 1, . . . , t} is the best value found so far. The stopping criterion in [9] is Tt < 1, which in-
dicates that angles are only shifted by values up to π. The authors of [46] unfortunately set Tt

to be 0 in (25), which means only new sets that reduce the judgment function are accepted, and
hence, the simulated annealing approach reduces to pure random search with respect to the Cauchy
distribution.

As previously stated, other papers reporting numerical results do not contain the information
needed to reconstruct their technique. In [40], all that is known is that Tt = 0 (reducing to pure
random search), that at least 100 iterations are performed, and that the stopping criterion is the
same as in [46]. In [35], we only know that “Tt decreases slowly” and that T0 is bigger than the largest
value of f(A′) for several random beam orientations. In [38], we are simply told that Tt = θTt−1,
for 0 < θ < 1. The authors of this work combine their simulated annealing approach with a scoring
technique to reduce the search space. Only collections of angles having a score as defined in (12)
above a threshold are considered. The individual iterations of the stochastic beam selector in [38]
are either informed or weakly informed since the evaluation of f is foregone if

max

{

(

ca

maxa∈A ca

)2

: a ∈ A′
t

}

< ε,
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for some ε > 0. The value of ε is, however, not given. The idea here is that if the angles in the
candidate set all score too low, then it is unlikely that this set is optimal, and hence, we should not
waste time calculating f .

Evolutionary or genetic algorithms are used as a heuristic strategy in [15, 21, 42]. The main
difference to the simulated annealing attack is that a set of beam configurations (a population) is
maintained (and that a vector valued judgment function f is used), but the principle of iterating
between stochastic beam selection and evaluation of f is the same. We explain the methods in [15]
and [21]. As with the simulated annealing literature, the techniques in [42] do not contain enough
information to reproduce their results (we are only told how the “package” in [8] is used).

Let A1 and A2 be N -element subsets of A. The authors of [15] use the following genetic operators
to get different sets of angles:

(A1,A2) → {a1
i + γ(a2

i − a1
i ) : i = 1, . . . , N}

where γ ∈ [−0.25, 1.25] is a random number

A1 → (A1 \ {ai}) ∪ {ai + δ}

where i ∈ {1, . . . , N} and δ ∈ [−π/12, π/12] are randomly chosen

A1 → (A1 \ {ai}) ∪ {a}

where i ∈ {1, . . . , N} and a ∈ A are randomly chosen

A1 → (A1 \ {ai}) ∪ {ai + π}

where i ∈ {1, . . . , N} is randomly chosen

A1 → {ai + (2π/N)k : k = 0, . . . , N − 1}

where i ∈ {1, . . . , N} is randomly chosen.

In Section 5 we report how a genetic algorithm based on these operators performs.
In [21], Np sets of N angles are randomly chosen and this population is ranked in order of

increasing values of f . Let r(Aj ) be the rank of set Aj in this order. Nr repetitions of the following
procedure are performed.

1. Two sets A1 and A2 are chosen from the population according to the roulette-wheel selection
mechanism, i.e. the probability of Aj to be selected is

p =
2(Np − r(Aj ) + 1)

Np(1 + Np)
.

With probability pc a crossover operation is performed:

(A1,A2) → ({a1
1, . . . , a

1
k, a2

k+1, . . . , a
2
N}, {a2

1, . . . , a
2
k, a1

k+1, . . . , a
1
N}),

where k ∈ {1, . . . , N} is chosen randomly.

2. Both new sets undergo mutation with probability pm. In that case ∆ is randomly generated
following a normal distribution with mean 0 and half-value-width 0.5|A| and the mutation
operator is

A → {a1, . . . , ak−1, ak + ∆, ak+1, . . . , aN},

where k ∈ {1, . . . , N} is selected randomly.
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The 2Nr newly created sets of beam angles replace the 2Nr lowest ranked ones in the previous
population. We are told that this process is repeated for 500 iterations, that A consists of 35 evenly
spaced angles and that Np = 20, but Nr and the probabilities for crossover and mutation are not
given.

Before continuing with numerical comparisons, we mention the hybrid techniques in [10] and [26].
The process in [26] repetitively selects 10% of the candidate angles randomly and evaluates a judg-
ment function. Based on which angles were used the most, the candidate set A is pruned to a
subset A′. A limited fluency selector is then used to finalize the selected angles. So, this method
uses a stochastic iterative method to seed a deterministic beam selector. In contrast, the method
in [10] combines ideas of different deterministic selectors. The overriding goal is to solve an integer
optimization problem that uses a neighborhood constraint to forbid selected angles from being too
close. Another constraint disallows opposing angles. Each angle is scored by calculating the average
damage to the critical structures observed by delivering a uniform dose of 2Gy to the target. This
is somewhat the reverse of the scores in (12) since it treats the tumor and measures critical damage.
These scores are used as the objective coefficients to solve an integer optimization problem that
selects angles. The fact that it solves an integer problem makes it similar to a set cover technique,
and if the neighborhoods are selected correctly, it may be interpreted as an SC-N-beam selector.
The neighborhood constraint mimics the vector quantization approach since it attempts to spread
the selected angles over the full rotation. If the neighborhood constraint were removed, the integer
problem would reduce to a scoring method with the stipulation that opposing beams cannot both
be selected.

5 Examples and Numerical Comparisons

In this section we numerically compare several of the beam selectors discussed in Sections 3 and 4.
Everything was written in Matlab c© and linked to CPLEX v. 6.6 c©. All examples were run on a dual
500 MHz workstation with 1 G of SRAM. Everything needed to reproduce the results in this section
outside these commercial packages is available at http://lagrange.math.trinity.edu/tumath/

research/techreport.shtml.
All examples represent a 10 × 10 × 0.3cm3 swath of the anatomy, with delivered dose being

calculated every 2mm of the image plane. The dose calculations are 3D adaptations of the model
in [31, 32] and are calibrated to a 6MV beam with a 25 × 25 field of 0.3 × 0.3cm2 sub-beams
(dimensions at isocenter - 100cm from source). A contour plot of a single sub-beam is seen in
Figure 6. Notice that the beam delivers a maximum amount of radiation at a depth of 1.5cm and
then attenuates as it continues through the anatomy. The model in [31, 32] does not account for the
dose deposited in the first 1.5cm of the anatomy, and we linearly interpolate the from a depth of 0,
which receives 60% of the maximum dose, to a depth of 1.5cm, which receives the maximum dose.
While not exact, the interpolation is clinically sound. No adjustment for differing tissue densities
was made —i.e. inhomogeneity correction was not used. The judgment function in (3) was used for
all experiments, with the candidate set of angles being A = {2πi/72 : i = 1, 2, . . . , 72}. This means
that angles were selected from uniformly spaced angles every 5 degrees. We had hoped to select
from 360 angles, but Matlab’s memory restriction did not allow this. Each beam selector was used
to select angles for 5, 9 and 14 beam treatments.

The heart of many beam selectors is how values are assigned to angles. These values are used as
scores in a scoring method, as objective coefficient in a set covering technique, and are normalized
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to provide a probability for a vector quantizer. Value assignments were made in 3 basic ways:

Optimal Solutions the primal, dual, interior (barrier), and balanced solutions to (3) with the
entire candidate set of angles,

Set Cover the unscaled and scaled values in (8) - labeled SC1 and SC2, and

Scoring the scoring assignment in (12) and the entropy assignment in (13).

Also, each of the value assignments from an optimal solution to (3) is constructed in two ways; by
averaging the sub-beam exposures into an angle exposure and by using the maximum sub-beam
exposure - denoted by avg and max, respectively. The entropy assignment is informed and could
have been constructed with any of these optimal solutions. However, we only use the balanced
solution because it is algorithm independent. Also, if f(A) has a unique optimal fluency, then these
value assignments are all the same. In total we explore 12 different value assignments.

We mention that not every situation warrants critical structures. As an example, radiosurgery
differs from radiotherapy in that the entire therapeutic dose is delivered at once instead of being
fractionated over several weeks. The intent of a radiosurgery is tissue oblatement, and hence, is
much like surgical removal. Conformality is the primary goal for radiosurgeries, and surrounding
structures are destroyed if the dose is not precisely delivered to the target. For this reason, critical
structures are often not delineated and the treatment is judged solely on how well the delivered dose
conforms to the target. Two of our five examples do not have critical structures, and in these cases
the SC1 and SC2 angle values do not make sense and are skipped.

The overall experimental design is highlighted in Table 1. For example, SC-N beam selectors
were implemented for N = 5, 9, 14 —i.e. for 3 different beam sets. Each of these beam selectors was
tested on 5 examples for the two thresholds of 0.50 maxp,q{(DT )(p,q)} and 0.75 maxp,q{(DT )(p,q)}.
This leads to the set cover method being tested 360 times. Surprisingly, the set cover techniques
returned identical angle collections independent of the cover threshold, and we only report results
for the 50% threshold (there were small fluctuations in run times, but otherwise these selectors were
indistinguishable). The vector quantization and scoring ideas are similar but do not rely on a cover
threshold, meaning that there is only one basic type of each. The selectors that were skipped because
of no critical structures are included in these counts.

SC VQ Scoring GA SA LS
Angle Sets 3 3 3 3 3 3
Examples 5 5 5 5 5 5

Different Types 2 1 1 2 3 2
Angle Assignments 12 12 12 N/A N/A N/A

Total 360 180 180 30 45 30

Table 1: A taxonomy of the different beam selectors tested. The abbreviations are: SC - set cover,
VQ - vector quantization, GA - genetic algorithm, SA - simulated annealing, and LS - local search.

The iterative beam selectors did not rely on assigning values to each angle, indicated by N/A
in Table 1. The stochastic-N-beam selectors based on the genetic operations in [15] and [21] are
initiated with random angle sets (populations) of size 2N , for N = 5, 9, 14. At each iteration,
dN/2e genetic operations are preformed on angle collections that are independently selected from

25



a uniform distribution. For example, if N = 14 and we are using the method in [15], then at
each iteration we independently select 7 of the 5 operations, where the probability of selecting an
operation is 0.20. These operations are performed on angle set(s) that are uniformly chosen from
the current population, and because this selection is sequential and not simultaneous, it is possible
for an angle collection to undergo several manipulations in a single iteration. The beam selector
based on the operations in [21] is handled similarly, with all unspecified probabilities being uniform.
Both selectors terminate when an update to the best known angle collection is not observed in 100
iterations. These selectors are denoted by GA1, based on [15], and GA2, based on [21].

We implemented 3 variations of a standard simulated annealing routine. In each iteration, an
adjustment to the current set of angles is undertaken, and non-improving adjustments are accepted if
a sample from the exponential distribution −(1/Tt)e

−t/Tt is less than e−1/Tt , where t is the iteration
counter and Tt is the current temperature. The cooling structure is Tt+1 = Tt/(1 + c/10000), in
which T0 is 1000 and c is the number of iterations since the last successful update. This is a fairly
generous cooling structure, and non-improving adjustments are often selected in the early iterations.
All three variants begin with equally spaced angles but differ in how they make adjustments. All
adjustments are selected from a Cauchy distribution with the scaling parameter being the current
temperature and with median 0. The first method is the same as in [9], where the same adjustment
is made to every angle in the current set. This technique maintains the initial spacing, making the
initial guess extremely important. This dependence on the initial set did not seem natural, and
the second implementation uniformly selects an angle to adjust. After N independent single angle
updates, the new angle collection is accepted or rejected and the temperature is updated. Notice
that a single angle may be updated several times in one iteration. The third algorithm adjusts each
angle with its own independent sample from the Cauchy distribution. This is different than the
second method because each angle is updated (unless the adjustment happens to be 0). All three
simulated annealing selectors were initiated with N equally spaced angles, for N = 5, 9, 14, and are
respectively referred to as SA1, SA2, and SA3.

Finally, the deterministic iterative beam selectors (local search methods) from [6] and [13] were
implemented as described in Section 4. The value of l in (24) was 10, and two values of u were used
to ensure that da(t,t−1)− (180/N)e < a′ < ba(t,t−1) +(180/N)c (this was natural in our code because
everything was handled with angle indices instead of angle values). The local search methods are
referred to as LS1 and LS2, respectively. Both the genetic and simulated annealing selectors are
capable of duplicating an angle in the selected sets, which occurred twice in our experiments. The
only iterative selectors not capable of this nuisance are the local search methods.

Unfortunately, we were unable to solve the integer optimization problems corresponding to the
beam selection problem and the limited fluency selectors. The problem again was Matlab’s memory
limitation. One of the authors’ future goals is to port our implementations from Matlab so that
the modeling is handled by a language such as AMPL or GAMS. This is a substantial undertaking,
but we already have a Tcl script that manages problem instances and pipes directly to AMPL.
The remaining significant hurdle is imaging, which is seamless in Matlab. The next phase of the
numerical research is to use the developing code on realistic 3D clinical problems.

Before proceeding to the numerical results on clinical examples, we explain how the different
heuristics behave in an ‘ideal’ situation of a spherical target that is centered within a cylindrical
patient. While this situation is not clinical, it is an interesting case because medical physicists agree
that the best treatment has a uniform fluency —i.e. one in which the exposure time for each angle
is the same. Moreover, a best N-beam treatment has the property that the N angles are equidistant
from each other. Since clinical consensus on a best treatment is rare, it is important to observe how
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Figure 6: A contour plot of the dose deliv-
ered by a single sub-beam with a 1 second
exposure.

Figure 7: A fictitious example of a circular
patient with a circular target in the center
of the anatomy.

the beam selectors behave on an example where such consensus is known. The fictitious example is
shown in Figure 7. The prescription for the target (center region) was between 80 and 88Gy.

The values assigned to the 72 angles for the 10 different value assignments are shown in Fig-
ures 8 through 17 (recall that 2 of the value assignments are not appropriate due to the absence of
critical structures). The entropy assignments are on the order of 10−3, causing our beam selector
implementations to forgo this assignment because it was indistinguishable from zero. From the sym-
metry of this example, it is reasonable to expect that each angle should be assigned the same value.
However, these graphs clearly show that this is only the case for the balanced solution. Moreover,
the assignments from the primal and dual solvers have many of the angles receiving a value of 0,
making it unlikely that these angles will be selected by a scoring, set cover, or vector quantization
beam selector. Of course, this follows directly from the use of a simplex based algorithm on a de-
generate problem. The interior solver nearly gets it correct since every angle has a positive value, a
byproduct of CPLEX’s barrier solver (with crossover turned off) returning a solution that is in the
strict interior of the optimal set. The periodic behavior of the Interior-max assignment is interesting
and unexpected.

In an attempt to compare the different beam selectors on this special example, we consider the
spacing between the selected angles. This is a fair comparison because we have clinical consensus
that an optimal treatment would have evenly spaced angles, and hence, the variance of the spacing
should be zero. Tables 2 and 3 show how differently the beam selectors behaved and clearly shows
that vector quantization consistently outperforms the scoring and set cover techniques. This is
expected since the vector quantization methods naturally spread the angles over the candidate set,
which is precisely what is desired. Notice that the first simulated annealing selector also did well,
but this is a bit of a skulduggery. Recalling that this method maintains the initial uniform spacing,
we see that this is pre-designed to do well on this example (the variance is not zero because we had
to round to the nearest 5 degree angle in the candidate set). Contour maps of an optimal fluency
for the SC-5-beam selector and the VQ-14-beam selector, both using the balanced-avg assignment,
are shown in Figures 18 and 19.

Although the variance calculations indicate wide disparages in the beam selectors, we mention
that the optimal treatment for many of the selectors appears satisfactory. For example, the angles
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from the SC-5-beam selector have a huge variance, but in the end, the treatment in Figure 18 still
largely treats the target. This leads to the possibility of low quality angle collections providing
clinically acceptable treatments. Of course, the real problem is that the judgment function may not
adequately capture the clinical desires, a topic of continued research.

Outside the fictitious example just discussed, the beam selectors were tested on four clinical
examples: an acoustic neuroma, an arterial veinous malformation (AVM), a pancreatic cancer, and
a prostate. The examples are depicted in Figures 20 through 22. The AVM is a radiosurgical case
and has no critical structures. This example is substantially simplified in our study since its full 3D
representation shows a growth similar to a corkscrew, making conformality a significant challenge.
The goal dose for the AVM target was between 80 and 88Gy.

The acoustic neuroma, pancreatic and prostate cases are typical radiotherapies. In the acoustic
neuroma, the growth is to the left of the brain stem. Only the left eye socket is delineated, meaning
that the treatment planner did not foresee a threat to the right eye socket. This is an interesting
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N BA BM PA PM DA DM IA IM S
Scoring 5 8600 56 3040 1106 1356 3158 1490 1256 6

9 4689 153 992 912 1070 1070 2313 257 1389
14 2490 277 276 351 313 313 448 319 412
avg 5260 162 1436 790 913 1514 1417 611 602

Vector Quantization 5 42 42 356 1173 1025 823 40 40 42
9 7 10 186 143 513 298 7 10 14
14 4 4 113 138 252 214 4 4 4
avg 17 18 218 484 596 445 17 18 20

Set Cover 5 8092 56 3040 1106 313 3158 1490 1256 6
9 5332 153 992 913 1070 1070 2313 257 1389
14 2969 277 276 351 1356 313 1173 319 437
avg 5464 162 1436 790 913 1514 1658 610 611

Table 2: Rounded variances for the scoring, vector quantization, and set cover beam selectors for
the example in Figure 7. Acronyms: BA = Balanced-avg, BM = Balanced-max, PA = Primal-avg,
PM = Primal-max, DA = Dual-avg, DM = Dual-max, IA = Interior-avg, IM = Interior-max, S =
Scoring.

N LS1 LS2 SA1 SA2 SA3 GA1 GA2
5 550 6 8 1425 5850 2050 3956
9 436 279 0 1542 1567 1158 614
14 104 4 4 174 140 305 276
avg 363 96 4 1047 2519 1171 1615

Table 3: Rounded variances for the iterative beam selectors.

observation, as it demonstrates that a treatment planner often guesses which organs are at risk.
There is no doubt that the right eye socket would be distinguished at some clinics. For this problem,
the goal dose for the tumor was between 76 and 85Gy and the eye socket and brain stem were
restricted to 60 and 45Gy, respectively. The target in the pancreatic case is the large spherical
growth in the middle of the image and is surrounded by the kidneys and spinal cord. The upper
limit for the kidneys was 60Gy and for the spinal cord the limit was 45Gy. The target dose was
between 80 and 88Gy. The prostate is sandwiched between the bladder (above) and the rectum
(below). The prescription for the prostate example had the target receiving between 80 and 88Gy
and the bladder and rectum being restricted to no more than 60 and 45Gy, respectively.

Unfortunately, consensus on a best treatment for these cases does not exist, making it difficult to
compare the different beam selectors. The best rule-of-thumb to decide between good and bad treat-
ments is the old adage, “You know one when you see one.” However, it is beyond the scope of this
paper to display the numerous treatments provided by the various beam selectors. All treatments (in-
cluding dose volume histograms) are available at www.trinity.edu/research/techreport.shtml.
One thing we can measure is the computational time needed to select angles, and Table 4 contains
the average time over all 5 examples for the different types of selectors. The time in minutes includes
the time required to select angles and to solve for an optimal fluency. The longest running times were
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Figure 18: An optimal treatment for the
angles selected by the SC-5-beam selector.
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Figure 19: An optimal treatment for the
angles selected by the VQ-14-beam selec-
tor.

observed with the iterative selectors, a consequence of them maneuvering through the entire search
space while repetitively evaluating the judgment function. None of the scoring, vector quantization,
or set cover techniques required more than a minute on average. The speed of the set cover selector
was surprising, and these low values highlight the fact that the underlying integer problem is easy
to solve.

S VQ SC LS SA GA
BA 0.43 BA 0.74 BA 0.55 LS1 10.40 SA1 36.73 GA1 14.46
BM 0.43 BM 0.74 BM 0.55 LS2 4.17 SA2 31.56 GA2 14.88
PA 0.46 PA 0.74 PA 0.58 SA3 32.06
PM 0.46 PM 0.74 PM 0.58
DA 0.46 DA 0.73 DA 0.58
DM 0.47 DM 0.74 DM 0.58
IA 0.47 IA 0.75 IA 0.58
IM 0.47 IM 0.75 IM 0.61
SC1 0.36 SC1 0.63 SC1 0.49
SC2 0.37 SC2 0.63 SC2 0.49
S 0.47 S 0.76 S 0.58

ENT 0.36 ENT 0.58 ENT 0.48

Table 4: The average run time for the different beam selectors over the 5 examples. Acronyms are
as previously used.

Each beam selector did well at times, some more than others. The authors’ general observations
were:

• The vector quantizer with the balanced-avg angle assignments consistently produced quality
treatments.

• The balanced and interior (both average and maximum) outperformed the primal and dual
angle assignments, with the dual method often leading to poor quality angle collections.
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Figure 20: An acous-
tic neuroma: critical
structures are the brain
stem and the left eye
socket (physician did
not restrict the right
eye socket).

Figure 21: An arte-
rial veinous malforma-
tion: radiosurgical in-
tent with no critical
structures, conformal-
ity is extremely impor-
tant.

Figure 22: A pan-
creatic lesion: criti-
cal structures are the
kidneys and the spinal
cord.

Figure 23: A prostate:
critical structures are
the bladder and rec-
tum.

• Scoring methods were erratic.

• The local search algorithms worked well in general but were not as fast as vector quantization.

• The second and third simulated annealing selectors consistently produced quality treatments
but were the most computationally heavy, often requiring hours to select beams.

• The genetic algorithm approaches did as well as simulated annealing in about half of the time.

The time needed by simulated annealing does not reward us with better angle collections. To
demonstrate this, SA3 took 50.89 minutes to select 9 angles for the pancreatic case. In comparison,
the scoring method with the SC1 scores and the vector quantization selector with the balanced-
avg probability took only 0.45 and 0.77 minutes, respectively. The three treatments are shown in
Figures 24 through 26. All three treatments are fair, but the simulated annealing treatment over
irradiates the spinal cord. The scoring treatment irradiates the left kidney less than the vector
quantization method, but treats the right kidney more than the vector quantization treatment.

The erratic behavior of the scoring selector is witnessed in the AVM and prostate examples. The
scoring method used in conjunction with the primal or dual based scores only selected 2 angles in
the AVM case. The problem was that the primal and dual fluencies of f(A) used only 2 angles, and
hence, the score for the rest of the angles was zero. In this case, our implementation only selected the
two angles, the idea being that any other selection would have been random. This implies that these
two angles are optimal for the beam selection problem for N ≥ 2. In comparison, the other selectors
returned a full set of N angles and the optimal fluencies used some subset of these. The optimal
treatments for the S-5-beam selector with dual-max scores and the VQ-14-beam selector with the
interior-max probability density are in Figures 27 and 28. The scoring selector additionally selected
poor quality angles for the prostate case, with the optimal fluencies for the S-N-beam selectors all
being zero for the SC1 and SC2 angle assignments - i.e. the angles selected by the scoring method
led to no treatment being optimal. The prostate example was the most difficult to get good results
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Figure 24: A 9 beam optimal
treatment from SA3.
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Figure 25: A 9 beam optimal
treatment from scoring with
the SC1 angle values.
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Figure 26: A 9 beam optimal
treatment from vector quanti-
zation with the balanced-avg
angle values.
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Figure 27: An optimal treat-
ment for the AVM case using
the scoring selector with dual-
max scores.
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Figure 28: An optimal treat-
ment for the AVM case using
the vector quantization selec-
tor with the interior-max den-
sity.

for, with the majority of optimal fluencies over irradiating the critical structures. None of optimal
fluencies were acceptable. We mention that the image was rescaled to achieve the 10× 10× 0.3cm3,
which may have caused the poor results.

We conclude this section with the observation and the recognition that we could have used the
judgment function to rank the beam selectors. First, we used the linear model in (3) because it was
simple to link to CPLEX via Matlab and because the linear model allowed us to solve fairly large
problems in a reasonable amount of time. As already stated, our goal was not to discuss what is
a best judgment function. Indeed, a judgment function that is widely accepted in the clinic does
not exist, and it seemed odd to rank selectors based on such speculative information. Besides, the
objective values were close over the majority of examples, and deciding whether or not one treatment
is better than another because this particular judgment function decreased by less than 1% did not
make sense to the authors.
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6 Conclusions

This research lays the mathematical foundation for a rigorous investigation into a long standing
problem in medical physics. The previous attempts to solve the beam selection problem are unified in
our development, showing that while their clinical perspectives may radically differ, these techniques
are similar and intertwined. Moreover, we have implemented and combined several of the previous
methods to demonstrate how they behave. These experiments are the first head-to-head comparisons
in the area. Throughout this work we have pointed to interesting questions for future research. We
conclude by mentioning a few that we feel are most interesting.

• The relationship between M and the angles in AM in the limited fluency approach begs for
more analysis. This is potentially a critical step to numerically solving or estimating the beam
selection problem.

• The convergence properties of the Lloyd algorithm in the vector quantization approach should
be better understood. For example, it would be worthwhile to know the collection of initial
contiguous partitions for which the Lloyd algorithm terminates with the same contiguous sets
—i.e. what are the neighborhoods of stability?

• Although we have tested many of the previous heuristics, wide scale clinical testing was outside
the scope of this work. Such testing is needed to compare how the different heuristics perform
on different cancer types, different treatment modalities, and on different judgment functions.
Moreover, combining the stochastic methods with the scoring, set covering, and vector quan-
tization techniques is promising. Further numerical comparison is certainly warranted.

• Repeat the following n times: Choose a set A′ of N beams randomly and evaluate f(A′). Then,
let f̄n denote the mean of f(A′) over the n repetitions. Is it true that limn→∞ f̄ = min{f(A′) :
A′ ∈ P(A), |A′| = N}? If x̄n denotes the mean (balanced) optimal fluency pattern over the n
repetitions, is it true that x̄n converges to an optimal fluency pattern for f(A)?

• The clinical consensus on the fictitious example makes one wonder if the desirable properties of
an optimal treatment are the logical conclusion of model assumptions. Indeed, in an axiomatic
development of fluency optimization one should be able to prove that such a treatment is
optimal (unless this is one of the axioms). Such a development of fluency optimization does
not exist, and research in this direction promises to be fruitful.
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