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Abstract

The design of a radiotherapy treatment includes the selection of beam angles (geometry
problem), the computation of a fluence pattern for each selected beam angle (intensity prob-
lem), and finding a sequence of configurations of a multilef collimator to deliver the treatment
(realization problem). While many mathematical optimization models and algorithms have
been proposed for the intensity problem and (to a lesser extent) the realization problem, this
is not the case for the geometry problem. In clinical practice, beam directions are manually
selected by a clinician and are typically based on the clinician’s experience. Solving the beam
selection problem optimally is beyond capability of current optimization algorithms and soft-
ware. However, heuristic methods have been proposed. In this paper we compare various
heuristic approaches on a clinical case. In particular, we study the influence of dose point
resolution on the performance of these heuristics. We also compare the solutions obtained by
the heuristics with those achieved by a clinician using a commercial planning system.
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1 Introduction

Radiotherapy is the treatment of cancerous and displasiac tissues with ionizing radiation that can
damage the DNA of cells. While non-cancerous cells are able to repair slightly damaged DNA,
the heightened state of reproduction that non-cancerous cells are in means that small amounts
of DNA damage render them incapable of reproducing. The goal of radiotherapy is to exploit
this therapeutic advantage by focussing the radiation so that enough dose is delivered to the
targeted region to kill the cancerous cells while surrounding anatomical structures are maintained
at minimal damage levels so that they are spared.

In the past, it was reasonable for a clinician to design radiotherapy treatments manually due
to the limited capabilities of radiotherapy equipment. However, with the advent of intensity
modulated radiotherapy (IMRT), the number of possible treatment options and the number of
parameters have become so immense that they exceed the capabilities of even the most experienced
treatment planner. Therefore, optimization methods and computer assisted planning tools have
become a necessity. IMRT treatments use multileaf collimators to shape the beam and control,
or modulate, the dose that is delivered along a fixed direction of focus. IMRT allows beams
to be decomposed into a (large) number of sub-beams, for which the intensity can be chosen
individually. In addition, movement of the treatment couch and gantry allows radiation to be
focused from almost any point on a (virtual) sphere around the target volume. For background
on radiotherapy and IMRT we refer to Schlegel and Mahr (2002) and Webb (2001).

Designing an optimal treatment means deciding on a huge number of parameters. The design
process is therefore usually divided into three phases, namely 1) the selection of directions from
which to focus radiation on the patient, 2) the selection of fluence patterns (amount of radiation
delivered) for the directions selected in phase one, and 3) the selection of a mechanical delivery
sequence that efficiently administers the treatment. Today there are many optimization methods
for the intensity problem, suggested models include linear (e.g. Romeijn et al. (2003); Rosen et al.
(1991)), integer (e.g. Lee et al. (2003); Preciado-Walters et al. (2004)), and nonlinear (e.g. Löf
(2000); Spirou and Chui (1998)) models as well as models of multiobjective optimization (e.g.
Hamacher and Küfer (2002); Holder (2001); Romeijn et al. (2004)).

Similarly, algorithms have been proposed to find good multileaf collimator sequences to re-
duce treatment times and minimize between-leaf leakage and background dose (Bortfeld et al.,
1994; Siochi, 1999; Xia and Verhey, 1999). Such algorithms are in use in existing radiotherapy
equipment. Moreover, researchers have studied the mathematical structure of these problems to
improve algorithm design or to establish the optimality of an algortihm (Ahuja and Hamacher,
2004; Baatar et al., 2004; Kamath et al., 2003).

In this paper we consider the geometry problem. The literature on this topic reveals a different
picture than that of the intensity and realization problems. While a number of methods were
proposed, there was a lack of understanding of the underlying mathematics. Ehrgott et al. (2005)
propose a mathematical framework that unifies the approaches found in the literature. The focus
of this paper is on how different approximations of the anatomical dose affect beam selection.

The beam selection problem is important for several reasons. First, changing beam directions
during treatment is time consuming, and the number of directions is limited to reduce the overall
treatment time. Moreover, short treatments are desirable because lengthy procedures increase
the likelihood of a patient altering his or her position on the couch, which can lead to inaccurate
and potentially dangerous treatments. Additionally, since most clinics treat patients steadily
throughout the day patients are usually treated in daily sessions of 15 – 30 minutes to make
sure that demand is satisfied. Lastly, and perhaps most importantly, beam directions must be
judiciously selected so as to minimize the radiation exposure to life-critical tissues and organs,
while maximizing the dose to the targeted tumor.

Selecting the beam directions is currently done manually, and it typically requires several
trial-and-error iterations between selecting beam directions and calculating fluence patterns until
a satisfactory treatment is designed. Hence, the process is time intensive and subject to the
experience of the clinician. Finding a suitable collection of directions often takes several hours.
The goal of using an optimization method to identify quality directions is to remove the dependency
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on a clinician’s experience and to alleviate the tedious repetitive process of selecting angles.
To evaluate the dose distribution in the patient, it is necessary to calculate how radiation

is deposited into the patient. There are numerous dose models in the literature, with the gold
standard being a Monte Carlo technique that simulates each particle’s path through the anatomy.
We use an accurate 3D dose model developed in Nizin (1998) and Nizin and Mooij (1998). Positions
within the anatomy where dose is calculated are called dose-points. Each patient image represents
a slice of the anatomy of varying thickness, and hence, each dose-point represents a 3D hyper-
rectangle whose dimensions are decided by the spacing of the dose-points. The goal of this paper
is to evaluate the influence of dose point spacing on automated beam selection.

2 The Beam Selection Problem

First we note that throughout this paper the terms beam, direction, and angle are used inter-
changeably. The beam selection problem is to find N positions for the patient and gantry from
which the treatment will be delivered. The gantry of a linear accelerator can rotate around the
patient in a great circle and the couch can rotate in the plane that keeps it flat. There are physical
restrictions on the directions that can be used because some couch and gantry positions result in
collisions.

In this paper we consider co-planar treatments. That is, beam angles are chosen on a great circle
around the CT-slice of the body that contains the center of the tumour. We let A = {aj : j ∈ J}
be a candidate collection of angles from which we will select N to treat the patient, where we
typically consider A = {iπ/36 : i = 0, 1, 2, . . . , 71}. To evaluate a collection of angles, a judgment
function is needed that describes how well a patient can be treated with N angles (Ehrgott et al.,
2005).

We denote the power set of A by P(A) and the nonnegative extended reals by R
∗
+. A judgment

function is a function f : P(A) → R
∗
+ with the property that A′ ⊇ A′′ implies f(A′) ≤ f(A′′).

The value of f(A′) is the optimal value of an optimization problem that decides a fluence pattern
for angles A′, i.e. for any A′ ∈ P(A),

f(A′) = min{z(x) : x ∈ X(A′)}, (1)

where z maps a fluence pattern x ∈ X(A′) into R
∗
+.

We assume that if a feasible treatment cannot be achieved with a given set of angles A′

(X(A′) = ∅) then f(A′) = ∞. We further assume that x is a vector in R
|A|×I , where I is the

number of sub-beams of a beam, and make the tacit assumptions that x(a,i) = 0 for all sub-beams
i of any angle a ∈ A \A′. The non-decreasing behaviour of f with respect to set inclusion is then
modeled via the set of feasible fluence patterns X(A) by assuming that X(A′′) ⊆ X(A′) whenever
A′′ ⊆ A′. We say that the fluence pattern x is optimal for A′ if f(A′) = z(x) and x ∈ X(A′).

A judgment function is defined by the data that forms the optimization problem in (1). This
data includes a dose operator D, a prescription P , and an objective function z. We let d(k,a,i)

be the rate at which radiation along sub-beam i in angle a is deposited into dose-point k, and
we assume that d(k,a,i) is nonnegative for each (k, a, i). These rates are patient-specific constants
and the operator that maps a fluence pattern into anatomical dose (measured in Grays, Gy) is
linear. We let D be the matrix whose elements are d(k,a,i), where the rows are indexed by k and
the columns by (a, i). The linear operator x 7→ Dx maps the fluence pattern x to the dose that
is deposited into the patient. To avoid unnecessary notation we use

∑

i to indicate that we are
summing over the sub-beams in an angle. So,

∑

i x(a,i) is the total exposure (or fluence) for angle
a, and

∑

i d(k,a,i) is the aggregated rate at which dose is deposited into dose-point k from angle a.
As pointed out above, there is a large amount of literature on modeling and calculating f ,

i.e. solving the intensity problem. In fact, all commercial planning systems use an optimization
routine to decide a fluence pattern, but the model and calculation method differ from system to
system (Winz, 2004). All these methods share the property that the quality of a treatment cannot
deteriorate if more angles are used. The result that a judgment function is non-decreasing with
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respect to the number of angles follows from the definition of a judgment function and the above
assumptions, see Ehrgott et al. (2005).

There are a variety of forms that a prescription can have, each dependent on what the op-
timization problem is attempting to accomplish. Since the purpose of this paper is to compare
the effect of dose point resolution on various approaches to the beam selection problem, we focus
on one particular judgment function. Let us partition the set of dose-points into those that are
targeted, those that are within a critical structure, and those that represent normal tissue. We
denote the set of targeted dose points by T , the collection of dose-points in the critical regions by
C, and the remaining dose-points by N . We further let DT , DC , and DN be the submatrices of
D such that DT x, DCx, and DNx map the fluence pattern x into the targeted region, the critical
structures, and the normal tissue, respectively. The prescription consists of TLB and TUB, which
are vectors of lower and upper bounds on the targeted dose points, CUB, which is a vector of
upper bounds on the critical structures, and NUB, which is a vector of upper bounds on the
normal tissue. The judgment function is defined by the following linear program (Holder, 2003).

f(A′) = minωα + β + γ
TLB − eα ≤ DT x

DT x ≤ TUB
DCx ≤ CUB + eβ
DNx ≤ NUB + eγ
TLB ≥ eα

−CUB ≤ eβ
x, γ ≥ 0

∑

i x(a,i) = 0 for all a ∈ A\A′.























































(2)

Here e is the vector of ones of appropriate dimension. The scalars α, β, and γ measure the
worst deviation from TLB, CUB, and NUB for any single dose point in the target, the critical
structures, and the normal tissue, respectively.

For a fixed judgment function such as (2), the N -beam selection problem is

min{f(A′) − f(A) : A′ ∈ P(A), |A′| = N}

= min{f(A′) : A′ ∈ P(A), |A′| = N} − f(A). (3)

This minimization problem can be stated as an extension of the optimization problem that defines
f using binary variables. Let

ya =

{

1 angle a is selected
0 otherwise.

Then the beam selection problem becomes

min z(x)
∑

a∈A ya = N
∑

i x(i,a) ≤ Mya for all a ∈ A
x ∈ X(A),















(4)

where M is a sufficiently large constant.
While (4) is a general model that combines the optimal selection of beams with the optimization

of their fluence patterns, such problems are currently intractable because they are beyond modern
solution capabilities. Note that there are between 1.4 × 107 and 5.4 × 1011 subsets of {iπ/36 :
i = 0, 1, 2, . . .71} for clinically relevant values of N ranging from 5 to 10. In any study where the
solution of these MIPs is attempted (Ehrgott and Johnston, 2003; Lee et al., 2003; Lim et al.,
2002; Preciado-Walters et al., 2004; Wang et al., 2003) the set |A| is severely restricted so that the
number of binary variables is manageable. This fact has led researchers to investigate heuristics.

In the following section we present the heuristics that we include in our computational results
in the framework of beam selectors introduced in Ehrgott et al. (2005). The function g : W → V
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is a beam selector if W and V are subsets of P(A) and g(W ) ⊆ W for all W ∈ W . A beam selector
g : W → V maps every collection of angles in W to a subcollection of selected angles. An N -beam
selector is a beam selector with | ∪W∈W g(W )| = N . A beam selector is informed if it is defined
in terms of the value of a judgment function and it is weakly informed if it is defined in terms of
the data (D, P, z). A beam selector is otherwise uninformed. If g is defined in terms of a random
variable, then g is stochastic.

An important observation is that for any collection of angles A′ ⊂ A there is not necessarily a
unique optimal fluence pattern, which means that informed beam selectors are solver dependent.
An example in Section 5 of Ehrgott et al. (2005) shows how radically different optimal fluence
patterns obtained by different solvers for the same judgment function can be.

There are several heuristic beam selection techniques in the literature. Each heuristic approach
to the problem can be interpreted as choosing a best beam selector of a specified type as described
in Ehrgott et al. (2005). Additional references on methods not used in this study and methods for
which the original papers do not provide sufficient detail to reproduce their results can be found
in Ehrgott et al. (2005).

3 The Beam Selection Methods

We first present the set covering approach found in Ehrgott and Johnston (2003). An angle a covers
the dose-point k if

∑

i d(k,a,i) ≥ ε, and for each k ∈ T , let Aε
k = {a ∈ A : a covers dose-point k}.

A (set-covering) SC-N -beam selector is an N -beam selector having the form

gsc : {Aε
k : k ∈ T } →

⋃

k∈T

(P(Aε
k)\∅) .

Two observations are important:

1. We have Aε
k = A for all k ∈ T if and only if 0 ≤ ε ≤ ε∗ := min{

∑

i d(k,a,i) : k ∈ T, a ∈ A}.
The most common scenario is that each targeted dose-point is covered by every angle.

2. Since gsc cannot map to ∅, the mapping has to select at least one angle to cover each targeted
dose-point.

It was shown in Ehrgott et al. (2005) that for 0 ≤ ε ≤ ε∗, the set covering approach to
beam selection is equivalent to the beam selection problem (3). This equivalence means that
we cannot solve the set-covering beam selection problem efficiently. However, heuristically it is
possible to restrict the optimisation to subsets of SC-N -beam selectors. This was done in Ehrgott
and Johnston (2003). The second observation allows the formulation of a traditional set covering
problem to identify a single gsc. For each targeted dose-point k, let q(k,a,i) be 1 if sub-beam i in
angle a covers dose-point k and 0 otherwise. For each angle a, define

ca =

{ ∑

k∈C

∑

i

q(k,a,i)

CUBk
if C 6= ∅

0 if C = ∅
(5)

and

ĉa =

{

∑

k∈C

∑

i

q(k,a,i)·d(k,a,i)

CUBk
if C 6= ∅

0 if C = ∅
, (6)

where CUB is part of the prescription in (2). The costs ca and ĉa are large if sub-beams of a
intersect a critical structure that has a small upper bound. Cost coefficients ĉa are additionally
scaled by the rate at which dose is deposited into dose-point k from sub-beam (a, i).

The associated set covering problems are

min

{

∑

a

caya :
∑

a

q(k,a)ya ≥ 1, k ∈ T,
∑

a

ya = N, ya ∈ {0, 1}

}

(7)

5



and

min

{

∑

a

ĉaya :
∑

a

q(k,a)ya ≥ 1, k ∈ T,
∑

a

ya = N, ya ∈ {0, 1}

}

. (8)

The angles for which y∗
a = 1 in an optimal solution y∗ of (7) or (8) are selected and define a

particular SC-N -beam selector. Note that such N -beam selectors are weakly informed, but not
informed, as they use the data but do not evaluate f .

These particular set covering problems are generally easy to solve. In fact, in the common
situation of Aε

k = A for k ∈ T , (7) and (8) reduce to selecting N angles in order of increasing ca

or ĉa, respectively. This leads us to scoring techniques for the beam selection problem.

We can interpret ca or ĉa as a score of angle a. A (scoring) S-N -beam selector is an N -beam
selector gs : {A} → P(A). It is not surprising that the scoring approach is equivalent to the beam
selection problem. The difficulty here lies in defining scores that accurately predict angles that
are used in an optimal treatment.

The first scoring approach we consider is found in Pugachev and Xing (2001), where each angle
is assigned the score

ca =
1

|T |

∑

k∈T

∑

i

(

d(k,a,i) · x̂(a,i)

TG

)2

, (9)

where
x̂(a,i) = min{min{CUBk/d(k,a,i) : k ∈ C}, min{NUBk/d(k,a,i) : k ∈ N}}

and TG is a goal dose to the target and TLB ≤ TG ≤ TUB. An angle’s score increases as the
sub-beams that comprise the angle are capable of delivering more radiation to the target without
violating the restrictions placed on the non-targeted region(s). Here, high scores are desirable.
The scoring technique uses the bounds on the non-targeted tissues to form constraints, and the
score represents how well the target can be treated while staisfying these constraints. This is the
reverse of the perspective in (7) and (8). Nevertheless, mathematically, every scoring technique is
a set covering problem (Ehrgott et al., 2005).

Another scoring method is found in Söderström and Brahme (1992). Letting x∗ be an optimal
fluence pattern for A, the authors of Söderström and Brahme (1992) define the entropy of an angle
by ea := −

∑

i x∗
(a,i) lnx∗

(a,i) and the score of a is

ca = 1 −
ea − min{ea : a ∈ A}

max{ea : a ∈ A}
. (10)

In this approach, an angle’s score is high if the optimal fluence pattern of an angle’s sub-beams is
uniformly high. So, an angle with a single high-fluence sub-beam would likely have a lower score
than an angle with a more uniform fluence pattern. Unlike the scoring procedure in Pugachev and
Xing (2001), this technique is informed since it requires an evaluation of f .

The last of the techniques we consider is based on the image compression technique called
vector quantization (Holder and Salter, 2004) (see Gersho and Gray (1991) for further information
on vector quantization). A′ is a contiguous subset of A if A′ is an ordered subset of the form
{aj, aj+1, . . . , aj+r}. A contiguous partition of A is a collection of contiguous subsets of A that
partition A, and we let Wvq(N) be the collection of N element contiguous partitions of A. A
VQ-N -beam selector is a function of the form

gvq : {Wj : j = 1, 2, . . . , N} → {{aj} : aj ∈ Wj},

where {Wj : j = 1, 2, . . . , N} ∈ Wvq(N).
The image of Wj is a singleton {aj}, and we usually write aj instead of {aj}. The VQ-N -beam

selector relies on the probability that an angle is used in an optimal treatment. Letting α(a) be
this probability, we have that the distortion of a quantizer is

N
∑

j=1

∑

a∈Wj

α(a) · ‖a − gvq(Wj)‖2.
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Once the probability distribution α is known, a VQ-N beam-selector is calculated to minimize
distortion. In the special case of a continuous A, Gersho and Gray (1991) show that the selected
angles are the centers-of-mass of the contiguous sets. We mimick this behavior in the discrete
setting by defining

gvq(Wj) =

∑

a∈Wj
a · α(a)

∑

a∈Wj
α(a)

. (11)

This center-of-mass calculation is not exact for discrete sets since the center-of-mass may not be
an element of the contiguous set. Therefore angles not in A are mapped to their nearest neighbor,
with ties being mapped to the larger element of A.

Vector quantization heuristics select a contiguous partition from which a single VQ-N -beam
selector is created according to condition (11). The process in Holder and Salter (2004) starts
by selecting the zero angle as the beginning of the first contiguous set. The endpoints of the
contiguous sets are found by forming the cumulative density and evenly dividing its range into N
intervals. To improve this, we could use the same rule and rotate the starting angle through the
72 candidates. We could then evaluate f over these sets of beams and take the smallest value.

The success of the vector quantization approach directly relies on the ability of the probability
distribution to accurately gauge the likelihood of an angle being used in an optimal N -beam treat-
ment. An immediate idea is to make a weakly informed probability distribution by normalizing
the scoring techniques in (5), (6) and (9). Additionally, the scores in (10) are normalized to create
an informed model of α. We test these methods in Section 4. An alternative informed probability
density is suggested in Holder and Salter (2004), where the authors assume that an optimal fluence
pattern x∗ for f(A) contains information about which angles should and should not be used. Let

α(a) =

∑

i

x∗
(a,i)

∑

a∈A

∑

i

x∗
(a,i)

.

Since optimal fluence patterns are not unique, these probabilities are solver-dependent. In Ehrgott
et al. (2005) an algorithm is given to remove this solver dependency. The algorithm transforms an
optimal fluence x∗ into a balanced probability density α, i.e. one that is as uniform as possible,
by solving the problem

lexmin

(

z(x), sort

(

∑

i

x(a,i) : a ∈ A

))

, (12)

where sort is a function R
A 7→ R

A that reorders the components of the vector
(
∑

i x(a,i)

)

a∈A
in a nonincreasing order. The algorithm that produces the balanced solution iteratively reduces
the maximum exposure time of the angles that are not fixed, which intuitively means that we
are re-distributing fluence over the remaining angles. As the maximum exposure time decreases,
the exposure times for some angles needs to increase to guarantee an optimal treatment. The
algorithm terminates as soon as the variables that are fixed by this “equalizing” process attain
one of the bounds that describe an optimal treatment. At the algorithm’s conclusion, we have
that α(a) = 0 if and only if the exposure time of angle a is forced to zero when the other angles
are set at their ‘smallest’ exposure time (smallest relative to the iterative process of reducing the
maximum exposure time).

4 Numerical Comparisons

In this section we numerically compare how the resolution of the dose points affects set cover
(SC), scoring (S), and vector quantization (VQ) 9-beam selectors. The Radiotherapy optimAl
Design software (RAD) at www.trinity.edu/aholder/research/oncology/rad.html was al-
tered to accommodate the different beam selectors. This system is written in Matlab c© and links
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to the CPLEX c© solvers (CPLEX v. 6.6. was used). The code, except for commercial pack-
ages, and all figures used in this paper (and more) are available at lagrange.math.trinity.edu/
tumath/research/reports/misc/report97/.

The clinical example is an acoustic neuroma in which the target is encroaching the brain stem
and is asked to receive between 48.08 and 59.36 Gy. The brain stem is restricted to no more
than 50 Gy and the eye sockets to less than 5 Gy. Each image represents a 1.5 mm swath of
the patient, and the 7 images in Figure 1 were used, creating a 10.5 mm thickness. The full
clinical set contained 110 images, but we were unable to handle the full complement because of
inherent memory limitations in Matlab. Angles are selected from {iπ/36 : i = 1, 2, . . . 71}. These

Figure 1: The target is immediately to the left of the brainstem. The critical structures are the
brain stem and the two eye sockets.

candidate angles were assigned 12 different values as follows. An optimal treatment (according
to judgment function (2)) for the full set of candidate angles was found with CPLEX’s primal,
dual, and interior-point methods and a balanced solution according to (12) was also calculated.
The angle values were either the average sub-beam exposure or the maximal sub-beam exposure.
So, “BalancedAvg” indicates that the angle values were created from the balanced solution of a
72-angle optimal treatment, where the angle values were the average sub-beam exposure. Similar
nomenclature is used for “DualMax”, “PrimalAvg”, and so on. This yields eight values. The
scaled and unscaled set cover values in (5) and (6) were also used and are denoted by “SC1” and
“SC2”. The informed entropy measure in (10) is denoted by “Entropy”, and the scoring technique
in (9) is denoted by “S”. We used TG = 0.5(TLB+TUB) in (9). So, in total we tested 12 different
angle values for each of the beam selectors.

The dose points were placed on 3 mm and 5 mm grids thoughout the 3D patient space, and
each dose point was classified by the type of tissue it represented. Since the images were spaced at
1.5mm, we point out that dose points were not necassarily located on the images. The classification
of whether or not a dose point was targeted, critical, or normal was accomplished by relating the
dose point to the nearest image. In a clinical setting, the anatomical dose is approximated by a 2
mm or less spacing, so the experiments approach clinical practice. However, as with the number
of images, Matlab’s memory limitation did not allow us to further increase the resolution.

Treatments are judged by viewing the level curves of the radiation per slice, called isodose
curves, and by their cumulative dose-volume histogram (DVH). A dose-volume histogram is a plot
of percent dose (relative to TLB) versus the percent volume. The isodose curves and DVHs for the
balanced 72-angle treatment are shown for the 3 mm and 5 mm resolutions in Figures 2 through 5.
An ideal DVH would have the target at 100% for the entire volume and then drop immediately
to zero, indicating that the target is treated exactly as specified with no under or over dosing.
The curves for the critical structures would instead drop immediately to zero, meaning that they
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receive no radiation. The DVHs in Figures 3 and 5 are fairly good and follow this trend. The
curves from upper-right to lower left are for the target, the brain stem, normal tissue, and the
eye sockets. The eye socket curves drop immediately to zero as intended and appear on the axes.
The 3 mm brain stem curve indicates that this structure is receiving more radiation than with
the 5 mm resolution. While the fluence maps generated for these two treatments are different, the
largest part of this discrepancy is likely due to the 3 mm spacing more accurately representing the
dose variation.

Figures 6 and 7 are from Nomos’ tomotherapy system, which also uses 72 equally spaced angles
(the curve for the normal tissue is not displayed). Two observations are important. First, the
similarity between the DVHs of our computed solutions and Nomos’ DVHs suggests that our dose
model and judgment function are accurate. Second, if our resolutions were decreased to 2 or
1.5 mm, it is likely that we would observe a brain stem curve akin to that in Nomos’ DVH. We
point out the judgment function and solution procedure are different for Nomos’ system (and are
proprietary).

A natural question is whether or not the dose point resolution affects the angle values. We
expected some differences, but we generally thought that the values would remain intact when
altering the resolution. We were surprised to find that some of the differences were rather dramatic.
The 3 mm and 5 mm “average” values are shown in Table 1. The selected angles and solution
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Table 1: The angle values. The top rows are with 5 mm resolution and the bottom rows are with
3 mm resolution.

times are shown in Tables 2 and 3. The angles vary significantly from beam selector to beam
selector and for the same beam selector with different resolutions.

Measuring the quality of the selected angles is not obvious. One measure is of course the
value of the judgement function. This information is shown in Table 4. The judgment values
indicate that the 5 mm spacing is too course for the fluence model to adequately address the
trade-offs between treating the tumor and not treating the brain stem. The 5 mm spacing so
crudely approximates the anatomical structures that it was always possible to design a 9-beam
treatment that treated the patient as well as a 72-beam treatment. The problem is that the
boundaries between structures, which is where over and under irradiating typically occurs, are
not well defined, and hence, the regions that are of most importance are largely ignored. These
boundaries are better defined by the 3 mm grid, and a degradation in the judgment value is
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Figure 2: The isodose contours for the bal-
anced 72-angle treatment with 5 mm spac-
ing.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Figure 3: The DVH for the balanced 72-
angle treatment with 5 mm spacing.
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Figure 4: The isodose contours for the bal-
anced 72-angle treatment with 3 mm spac-
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Figure 5: The DVH for the balanced 72-
angle treatment with 3 mm spacing.

Figure 6: The isodose contours for a clinical
tomotherapy treatment.

Figure 7: The DVH for a clinical tomother-
apy treatment.
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Selector Angle Value Selected Angles Time

Set Cover BalancedAvg 15 20 25 55 60 65 70 85 240 113.51

BalancedMax 10 15 20 95 190 195 200 275 340 126.23

PrimalAvg 15 125 155 230 235 240 250 300 340 43.96

PrimalMax 15 25 125 155 170 230 235 250 300 45.52

DualAvg 10 15 55 95 100 275 295 315 320 34.02

DualMax 15 55 95 100 110 275 295 315 320 68.80

InteriorAvg 15 20 25 55 60 65 70 85 240 115.75

InteriorMax 10 15 20 95 190 195 200 275 340 128.66

SetCover 1 20 145 150 155 200 320 325 330 335 90.91

SetCover 2 20 140 145 150 155 200 325 330 335 134.43

Scoring 245 255 260 265 270 275 280 285 290 108.19

Entropy 10 15 20 25 55 60 195 200 240 144.43

Scoring BalancedAvg 15 20 25 55 60 65 70 75 85 104.93

BalancedMax 10 15 20 25 95 190 195 200 340 108.29

PrimalAvg 15 125 155 230 235 240 250 300 340 48.59

PrimalMax 15 25 125 155 170 230 235 250 300 46.22

DualAvg 10 15 55 95 100 275 295 315 320 36.24

DualMax 15 55 95 100 110 275 295 315 320 66.56

InteriorAvg 15 20 25 55 60 65 70 75 85 105.91

InteriorMax 10 15 20 25 95 190 195 200 340 107.92

SetCover1 20 145 150 155 200 320 325 330 335 83.87

SetCover2 20 140 145 150 155 200 325 330 335 104.36

Scoring 245 255 260 265 270 275 280 285 290 122.59

Entropy 10 15 20 25 55 60 190 195 200 235.84

VQ BalancedAvg 30 60 90 120 155 205 255 295 340 197.62

BalancedMax 20 50 85 130 175 205 245 295 345 71.93

PrimalAvg 35 90 135 190 235 250 280 320 350 55.27

PrimalMax 20 70 125 160 205 245 275 305 340 121.91

DualAvg 35 80 115 180 255 280 290 310 345 115.53

DualMax 35 80 105 155 225 265 290 310 340 126.94

InteriorAvg 30 60 90 120 155 205 255 295 340 198.43

InteriorMax 20 50 85 130 175 205 245 295 345 71.98

SetCover1 40 75 115 150 190 225 265 300 340 52.56

SetCover2 40 75 110 145 185 230 265 300 340 187.10

Scoring 50 95 135 185 230 260 285 305 340 134.33

Entropy 15 40 65 90 130 175 220 275 340 56.14

Table 2: The angles selected by the different beam selectors with 3 mm resolution. The times are
in seconds and include the time needed to select angles and design a treatment with these angles.

observed.
Judgment values do not tell the entire story and are only one of many ways to evaluate

treatments. The mean judgment values of the different techniques all approach the goal value of
−5.0000, and claiming that one technique is better than another based on these values is tenuous.
However, there are some outliers, and most significantly the scoring values did poorly with a
judgment value of 3.0515 in the scoring and set cover beam selectors. The resulting 3 mm isodose
curves and DVH for the scoring 9-beam selector are seen in Figures 8 and 9. These treatments
are clearly inappropriate, especially when compared to Figures 4 and 5.

Besides the judgment value, another measure is to see how well the selected angles represent
the intentions of the angle values. If we think of the angle values as probability densities, then
the expected value of the 9 selected angles represents the likelihood of the angle collection being
optimal. These expected values are found in Table 5. The trend to observe is that the set cover and
scoring techniques select angles with higher expected values than the vector quantization technique,
meaning that the angles selected more accurately represent the intent of the angle values. This is
not surprising, as the set cover and scoring methods can be interpreted as attempting to maximize
their expected value. However, if the angle assignments do not accurately gauge the intrinsic
value of an angle, such accuracy is miss-leading. As an example, both the set cover and scoring
methods have an expected value of 1 with respect to the scoring angle values in the 5 mm case.
In this case, the only angles with nonzero values are 185 and 275, and the perfect expected value
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Selector Angle Value Selected Angles Time

Set Cover BalancedAvg 55 70 75 110 155 250 260 330 335 4.32

BalancedMax 110 120 155 225 245 250 260 295 300 4.46

PrimalAvg 45 55 100 150 190 250 260 275 305 4.81

PrimalMax 45 55 100 150 190 250 260 275 305 4.89

DualAvg 20 45 110 160 230 250 255 260 275 4.96

DualMax 20 45 110 160 230 250 255 260 275 5.04

InteriorAvg 55 70 75 110 155 250 260 330 335 4.67

InteriorMax 110 120 155 225 245 250 260 295 300 4.90

SetCover 1 20 145 150 155 200 320 325 330 335 5.43

SetCover 2 20 140 145 150 155 200 325 330 335 5.79

Scoring 95 185 230 260 265 270 275 280 320 5.10

Entropy 70 75 110 155 225 250 260 335 340 5.32

Scoring BalancedAvg 55 70 75 110 155 250 260 330 335 2.12

BalancedMax 110 120 155 225 245 250 260 295 300 2.34

PrimalAvg 45 55 100 150 190 250 260 275 305 2.68

PrimalMax 45 55 100 150 190 250 260 275 305 2.72

DualAvg 20 45 110 160 230 250 255 260 275 2.88

DualMax 20 45 110 160 230 250 255 260 275 2.94

InteriorAvg 55 70 75 110 155 250 260 330 335 2.48

InteriorMax 110 120 155 225 245 250 260 295 300 2.78

SetCover1 20 145 150 155 200 320 325 330 335 3.31

SetCover2 20 140 145 150 155 200 325 330 335 3.53

Scoring 95 185 230 260 265 270 275 280 320 3.01

Entropy 70 75 110 155 225 250 260 335 340 3.24

VQ BalancedAvg 40 75 105 140 185 230 270 305 345 3.77

BalancedMax 40 80 115 145 190 235 270 300 340 3.41

PrimalAvg 40 85 105 130 175 225 265 290 330 3.32

PrimalMax 30 80 105 130 175 225 260 270 320 4.11

DualAvg 20 75 130 160 205 245 260 265 315 3.99

DualMax 20 75 130 160 205 245 260 265 315 4.11

InteriorAvg 40 75 105 140 185 230 270 305 345 4.40

InteriorMax 40 80 115 145 190 235 270 300 340 4.03

SetCover1 40 75 110 145 185 225 265 300 340 4.70

SetCover2 40 75 110 145 185 230 265 300 340 4.88

Scoring 185 190 195 200 240 280 285 290 330 5.58

Entropy 45 75 105 140 195 240 270 305 345 4.75

Table 3: The angles selected by the different beam selectors with 5 mm resolution. The times are
in seconds and include the time needed to select angles and design a treatment with these angles.

only indicates that these two angles are selected. A scoring technique that only scores 2 of the 72
possible angles is not meaningful, and in fact, the other 7 angles could be selected at random.

The expected values in Table 5 highlight how the angle assignments differ in philosophy. The
weakly informed angle values attempt to measure each angle’s individual worth in an optimal
treatment, regardless of which other angles are selected. The informed values allow the individual
angles to compete through the optimization process for high values, and hence, these values are
tempered with the knowledge that other angles will be used. The trend in Table 5 is that informed
expected values are lower than weakly informed values, although this is not a perfect correlation.

From the previous discussions, it is clear that beam selectors depend on the dose point reso-
lution, but none of this discussion attempts to quantify the difference. We conclude with such an
attempt. For each of the selected sets of angles we calculated (in degrees) the difference between
consecutive angles. These distances provide a measure of how the angles are spread around the
great circle without a concern about specific angles. These values were compared in the 3 mm and 5
mm cases. For example, the 9 angles selected by the VQ selector with the BalancedAvg angle values
were {30, 60, 90, 120, 155, 205, 255, 295, 340} and {40, 75, 105, 140, 185, 230, 270, 305, 345} for the 3
mm and 5 mm cases, respectively. The associated relative spacings are {30, 30, 30, 35, 50, 50, 40, 45,
50} and {35, 30, 35, 45, 45, 40, 35, 40, 55}. This information allows us to ask whether or not one
set of angles can be rotated to obtain the other. We begin by taking the absolute value of the
corresponding relative spacings, so for this example the differences are
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SC S VQ
3 mm 5 mm 3 mm 5 mm 3 mm 5 mm 3 mm Mean

BalancedAvg -5.0000 -5.0000 -5.0000 -5.0000 -4.9194 -5.0000 -4.9731
BalancedMax -4.8977 -5.0000 -4.8714 -5.0000 -5.0000 -5.0000 -4.9230
PrimalAvg -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000
PrimalMax -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000
DualAvg -5.0000 -5.0000 -5.0000 -5.0000 -3.5214 -5.0000 -4.5071
DualMax -5.0000 -5.0000 -5.0000 -5.0000 -4.8909 -5.0000 -4.9636
InteriorAvg -5.0000 -5.0000 -5.0000 -5.0000 -4.9194 -5.0000 -4.9731
InteriorMax -4.8977 -5.0000 -4.8714 -5.0000 -5.0000 -5.0000 -4.9230
SC1 -4.9841 -5.0000 -4.9841 -5.0000 -5.0000 -5.0000 -4.9894
SC2 -4.9820 -5.0000 -4.9820 -5.0000 -4.9984 -5.0000 -4.9875
S 3.0515 -5.0000 3.0515 -5.0000 -4.9967 -5.0000 0.3688
Entropy -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000
Mean -4.3092 -5.0000 -4.3048 -5.0000 -4.8538 -5.0000

Table 4: The judgment values of the selected angles.
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Figure 8: The 3 mm isodose contours for
the balanced treatment when 9 angles were
selected with a scoring method and scoring
angle values.
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Figure 9: The 3 mm DVH for the balanced
treatment when 9 angles were selected with
a scoring method and scoring angle values.

3 mm Relative Spacing 30 30 30 35 50 50 40 45 50
5 mm Relative Spacing 35 30 35 45 45 40 35 40 55

Difference 5 0 5 10 5 10 5 5 5
.

Depending on how the angles from the 3 mm and 5 mm cases interlace, we rotate (or shift) the
first set to either the left or the right and repeat the calculation. In our example, the first angle
in the 3 mm selection is 30, which is positioned between angles 40 and 345 in the 5 mm case. So
we shift the 3 mm relative spacings to the left to obtain the following differences (notice that the
first 30 of the 3 mm above is now compared to the last 55 of the 5 mm case).

3 mm Relative Spacing 30 30 35 50 50 40 45 50 30
5 mm Relative Spacing 35 30 35 45 45 40 35 40 55

Difference 5 0 0 5 5 0 10 10 25

The smallest aggregate difference, which is 50 in the first comparsions versus 60 in the second, is
used in our calculations. We do not include all possible shifts of the first set because some spacial
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SC S VQ
3 mm 5 mm 3 mm 5 mm 3 mm 5 mm

BalancedAvg 0.2157 0.2059 0.2176 0.2059 0.1506 0.1189
BalancedMax 0.2613 0.3045 0.2673 0.3045 0.1234 0.1344
PrimalAvg 0.4191 0.8189 0.4191 0.8189 0.1600 0.0487
PrimalMax 0.4194 0.7699 0.4194 0.7699 0.1362 0.0429
DualAvg 0.6144 0.7443 0.6144 0.7443 0.0394 0.3207
DualMax 0.5264 0.7443 0.5264 0.7443 0.0359 0.3207
InteriorAvg 0.2157 0.2059 0.2176 0.2059 0.1506 0.1189
InteriorMax 0.2613 0.3045 0.2673 0.3045 0.1234 0.1344
SC1 0.1492 0.1461 0.1492 0.1461 0.1251 0.1248
SC2 0.1523 0.1491 0.1523 0.1491 0.1234 0.1273
S 0.2352 1.0000 0.2352 1.0000 0.1673 0.5058
Entropy 0.3176 0.3320 0.3303 0.332 0.1399 0.1402

Table 5: The expected values of the selected angles.

positioning should be respected, and our calculation honors this by comparing spacing between
neighboring angles.

Table 6 contains the means and standard deviations of the relative spacing differences. A low

Mean Variance
SC S VQ SC S VQ

BalancedAvg 45.56 47.78 5.55 2465.30 4706.90 9.03
BalancedMax 40.00 45.56 11.11 2125.00 3346.50 73.61
PrimalAvg 28.89 28.89 14.44 236.11 236.11 165.28
PrimalMax 16.67 16.67 13.33 325.00 325.00 131.25
DualAvg 37.78 37.78 16.67 1563.20 1563.20 150.00
DualMax 36.67 36.67 15.56 1050.00 1050.00 84.03
InteriorAvg 45.56 47.78 5.56 2465.30 4706.90 9.03
InteriorMax 40.00 45.56 11.11 2125.00 3346.50 73.61
SC1 0.00 0.00 1.11 0.00 0.00 4.86
SC2 0.00 0.00 0.00 0.00 0.00 0.00
S 40.00 40.00 35.56 3481.20 3481.20 1909.00
Entropy 44.44 44.44 13.33 1259.00 1552.80 81.25
Mean 31.30 32.59 11.94 1424.60 2026.30 224.25

Table 6: The mean and standard deviation of the (minimum) difference between the 3 mm and 5
mm cases.

standard deviation indicates that the selected angles in one case are simply rotated versions of the
other. For example, the VQ selector with the InteriorAvg angle values has a low standard deviation
of 9.03, which means that we can nearly rotate the 3 mm angles of {30, 60, 90, 120, 155, 205, 255, 295,
340} to obtain the 5 mm angles of {40, 75, 105, 140, 185, 230, 270, 305, 345}. In fact, if we rotate
the fist set 15 degrees, the average discrepancy is the stated mean value of 5.56. A low mean value
but a high standard deviation means that it is possible to rotate the 3 mm angles so that several
of the angles nearly match but only at the expense of making the others significantly different.
Methods with high mean and standard deviations selected substantially different angles for the 3
mm and 5 mm cases.

The last row of Table 6 lists the column averages. These values lead us to speculate that the
VQ techniques are less susceptible to changes in the dose point resolution. We were surprised
that the SC1 and SC2 angle values were unaffected by the dose point resolution, and that each
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corresponding beam selector chose (nearly) the same angles independent of the resolution. In any
event, it is clear that the dose point resolution generally affects each of the beam selectors.

Besides the numerical comparisons just described, a basic question is whether or not the beam
selectors produce clinically adaquate angles? Figure 10 and 11 depict the isodose contours and a
DVH of a typical clinical 9-angle treatment. This is not a final design, but rather is what is typical
of an initial estimate of angles. Treatment planners would adjust these angles in an attempt to
improve the design. Using the BalancedAvg angle values, we used Nomos’ commercial software to
design 9-angle treaments with the angles produced by the three different techniques with 3 mm
spacing. Figures 12 through 17 contain the isodose contours and DVHs from Nomos software.

Figure 10: The isodose contours for a clini-
caly designed (initial) treatment.

Figure 11: The DVH for the balanced 72-
angle treatment with 5 mm spacing.

The set cover and scoring treatments in Figures 12 through Figures 15 are inferior to the
initial clinical design. The problem is that the 9 angles are selected too close to each other. The
fact that these are similar treatments is not surprising since the angle sets only differed by one
angle. The vector quantization treatment in Figures 16 and 17 is clinically relevant, indeed it
is an improvement over the initial clinical design. Specifically, only about 50% of the brain stem
in the VQ treatment recieved above 30 Gy, whereas about 80% of the brain stem in the clinical
treatment recieved above 30 Gy. In fact, the DVHs in Figure 11 and 17 indicate that the 9 angles
selected by the vector quantization technique fare well if compared to the 72 angle tomotherapy
treatment.

5 Conclusions

We have implemented several heuristic beam selection techniques and tested them on a clinical
case with two different dose point resolutions. We have also (for the first time) compared the
results with those from a commercial planning system and studied (again for the first time) the
influence of dose point resolution on beam selection techniques.

References

Ahuja, R. and Hamacher, H. (2004). A network flow algorithm to minimize beam-on-time for
unconstrained multileaf collimator problems in cancer radiation therapy. Networks, 45(1), 36–
41.

15



Baatar, D., Hamacher, H., Ehrgott, M., and Woeginger, G. (2004). Decomposition of integer
matrices and multileaf collimator sequencing. Discrete Applied Mathematics, 152, 6–34.

Bortfeld, T., Boyer, A., Kahler, D., and Waldron, T. (1994). X-ray field componsation with
multileaf collimators. International Journal of Radiation Oncology, Biology, Physics, 28(3),
723–730.

Ehrgott, M. and Johnston, R. (2003). Optimisation of beam directions in intensity modulated
radiation therapy planning. OR Spectrum, 25(2), 251–264.

Ehrgott, M., Holder, A., and Reese, J. (2005). Beam selection in radiotherapy design. Technical
Report 95, Department of Mathematics, Trinity University , USA.

Gersho, A. and Gray, R. (1991). Vector Quantization and Signal Compression. Kluwer Academic
Publishers, Boston, MA.
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Söderström, S. and Brahme, A. (1992). Selection of beam orientations in radiation therapy using
entropy and fourier transform measures. Physics in Medicine and Biology, 37(4), 911–924.

Spirou, S. and Chui, C.-S. (1998). A gradient inverse planning algorithm with dose-volume con-
straints. Medical Physics, 25(3), 321–333.

Wang, C., Dai, J., and Hu, Y. (2003). Optimization of beam orientations and beam weights for
conformal radiotherapy using mixed integer programming. Physics in Medicine and Biology,
48, 4065–4076.

Webb, S. (2001). Intensity-modulated radiation therapy (Series in Medical Physics). Institute of
Physics Publishing.

Winz, I. (2004). A Decision Support System for Radiation Therapy Treatment Planning. Master’s
thesis, The University of Auckland, Department of Engineering Science, Auckland, New Zealand.

Xia, P. and Verhey, L. (1999). Multileaf collimator leaf sequencing algorithm for intensity modu-
lated beams with multiple segments. Medical Physics, 25, 1424–1434.

17



Figure 12: The isodose contours for a clini-
caly designed treatment based on the 9 an-
gles selected by the set cover method with
BalancedAvg angle values and 3 mm spac-
ing.

Figure 13: The DVH for a clinicaly designed
treatment based on the 9 angles selected by
the set cover method with BalancedAvg an-
gle values and 3 mm spacing.

Figure 14: The isodose contours for a clini-
caly designed treatment based on the 9 an-
gles selected by the scoring method with
BalancedAvg angle values and 3 mm spac-
ing.

Figure 15: The DVH for a clinicaly designed
treatment based on the 9 angles selected by
the scoring method with BalancedAvg angle
values and 3 mm spacing.

Figure 16: The isodose contours for a clin-
icaly designed treatment based on the 9
angles selected by the vector quantization
method with BalancedAvg angle values and
3 mm spacing.

Figure 17: The DVH for a clinicaly designed
treatment based on the 9 angles selected by
the vector quantization method with Bal-
ancedAvg angle values and 3 mm spacing.
with 5 mm spacing.
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